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Spatiotemporal solitons in multidimensional optical media with a quadratic nonlinearity
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We consider solutions to the second-harmonic generation equations in two- and three-dimensional dispersive
media in the form of solitons localized in space and time. As is known, collapse does not take place in these
models, which is why the solitons may be stable. The general solution is obtained in an approximate analytical
form by means of a variational approach, which also allows the stability of the solutions to be predicted. Then,
we directly simulate the two-dimensional case, taking the initial configuration as suggested by the variational
approximation. We thus demonstrate that spatiotemporal solitons indeed exist and are stable. Furthermore, they
are not, in the general case, equivalent to the previously known cylindrical spatial solitons. Direct simulations
generate solitons with some internal oscillations. However, these oscillations neither grow nor do they exhibit
any significant radiative damping. Numerical solutions of the stationary version of the equations produce the
same solitons in their unperturbed form, i.e., without internal oscillations. Strictly stable solitons exist only if
the system has anomalous dispersion at both the fundamental harmonic and second harmonic~SH!, including
the case of zero dispersion at SH. Quasistationary solitons, decaying extremely slowly into radiation, are found
in the presence of weak normal dispersion at the second-harmonic frequency.@S1063-651X~97!14009-0#

PACS number~s!: 42.65.Tg, 42.65.Ky
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I. INTRODUCTION

The concept of optical spatiotemporal solitons~STS! @1#
~frequently called ‘‘light bullets’’! has been attracting a lot o
attention as a unique opportunity to create a self-suppor
fully localized object freely propagating in a nonlinear m
dium. However, it is well known that STS in media with
Kerr ~cubic! nonlinearity are strongly unstable, being subje
to wave collapse@2#. The collapse can be prevented if on
takes into account saturation of the nonlinearity@3#. Another
more promising way is to use a medium with a quadra
nonlinearity. The absence of wave collapse in two- a
three-dimensional@~211!D and ~311!D# second-harmonic-
generating~SHG! media has been demonstrated analytica
@4# and numerically@5# ~see also@6# and @7#!. Moreover, in
Ref. @4# it was proven, by means of rigorous variational e
timates, that in both cases the model must have stable
localized solitary-wave solutions realizing a nontrivial min
mum of the Hamiltonian. In most of these calculations
type of rotational symmetry between the space and time
ordinate was assumed that is not found in practice. The tr
ment of more general nonsymmetric cases is the objectiv
the present work.

SHG media are now the focus of attention as a new fi
of nonlinear optics, especially as concerns solitons@8–15#.
Thus far, temporal solitons have not been experimentally
served in quadratically nonlinear media. However, tim
independent spatial solitons have been successfully ge
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ated in 2D ~planar waveguide! @9# and 3D ~bulk! @10#
geometries. In this work, we will demonstrate that, by add
temporal dispersion to the spatial diffraction, one can c
struct stable STS in both geometries. Including the tempo
variable, we will refer to these two cases as~211!D and
~311!D geometries. The transverse dimension~equal to 2
and 3 in the former and latter cases, respectively! will be
denotedd. As demonstrated in@4#, wave collapse in the SHG
system does not take place if the transverse dimensiod,
including the transverse coordinates and time, is smaller t
4. Thus, a self-focusing collapse is precluded in any phys
dimension.

A. Parametric wave equation

The scaled equations describing copropagation of the
damental harmonic~FH! and second harmonic~SH! in the
quadratic medium have already been formulated in~ @4#!:

iuj1¹r
2u1utt2u1vu* 50, ~1!

2ivj1¹r
2v1dvtt2gv1

1

2
u250, ~2!

where u5A2z0v1
2E1e2 iz/z0x (2)/(k1c2) and v

5z0v1
2E2e22iz/z0x (2)/(k1c2) are the scaled FH and SH en

velopes,Ej are electric field envelope functions at frequen
j v1, j5z/z0 andt5(t2z/vg)/t0 @14# are the scaled propa
gation distance and the scaled local time coordinate, a
group velocityvg .
4725 © 1997 The American Physical Society
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4726 56BORIS A. MALOMED et al.
Heret0 is a characteristic time scale used for scaling p
pose, whilez052t0

2/k19 . The dimensionless transverse spat
coordinate r is defined by r5Ax21y2/r 0, where r 0

2

5(z0/2k1), given a carrier wave number ofk15k(v1) at the
~FH! frequencyv1. The second order nonlinear Bloembe
gen coefficient isx (2), and the envelope functionEj is de-
fined so that

E~ t,xW !5 (
j 51,2

Ej~ t,xW !e2 i j ~v1t2k1z!1c.c.. ~3!

