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Spatiotemporal solitons in multidimensional optical media with a quadratic nonlinearity
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We consider solutions to the second-harmonic generation equations in two- and three-dimensional dispersive
media in the form of solitons localized in space and time. As is known, collapse does not take place in these
models, which is why the solitons may be stable. The general solution is obtained in an approximate analytical
form by means of a variational approach, which also allows the stability of the solutions to be predicted. Then,
we directly simulate the two-dimensional case, taking the initial configuration as suggested by the variational
approximation. We thus demonstrate that spatiotemporal solitons indeed exist and are stable. Furthermore, they
are not, in the general case, equivalent to the previously known cylindrical spatial solitons. Direct simulations
generate solitons with some internal oscillations. However, these oscillations neither grow nor do they exhibit
any significant radiative damping. Numerical solutions of the stationary version of the equations produce the
same solitons in their unperturbed form, i.e., without internal oscillations. Strictly stable solitons exist only if
the system has anomalous dispersion at both the fundamental harmonic and second H&tfpimcluding
the case of zero dispersion at SH. Quasistationary solitons, decaying extremely slowly into radiation, are found
in the presence of weak normal dispersion at the second-harmonic freqiBh6$3-651X97)14009-7

PACS numbeps): 42.65.Tg, 42.65.Ky

I. INTRODUCTION ated in 2D (planar waveguide [9] and 3D (bulk) [10]
geometries. In this work, we will demonstrate that, by adding
The concept of optical spatiotemporal solitgf®TS [1]  temporal dispersion to the spatial diffraction, one can con-

(frequently called “light bullets’) has been attracting a lot of Struct stable STS in both geometries. Including the temporal
attention as a unique opportunity to create a self-supportingariable, we will refer to these two cases @t+1)D and
fully localized object freely propagating in a nonlinear me- (3+1)D geometries. The transverse dimensiequal to 2
dium. However, it is well known that STS in media with a @nd 3 in the former and latter cases, respectivefil be
Kerr (cubic) nonlinearity are strongly unstable, being subjectdenotedi. As demonstrated if#], wave collapse in the SHG
to wave collapsd2]. The collapse can be prevented if one System does not take place if the transverse dimengjon
takes into account saturation of the nonlineaj}; Another  including the transverse coordinates and time, is smaller than
more promising way is to use a medium with a quadratic4- Thus, a self-focusing collapse is precluded in any physical
nonlinearity. The absence of wave collapse in two- anddimension.
three-dimensional(2+1)D and (3+1)D] second-harmonic-
generating SHG) media has been demonstrated analytically A. Parametric wave equation

[4] and numerically{5] (see alsd6] and[7]). Moreover, in _ . )
Ref. [4] it was proven, by means of rigorous variational es- The scaled equations describing copropagation of the fun-

timates, that in both cases the model must have stable fullfamental harmoni¢FH) and second harmonitSH) in t[he
localized solitary-wave solutions realizing a nontrivial mini- duadratic medium have already been formulated [ia]):

mum of the Hamiltonian. In most of these calculations, a

type of rotational symmetry between the space and time co-

ordinate was assumed that is not found in practice. The treat-

ment of more general nonsymmetric cases is the objective of 1

the present work. 2ivg+ Vi +dv,,—y+ §U2: 0, 2

SHG media are now the focus of attention as a new field

of nonlinear optics, especially as concerns solitfBs15). ,

Thus far, temporal solitons have not been experimentally obwhere — u=2zywi& e %20y (k,c?) and v

served in quadratically nonlinear media. However, time-=zowi&e™ 2220y (@) (k,c?) are the scaled FH and SH en-

independent spatial solitons have been successfully genevelopes & are electric field envelope functions at frequency
joi, E=2/z5 and 7= (t—2z/vg)/ty [14] are the scaled propa-
gation distance and the scaled local time coordinate, at a

*Electronic address: malomed@eng.tau.ac.il group velocityv 4.