The (d21)-dimensional Laplacian ¹r
25]2/]r21@(d

21)/r#]/]r acts upon the transverse spatial coordinate~s!
@in the ~311!D case, we will assume cylindrical symmetry#,
and the positive parameterg measures the phase mismat
between the two harmonics, so thatg5412z0@2k(v1)
2k(2v1)#. The dispersion at the FH is assumed to
anomalous, andd5k29/k19 is the ratio of the SH and FH dis
persion coefficients, which may have any sign. Equations~1!
and ~2! implicitly assume equal group velocities at the ch
sen carrier wavelengths, and are defined relative to enve
functions of formeikz ande2ikz, respectively, which carry the
usual propagation constant. We note here that the use
moving frame coordinate system means that the first-o
derivative in the equation is in the spatial propagation dir
tion, j, while the transverse dimensions have both a spa
and temporal nature.

In this work, we will demonstrate that@at least in the
~211!D case# STS’s exist, in the rigorous sense, only if th
SH dispersion is anomalous, i.e., ifd.0, including also the
zero-dispersion cased50. However, if the dispersion at SH
is weakly normal, a ‘‘quasisoliton’’ solution is possible.
decays into radiation so slowly that it may be regarded
quasistable.

B. Outline

The rest of the paper is organized as follows. In Sec.
we develop an explicit analytical approximation for the s
lutions, both for the~311!D and ~211!D cases, based o
variational methods. The stability of the analytical solutio
is tested by means of the known integral~Vakhitov-
Kolokolov! criterion. Using the variational Gaussian a
proximation as the initial condition we present, in Sec. I
results of direct simulations of Eqs.~1! and ~2! for the ~2
11!D case, which demonstrate that STS’s exist and
stable. Direct simulations of the~311!D case, which are
more difficult technically, are deferred to another paper.
important conclusion is also that, although the variatio
approximation is not very precise in the~211!D case, it still
provides a reasonable initial guess for the simulations, an
is therefore quite useful.

In Sec. IV, we summarize the obtained results and a
briefly discuss possibilities for implementation of optic
STS in an experiment. We infer that this should be poss
if the FH pump wave is launched at a wavelength;3mm ~in
the near infrared region!, or, alternatively, optical STS ca
be realized as a gap soliton.
-
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II. VARIATIONAL APPROXIMATION

We are interested in stationary (z-independent! solutions
to Eqs.~1! and~2!, and in their stability. In the~311!D case,
we assume an axial symmetry for the transverse coordin
Thus, a stationary solution is assumed to be given by
following PDE’s for thereal functionsu andv:

urr1~d22!r21ur1utt2u1vu50, ~4!

vrr1~d22!r21vr1dvtt2gv1
1

2
u250, ~5!

wherer is the so-called radial coordinate in the cased53,
or simply the single transverse coordinatex in the cased
52.

Exact solutions to Eqs.~3! and ~4! are not available in
either case. We will show that, nevertheless, solutions can
effectively approximated by means of the analytical var
tional approach. Recently, this approach was used to tre
related but simpler problem, viz., spatial solitons suppor
by a quadratic nonlinearity in the~111!D and ~211!D ~ro-
tationally symmetric! geometries@11#.

A. Gaussian ansatz

The variational approach is based on a certainansatzfor
the solution sought for@16#. A general property of solitons in
the SHG model is a difference in spatial and temporal wid
of their two components. The only tractable ansatz comp
ible with this property is the Gaussian variational appro
mation @11#, which we will abbreviate as GVA:

u5Aexp~2ar22at2!, v5Bexp~2br22bt2!. ~6!