iug+Vau+u,—u+ou*=0, )
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Heretq is a characteristic time scale used for scaling pur- Il. VARIATIONAL APPROXIMATION

pose,.whilaoz-Ztélk’l’-. The dimensionless transverse sgatial We are interested in stationarg-independentsolutions
coordinate p is defined by p=yx“+yro, where r5 4 Egs (1) and(2), and in their stability. In thé3+1)D case,
=(20/2ky), given a carrier wave number f=k(w,) atthe e assume an axial symmetry for the transverse coordinate.
(FH) frequencyw,;. The second order nonlinear Bloember- 1,5, a stationary solution is assumed to be given by the

gen coefficient isy®), and the envelope functiof is de-  following PDE's for thereal functionsu andu:
fined so that

u,,+(d=2)p tu,+u, ,—u+ovu=0, 4
o\ (t a—ij(wt—k2) 1
E(t,X) j:21,2 gj(t,X)e 1194 c.c.. (3) Upp+(d_2)P_lvp+ 5UTT_ Yo+ EUZZO, (5)

. . . 2 oo wherep is the so-called radial coordinate in the cake3,

The (d—1)-dimensional Laplacian V;=d%/dp°+[(d or simply the single transverse coordinatén the cased
—1)/pldldp acts upon the transverse spatial coordifgite —o
[in the(3+1)_D_ case, we will assume cylindrical sym_meﬂtry Exact solutions to Eqs(3) and (4) are not available in
and the positive parameter measures the phase mismatchejther case. We will show that, nevertheless, solutions can be
between the two harmonics, so that=4+275[2k(w;)  effectively approximated by means of the analytical varia-
—K(2w;)]. The dispersion at the FH is assumed to betional approach. Recently, this approach was used to treat a
anomalous, and=k3/kj is the ratio of the SH and FH dis- related but simpler problem, viz., spatial solitons supported
persion coefficients, which may have any sign. Equatiahs by a quadratic nonlinearity in thl+1)D and (2+1)D (ro-
and (2) implicitly assume equal group velocities at the cho-tationally symmetri¢ geometrieg11].
sen carrier wavelengths, and are defined relative to envelope
functions of forme'*? ande?*?, respectively, which carry the
usual propagation constant. We note here that the use of a
moving frame coordinate system means that the first-order The variational approach is based on a certaisatzfor
derivative in the equation is in the spatial propagation directhe solution sought fdrL6]. A general property of solitons in
tion, £, while the transverse dimensions have both a spatidhe SHG model is a difference in spatial and temporal widths
and temporal nature. of their two components. The only tractable ansatz compat-

In this work, we will demonstrate thdat least in the ible with this property is the Gaussian variational approxi-
(2+1)D casé STS's exist, in the rigorous sense, only if the mation[11], which we will abbreviate as GVA:
SH dispersion is anomalous, i.e.,d0, including also the
zero-dispersion casé=0. However, if the dispersion at SH u=Aexp~ap’~ar’), v=Bexp—bp’~p). (6
is weakly normal, a “quasisoliton” solution is possible. It

decays into radiation so slowly that it may be regarded as Here the arbitrary parameteasb, «,, andA,B repre-
quasistable. sent, respectively, the inverse squared spatial and temporal

widths and amplitudes of the FH and SH components of the
soliton. The next ingredient of the variational technique is
B. Outline the Lagrangian of Eqs4) and (5), L="Zdpf ZdL in
the cased=2, andL=[;pdp[ 2d7L in the cased=3,
with the Lagrangian density

A. Gaussian ansatz

The rest of the paper is organized as follows. In Sec. Il
we develop an explicit analytical approximation for the so-
lutions, both for the(3+1)D and (2+1)D cases, based on
variational methods. The stability of the analytical solutions  £— Z[(v )2+ (V v)2+ u?+ sv2+ u+ yv2—u?].
is tested by means of the known integr@Vakhitov- 2= F P T

Kolokolov) criterion. Using the variational Gaussian ap- 0
proximation as the initial condition we present, in Sec. lll, . ) o )
results of direct simulations of Eqél) and (2) for the (2 Before proceeding further with the variational approach, it