Here the arbitrary parametersa,b, a,b, and A,B repre-
sent, respectively, the inverse squared spatial and temp
widths and amplitudes of the FH and SH components of
soliton. The next ingredient of the variational technique
the Lagrangian of Eqs.~4! and ~5!, L5*2`

1`dr*2`
1`dtL in

the cased52, and L5*0
`rdr*2`

1`dtL in the cased53,
with the Lagrangian density

L5
1

2
@~¹ru!21~¹rv !21ut

21dvt
21u21gv22u2v#.

~7!

Before proceeding further with the variational approach
is relevant to mention that the underlying equations~1! and
~2! have three integrals of motion. One of them is the~trans-
verse! momentum, which is zero for the ansatz~6!. The other
integral is the norm~also frequently called energy! W with
the density

W5uuu214uvu2. ~8!

The norm is related to its densityW the same way the La
grangian is related to its density~7!. This quantity is actually
proportional to the conserved Manley-Rowe photon num
invariant,N112N2. The last one is the Hamiltonian of th
full wave equations~1! and ~2!. For the realz-independent
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56 4727SPATIOTEMPORAL SOLITONS IN MULTIDIMENSIONAL . . .
solutions, it coincides with the above Lagrangian. The no
will be used below to obtain some estimates of the stab
of the STS.

Coming back to the variational approach, we insert
ansatz Eq.~6! into Eq. ~7!. Integrating the resultant expres
sion overr and t, it is straightforward to find the corre
spondingeffectiveLagrangian. Finally, the equations for th
parameters of the ansatz can be obtained by equating
variation of the effective Lagrangian to zero.

1. Two transverse dimensions

For two transverse dimensions, one time and one sp
~i.e., d52), the expressions for the amplitudes are

A25
~2a1b!~a1a11!~b1db1g!~2a1b!

2Aabab
, ~9!

B5
1

2
~a1a11!A~2a1b!~2a1b!

aa
, ~10!

and the SH widths are eliminated as follows:

b54a2~a2a11!21, ~11!

b54a2~a2a11!21. ~12!

The remaining equations for the FH widths take the form

2b~b1db1g!5~2a1b!~2b1db1g!, ~13!

2b~b1db1g!5~2a1b!~b2db1g!. ~14!

2. Three transverse dimensions

For three transverse dimensions, one time and two sp
~i.e., d53), one can first of all eliminate the amplitudes,

A25
~2a1b!2~2a1a11!~2b1db1g!~2a1b!

4abAab
,

~15!

B5
~2a1b!~2a1a11!

2a
A2a1b

2a
, ~16!

and then the SH temporal and spatial widths,

b54a2~2a2a11!21, ~17!

b54a2~a11!21. ~18!

The remaining equations for the FH widths are

2b~2b1db1g!5~2a1b!~db1g!, ~19!

2b~2b1db1g!5~2a1b!~2b2db1g!, ~20!

whereb andb should be substituted from Eqs.~17! and~18!.
Notice that Eqs.~13! and~14! or ~19! and~20! can easily

be solved for the mismatch and dispersion parametersg and
d if one regards the widthsa anda as given free parameters
y

e

the

ce

ce

B. Symmetric dispersion case

It is relevant to consider in more detail the symmetric ca
d51, when the FH and SH dispersions are equal. In t
case, Eqs.~1! and~2! demonstrate a formal isotropy, mixin
the transverse coordinates and time. Introducing the varia
s[Ar21t2, one can replace Eqs.~3! and~4! by the ODE’s,

u91ds21u82u1vu50, ~21!

v91ds21v82gv1
1

2
u250, ~22!

the prime standing ford/ds. In the cased52, Eqs.~21! and
~22! coincide with those describing spatial~cylindrical! soli-
tons in three dimensions. These equations were recently
sidered in detail in@12# and @11#. For the cased53, Eqs.
~22! and ~21! were recently solved numerically in@14#. The
GVA also simplifies in the cased51. In this case, one ob
tains physical solutions only witha5a andb5b.