+1)D case, which demonstrate that STS's exist and ardS rélevant to mention that the underlying equatiohsand
stable. Direct simulations of thé3+1)D case, which are (2) have three integrals of motion. One of them is (frans-
more difficult technically, are deferred to another paper. AnV€rsé momentum, which is zero for the ansafs. The other
important conclusion is also that, although the variationaintegral is the normalso frequently called energyV with
approximation is not very precise in tii2+1)D case, it still  the density
provides a reasonable initial guess for the simulations, and it
is therefore quite useful. W= u|?+4[v]?. (8)

In Sec. IV, we summarize the obtained results and also
briefly discuss possibilities for implementation of optical The norm is related to its densityy the same way the La-
STS in an experiment. We infer that this should be possiblgrangian is related to its density). This quantity is actually
if the FH pump wave is launched at a wavelengtBum (in ~ proportional to the conserved Manley-Rowe photon number
the near infrared regignor, alternatively, optical STS can invariant,N;+2N,. The last one is the Hamiltonian of the
be realized as a gap soliton. full wave equationg1) and (2). For the realz-independent
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solutions, it coincides with the above Lagrangian. The norm B. Symmetric dispersion case

will be used below to obtain some estimates of the stability ;i relevant to consider in more detail the symmetric case

of the STS. . , 5=1, when the FH and SH dispersions are equal. In this
Coming bapk to the vanauona] approach, we insert thecase, Eqgs(1) and(2) demonstrate a formal isotropy, mixing
ansatz Eq(6) into Eq. (7). Integrating the resultant expres- yhe yransverse coordinates and time. Introducing the variable

sion overp and 7, it is straightforward to find the corre- _ 7y 2 | E 4 he ODE’
spondingeffectiveLagrangian. Finally, the equations for the o=\p™+ 7, one can replace Eqe3) and(4) by the ODE's,

parameters of the ansatz can be obtained by equating the u’"+do U’ —u+vu=0, (22)
variation of the effective Lagrangian to zero.
1
1. Two transverse dimensions v"+do ' —y+ zu?=0, (22

2

For two transverse dimensions, one time and one space

(i.e.,d=2), the expressions for the amplitudes are

_(2at+b)(ata+1)(b+ 6B+ y)(2a+p)

A? .9
2\abap ®

1 \/(2a+ b)(2a+ B)
B=(ata+1) ™ , (10)

and the SH widths are eliminated as follows:
B=4a?*(a—a+1) 1, (11
b=4a’(a—a+1) L. (12

The remaining equations for the FH widths take the form
2b(b+ 68+ y)=(2a+b)(—b+ 58+ v), (13
2B(b+ 8B+ y)=(2a+ B)(b— 568+ ). (14

2. Three transverse dimensions

the prime standing fod/do. In the casel=2, Egs.(21) and

(22) coincide with those describing spati@lylindrical) soli-

tons in three dimensions. These equations were recently con-
sidered in detail if12] and[11]. For the casal=3, Egs.

(22) and(21) were recently solved numerically [14]. The
GVA also simplifies in the casé=1. In this case, one ob-
tains physical solutions only witk=a and 8=b.

1. Two transverse dimensions

For two transverse dimensiogne space and one time
i.e.,,d=2 and 6=1, the SH width can also be eliminated:
b=4a?. The equation for the FH width becomes

B 3238
Y"1-2a

(23

This implies the restrictiom< 3 (sincey is positive. Thus,
in (2+1) dimensions the “isotropic” solitons cannot be too
narrow, but can be arbitrarily broad.

In [11] it was shown in detail that the variational approxi-
mation based on GVA furnishes a reasonably accurate de-
scription of the spatial cylindrical soliton, if compared to the

For three transverse dimensions, one time and two spad&/merical resultsalthough somewhat less good than in the

(i.e.,d=3), one can first of all eliminate the amplitudes,

_(2a+b)*(2a+a+1)(2b+ 6B+ y)(2a+B)

AZ
4ab\ap ’
(15
B (2a+b)(22:+a+l) 22‘;[)” (16
and then the SH temporal and spatial widths,

B=4ad*(2a—a+1)1, (17)
b=4a%(a+1)" 1. (18

The remaining equations for the FH widths are
2b(2b+ sb+y)=(2a+b)(68+y), (19
2B(2b+ b+ y)=(2a+ B)(2b— 5B+ 7), (20

whereb and g should be substituted from Eq4.7) and(18).
Notice that Eqs(13) and(14) or (19) and(20) can easily
be solved for the mismatch and dispersion parameteasd

(1+1) dimensions, in which GVA produces an extremely
good accuracy, as was demonstrated in the same]wbte

to the equivalence of the cylindrical soliton to STS with
=1 in (2+1) dimensions, we can thus use the resultgldi

to justify the use of GVA in this case. More precise compari-
son with exact numerical simulations will be given later.

2. Three transverse dimensions

For d=3, there are three transverse dimensigtvgo
space and one timeThe SH width can be eliminated
=4a%/(a+1), and the FH width is then determined by the
cubic equation

36a+(y—4)a?—y=0. (24)
Equation (24) can be readily shown to have exactly one
physical root for any value of thépositive mismatchvy.
Moreover, solving Eq(24) for vy yields

y=2a%(9a—1)/(1—a?), (25)
which has an important consequence: the “isotropic” FH
width a may take only the value§<a<1. In other words,
the variational approximation predicts that, in the cdse
=1, solitons in(3+1) dimensions can neither be very broad

& if one regards the widths anda as given free parameters. (a>3) nor very narrow 4<1).
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FIG. 1. Comparison of the variationgsolid) and numerical FIG. 2. The inverse squared widths of the spatiotemporal soliton
(dashed shapes of the initial (3 1)-dimensional spatiotemporal [Eq. (6)] vs the relative dispersion parametérfor d=3 and y
soliton in the “isotropic” case,6=1, for y=1. The lower and =1, as produced by the variational approximation.

upper curves show, respectively, the fundamenfal, 7) and sec-

ond harmonicsy(p, 7). quite close to that obtained from the ansatz, provided that

6=0. The simulations will also demonstrate that, at negative

For the cased=1, and(3+1) dimensions(which corre- 5 1he solitons decay. This is not predicted by the GVA and
sponds to the case treated by Hayata and Kosfibawe 5 que to the fact that, as suggested by linearizing equation

display in Fig. 1 the shape of the STS as predicted variation(z)’ the decay of the soliton at<0 is accounted for by its
ally, together with the num_erically found ;hape taken fror.n“ta“S'n Obviously, GVA does not adequately approximate
[14]. One concludes from Fig. 1, that GVA is less accurate inpe exponentially decaying tails. Nevertheless, it will also be
higher dimensions, but that it still gives a correct idea of theyamonstrated that i is negative and small, the decay rate
shape of the soliton. We emphasize again that this symmetriGt i soliton predicted by GVA is so slow that it should be
case of6=1 requires a matching of dispersion properties.gqarded as a quasistattind therefore physically meaning-
which is unlikely to occur in practice. ful) state. This “quasistability” is enhanced if the mismatch
parametery is large enough.

C. Existence range of variational solutions Some conclusions about the stability of the solitons can
also be obtained within the framework of the GVA, using the
known Vakhitov-Kolokolov(VK) stability criterion for soli-

| tons of the nonlinear Schdinger type[17] (see alsd2]).
According to this criteriofwhich was recently applied to

Physical solutions are those for which all the width®
and «, B are real and positive. It follows from Eq&) and
(15) that positiveness oA? does not impose any additiona

constraint on selection of the solutiofat least, if 5>0).

Two interesting issues to be addressed are the existenééJrl)D sphtons n qugdratlcally nonlinear mediufa3]
range of the physical solutions, especially at zero and negé‘-ﬂd to stationary p_ylmdncal be?‘msﬁmﬂ' a necessary con-
tive 5, and the possibility of multistability, i.e., having more dition for the _stab|I|ty of the soliton is a posmve slope in the
than one physical solution for fixegand é. Solving numeri- grgph the soliton norm vs the propagation constant. Our so-
cally the algebraic equatiorid3),(14) and (19),(20) for the lution does not explicitly cont.am. the latter parameter.

FH widths, we arrive at the following conclusion(g} At all In order to apply the VK cr|§erlqn to Eqel) and(2), one .
positive y and &, there is exactly one physical solutid¢for heeds to perform a rer_10rmaI|zat|on that (_ax_punges_the mis-
both dimensionk (ii) for d=2, there is exactly one solution matchy from the equa}tmns, t_ransformmg it into an mtgrnal
for negatives too; (iii) for d=3, solutions for negatived parameter of the solution farr_u[\lz,l?ﬂ. This transformatmn
were found only in a very narrow stripe, e.g., At generates the above-mentioned propagation constant. In

~0.067 fory=1; (iv) in this narrow stripefor d=3 only), other words, we need to define a transformation of the form

the variational approximation producéso different solu-  (U,v,¥)—(u,v,7) such that ifu,v are stationary solutions
tions. The last two features are illustrated by Fig. 2, whereof the original equation with phase-mategh thenu,v are

we display the widths of thé3+1)D soliton vs the relative  solutions to the equation with phase-matehin this way, all

dispersions, as obtained from the GVA. We stress that thesesplutions obtained by varying can be mapped into solu-

features need to be verified by full numerical simulations. tions of the same equation, but with different propagation
constants—as required in the application of the VK criterion.

D. Stability The transformation can be written as
Later in this work, the variational approach will be com- ¢
pared with direct numerical simulations fde=2. It will be u Y L A 26
: : : u(p,m,é)=au| -, —, e, (26)
shown that the shape of the numerically found solitons is aaa
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a'g2 2201

3 (p.mE)=a% ( g, i) oi(20a%+ ¢ 27)

N
f=3
=]

wherea= y2/|4—y|. In Eq.(27) “ +” and “ —" correspond
to y<<4 andy>4, respectively.

We choosey=2 as the reference value for this purpose,
leading to a “renormalized normW. After some manipu-
lations, the renormalized noriV takes the form

SOLID LINE: §=0
DASHED LINE: 8=1

T T T | S —
——————
-
-

RENORMALIZED ENERGY

W: a(3—d)/2W’ (28) 120+

whereW is defined by the densit{8). It can also be shown

that the necessary condition for stability of the soliton finally ' ’ ‘ T
amounts to
130014 (b)
dw /|
sgr(4—y) —>0. (29) 20 /
dy ,
1100 e
SOLID LINE: 3=0 L’
[In the critical case of exact phase matchigg;4, the trans- 10007 DASHED LINE: 3=1 .

formation Eqgs.(26) and (27) is singular and the criterion
does not give a definite verdigt.

The dependences of the renormalized n@2®) vs vy for
both casesl=3 andd=2, obtained from the GVA solution,
are shown in Figs. @) and 3b) for two different values of
the relative dispersionj=1 and5=0. In the same figures,
we show the values of the renormalized norm obtained frorr
the full numerical solution in the special cade-1. Notice
that Fig. 3 not only tells us about stability of the solitons, but ' Y
also helps to estimate the accuracy of the GVA.

We conclude from Fig. 3 that, for eachand, there is a FIG. 3. The renormalized norfW [Eq. (28)] vs the mismatchy
single critical valuey, of y that separates, according to the for the spatiotemporal solitora) d=2; (b) d=3. The solid and
criterion (29), stable solitons ay> vy, and unstable ones at dashed curves are obtained from the variational approximation for,

Y<7¥e- In the GVA approximation, these critical values at respectively,6=0 andé=1. The stars are exact numerical results
d=3 are y,~0.65 for both6=2 andé=0 . Atd=2 they for 5=1.

are y,~0.37 for =2 andvy.,~0.52 for 5=0. However, in

RENORMALIZED ENERGY

the next section we will show numerical results that indicate IIl. NUMERICAL RESULTS
that these predictions are unreliable &=«0, where it seems Direct simulations of Eqs(1) and (2) were performed for
that y,— .

- ) _ (2+1) dimensions, starting from an initial configuration sug-
Th.e GVA predictions for the existence of_tBHapIesph- gested by the variational ansd®, with the parameters de-
tons in the cased=2 andd=3 are summa_rlzed in Fig. 4, termined by Eqs(11)—(14). When designing the Fourier-
where we show a boundary curve separating stable and Ugansform scheme for the numerical simulatighg], special
stable solitons in the parametric plang, {). This plot is  care was taken to absorb periodic reflection of the emitted
quite important by itself, and also because its porti@h  agiation from the edges of the integration domain, in order
(pertaining tod=2) will be used in the next section for 5 ayoid the so-called aliasing problem, when dynamics of
comparison with results of direct numerical simulations ofe solitary wave can be distorted by its interaction with the
the same case. reflected “radiation.” In all cases, discretization errdciie
to finite step-sizewere monitored and kept to a level of 1%

E. GVA accuracy or less. Typical lattice sizes employed were around 20 000
X 128x 128 points for thg2+1)D simulations.

For real physical applications, it is important to consider
the case of small positive and general negatdyeas it is
atural to expect that the dispersion at SH should be either
ssentially less anomalous than at FH, or normal.

Our general inference, based on a comparison of Kaj. 1
with similar figures from[11], is that the accuracy of GVA
deteriorates with increasing dimensionality. We assume th
this feature of GVA may be quite generic. The reason for this
is that the soliton presumably has tails which decay at least
exponentially at large radius, and the contribution of these )
tails is of increasing significance at larger dimensionality. A. Stable propagation: 50
These tails are suppressed by GVA, which has a more rapid In Fig. 5, we show a typical example of the evolution of
(than exponentialcutoff at large radius. the solitary wave generated by the variational ansatz at small
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FIG. 5. An example of evolution of the spatiotemporal soliton in

T s s o (2+1) dimensions, with a weak anomalous dispersion at the second
harmonic, §=0.1430, and relatively large mismatcl~=8.2878.
The initial configuration is taken as per the variational an$@\z
Shown is the cross sectiar= 0 of the evolution of the fundamental
12} ®) intensity, i.e.,u?(p,0,£).

radiation, decays extremely slowly. The study of internal
modes of the multidimensional soliton is a challenging but
09 ] much more complicated problem.

The smallness ob does not essentially affect the accu-

. racy of the variational approximation, as estimated by the
07} solution L/——’——_ amplitude of the internal oscillations of the soliton generated
o6l 1 by the variationally predicted initial configuration, in com-
o5l Unstable | parison with the “isotropic” cased=1, which is displayed

in Fig. 6. Another relevant example, pertaining to a smaller
v, is displayed in Fig. 7.

To check another general inference formulated in the pre-

5 ceding section, i.e., that the accuracy provided by the varia-
tional approximation deteriorates with increasing dimension-
FIG. 4. The stability boundary fota) (2+1)-dimensional and  ality, we have additionally run direct simulations of E¢)
(b) (3+1)-dimensional spatiotemporal solitons on the parametricand(2) for the (1+ 1)-dimensional case, starting again from
plane (3,y). In the portion(a), the circles correspond to the cases the variationally predicted ansatz. A typical example is
for which direct simulations have been r(see Figs. 5-7,9, and 11 shown in Fig. 8. One sees that, while the variational ansatz
below. The marksS, U, andO are to distinguish between the cases stjl| produces some error, the error is conspicuously smaller

in which the direct simulations have revealed, respectively, stabilyngn in the (2 1)-dimensional model, giving rise to internal

ity, instability (decay, and an oscillatory behavior of the soliton.

6 and relatively large phase mismatch parametfer(s
=0.1430, y=8.2868). The variationally predicted ansatz
generates a stable spatiotemporal solitary wave with some
internal oscillations. A noticeable feature of the oscillations
is that, while they are not growing and hence do not give rise
to an instability, neither do they demonstrate any conspicu-
ous radiative damping.

The stability of the soliton against internal vibrations and,
simultaneously, the stability of the vibrations against radia-
tive damping, even when the vibration amplitude is quite
large, are known features of the usu@w-dimensional
SHG model[15]. Detailed analysis has demonstrated that
these features are strongly related to the structure of internal
modes of the dynamical soliton in this model: it has one
genuine internal mode, and one “quasimode” belonging to
the continuum spectrum. It was shown that the eigenfrequen-
cies of the two modes are quite clo&ghich gives rise to

oscillations with a smaller amplitude.

8

Intenssity
&

~n
[=]

FIG. 6. Propagation of fundamental intensit§(p,0,£) with an

long-lived internal beatings of the perturbed soljtoand initial variational ansatz, for the “isotropic” caseé=2, 5=1, at

that even the quasimode, though it directly resonates with the=

6.75.
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FIG. 7. Propagation of fundamental intensit§(p,0,£) with an
initial variational ansatz, for the cas#=2, §=0.2055, andy
=0.9229.

FIG. 9. Propagation of fundamental intensit§(p,0,£) with an
initial variational ansatz, for the cas#=2, §=—0.01, andy
=6/7, showing quasistable propagation with normal dispersion at

) the fundamental wavelength.
B. Unstable propagation: 6<0

a larger mismatchy helped to effectively stabilize the pulses

An issue of principal interedfirst of all, for application at negatives
to real physical mediais to check the possibility of the ex- " z|ihe cases considered above lay sufficiently deep inside

istence of solitons ab<<0, when the SH dispersion is nor- {4 stability region predicted by GVA: see Figa#
mal. As mentioned in the preceding section, the variational ’

approximation[for the (2+1)-dimensional cageproduces a C. Stability boundary curve
solution at all negatives, and the usual stability criteria in-
dicate that these should be stable at layge

If | 8] is small, the pulse generated by GVA seepnac-
tically stable its decay is so slow that it appears to be a fairly
stable soliton that does not have any visible difference from
the stable solitons found at positive An example foré=
—0.01 andy=0.8571 is shown in Fig. 9. It is relevant to
stress that ab exactly equal to zero, when E) does not
contain the second time derivative, the soliton still exists and
is very close to that shown in Fig. 9. We conjecture that the
soliton exists in the rigorous sense 4&0. However, the
simulations indicate that, strictly speaking, stable pulses do
not exist at negatives. This is especially true for larges|,
where the decay of the pulse is very rapid. An example is =
shown, for=—1 and y=10, in Fig. 1@a). At the same o
value of y and moderately smals=—0.1, the soliton is g
guasistabl¢Fig. 10b)]. As a general trend, we observed that

We have performed another series of the simulations in
order to check the stability boundary curve. To this end, a
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FIG. 8. An example of evolution of the pulse generated by the FIG. 10. Propagation of fundamental intensii(p,0,¢) with an
initial configuration taken as per the variational approximation ininitial variational ansatz, for the cases=2, y=10 and(a) 6=
the (1+1)-dimensional case fat= 5= y=1. Displayed is the fun- —1.0,(b) §=—0.1. This shows unstable and quasistable propaga-
damental intensity?(7,z). tion, respectively.
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string of parametric points along the line=0.7 (which is  above, that the stability boundary predicted by GVA at nega-
expected to intersect this stability boundary curve tyvigas  tive § appears to be incorrect, with the possible exception of
selected. The results are shown in Fig. 11. Comparing theroases wherg¢s| is very small.
with the location of the corresponding points in Fig. 4, one Thus far, we have considered the evolution problem for a
concludes that, provided=0, the points lying deep enough Gaussian initial pulse. The numerical solutions displayed
inside the regions that are expected to be stable indeed geabove clearly demonstrate existence and stability of solitons
erate pulses that are stalptasegd), (e), and(f)]. The points  both at positive and, effectively, at small negati#eand at
obtained for§<0 all decay rapidly{cases(g), (h), (i), and  arbitrary mismatchy. However, they do not show the exact
(j)], while cases outside the stability boundary in the regiorshape of the stationary soliton. This can be obtained from a
6>1 show evidence of oscillatory behavior. numerical solution of the stationary version of E¢b. and
Thus, the stability boundary predicted by GVA proves to(2), i.e., the equations without the& derivatives. We do not
be rather “fuzzy” in comparison with the direct simulations, pursue this problem here, since practical inputs in experi-
but, nonetheless, this border definitely has its meaning. Howments are most likely to have a Gaussian-like shape. Exact
ever, one should notice, in accordance with what was saidolutions of the stationary problem are known when the soli-
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FIG. 11 (Continued.

ton is “isotropic,” i.e., in the physically unrealistic cas® both the fundamental and second harmonics is anomalous,
=1 (provided that the temporal and spatial variables havéncluding the case of zero dispersion at the second harmonic.
been appropriately rescaledrhis rescaling to the formally If the second harmonic has a weak normal dispersion, an
isotropic form is not possible 6+ 1. effectively stable quasisoliton is still possible.

We finally present here a snapshot of an “asymmetric”  As concerns the experimental search for multidimensional
Gaussian initial pulse after propagating for a distance of 10spatiotemporal solitons in higher dimensional second-
The parameters used here afe0 and y=6/7. Figures harmonic-generating media, the fact that the dispersion at
12(a)—-12d) are the snapshots of both the first and the secongloth harmonics should be anomalous is the most essential
harmonic from two different angles. Figures(&2and 12f)  |imjtation. Typically this might require launching the funda-

are contour pI_ots of_the pulses. This result shows Verynantal harmonic with a wavelength 3um, if we assume
strongly the anisotropic behavior caused by a small value oémomalous dispersion is achieved for a second-harmonic

5F1 which causes a distortion in the second-harmonic pmsﬁlavelength above 1.5m. Next, it is necessary to match the
shape. '

group velocities of the harmonics. Another problem is the
rather weak temporal dispersion of real media. Group veloc-
ity matching typically requires the use of birefringence,
In this work, we have considered spatiotemporal solitarywhile weak dispersion implies rather long interaction
wave solutions to thé€2+1)D and(3+1)D second-harmonic- lengths, unless the pulses are very short.
generation equations with group-velocity matching. Using A powerful and elegant way to induce a stroeffective
the variational approach, we have constructed in an analytidispersion in a medium with weak intrinsic dispersion is to
cal form a full family of approximate soliton solutions for use linearly coupled modes. The dispersion-generating cou-
both cases. We have also tested their stability by means gfing may be induced by the Bragg scattering in a medium
the Vakhitov-Kolokolov criterion. Next, using the variational with a resonant gratinpL9]. Another system in which essen-
approximation as the initial condition, we have performedtially the same mechanism works is an asymmetric optical
direct numerical simulations fq2-+1) dimensions. We have coupler(see, e.g.[20]). In either case, the soliton in such a
found that the variationally predicted initial configurations system will be a so-calledap soliton[21,19.
give rise to stable solitary waves with some internal oscilla- Recently, gap solitons were analyzed ifl+1)-
tions. The oscillations demonstrate almost no radiativadimensional and (2+1)-dimensional second-harmonic-
damping. Stable solitons exist provided that the dispersion agenerating model22]. The results showed that the gap soli-

IV. CONCLUSION
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FIG. 12. Snapshots of an initial variational soliton at distafieel0 ford=2, §=0, y=6/7. Displayed are views of the intensity profile
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(d), and their level contours, i.e., a set of the cross sections bysfpg plane(e) and (f).

ton equations can be mapped onto the present paramettice difficulty of achieving the group-velocity matching. Ana-
equations, provided the effective mass approximation idytical and numerical consideration of multidimensional gap
valid (i.e., near the center of the band gam the multidi-  solitons in the second-harmonic-generating media, as well as
mensional case, the necessary resonant grating can be impiimulations of the usual soliton in tf{8+1) dimensions, are
mented as a system of parallel scores on the planar wav@ow underway23].

guide, or as a layered structure in the bulk medium. As for | summary, it seems feasible that in at least one of these

the coupler, it does not exist in the £3L)-dimensional case, types of media, a well-defined stationary wave, localized in
but in (2+1) dimensions it can be realized as a system otjme and space, will be experimentally observed.
two parallel planar waveguides. This technique also reduces
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