1. Two transverse dimensions

For two transverse dimensions~one space and one time!,
i.e., d52 andd51, the SH width can also be eliminated
b54a2. The equation for the FH width becomes

g5
32a3

122a
. ~23!

This implies the restrictiona, 1
2 ~sinceg is positive!. Thus,

in ~211! dimensions the ‘‘isotropic’’ solitons cannot be to
narrow, but can be arbitrarily broad.

In @11# it was shown in detail that the variational approx
mation based on GVA furnishes a reasonably accurate
scription of the spatial cylindrical soliton, if compared to th
numerical results@although somewhat less good than in t
~111! dimensions, in which GVA produces an extreme
good accuracy, as was demonstrated in the same work#. Due
to the equivalence of the cylindrical soliton to STS withd
51 in ~211! dimensions, we can thus use the results of@11#
to justify the use of GVA in this case. More precise compa
son with exact numerical simulations will be given later.

2. Three transverse dimensions

For d53, there are three transverse dimensions~two
space and one time!. The SH width can be eliminated,b
54a2/(a11), and the FH width is then determined by th
cubic equation

36a31~g24!a22g50. ~24!

Equation ~24! can be readily shown to have exactly on
physical root for any value of the~positive! mismatchg.
Moreover, solving Eq.~24! for g yields

g52a2~9a21!/~12a2!, ~25!

which has an important consequence: the ‘‘isotropic’’ F
width a may take only the values19 ,a,1. In other words,
the variational approximation predicts that, in the cased
51, solitons in~311! dimensions can neither be very broa
(a. 1

9 ) nor very narrow (a,1).
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4728 56BORIS A. MALOMED et al.
For the cased51, and~311! dimensions~which corre-
sponds to the case treated by Hayata and Koshiba@5#!, we
display in Fig. 1 the shape of the STS as predicted variat
ally, together with the numerically found shape taken fro
@14#. One concludes from Fig. 1, that GVA is less accurate
higher dimensions, but that it still gives a correct idea of
shape of the soliton. We emphasize again that this symm
case ofd51 requires a matching of dispersion propert
which is unlikely to occur in practice.

C. Existence range of variational solutions

Physical solutions are those for which all the widthsa,b
anda,b are real and positive. It follows from Eqs.~9! and
~15! that positiveness ofA2 does not impose any additiona
constraint on selection of the solutions~at least, ifd.0).
Two interesting issues to be addressed are the exist
range of the physical solutions, especially at zero and ne
tive d, and the possibility of multistability, i.e., having mor
than one physical solution for fixedg andd. Solving numeri-
cally the algebraic equations~13!,~14! and ~19!,~20! for the
FH widths, we arrive at the following conclusions:~i! At all
positiveg andd, there is exactly one physical solution~for
both dimensions!; ~ii ! for d52, there is exactly one solutio
for negatived too; ~iii ! for d53, solutions for negatived
were found only in a very narrow stripe, e.g., atd.
20.067 forg51; ~iv! in this narrow stripe~for d53 only!,
the variational approximation producestwo different solu-
tions. The last two features are illustrated by Fig. 2, wh
we display the widths of the~311!D soliton vs the relative
dispersiond, as obtained from the GVA. We stress that the
features need to be verified by full numerical simulations

D. Stability

Later in this work, the variational approach will be com
pared with direct numerical simulations ford52. It will be
shown that the shape of the numerically found solitons

FIG. 1. Comparison of the variational~solid! and numerical
~dashed! shapes of the initial (311)-dimensional spatiotempora
soliton in the ‘‘isotropic’’ case,d51, for g51. The lower and
upper curves show, respectively, the fundamentalu(r,t) and sec-
ond harmonics,v(r,t).
n-

n
e
ric

ce
a-

e

e

s

quite close to that obtained from the ansatz, provided t
d>0. The simulations will also demonstrate that, at negat
d, the solitons decay. This is not predicted by the GVA a
is due to the fact that, as suggested by linearizing equa
~2!, the decay of the soliton atd,0 is accounted for by its
‘‘tails.’’ Obviously, GVA does not adequately approxima
the exponentially decaying tails. Nevertheless, it will also
demonstrated that ifd is negative and small, the decay ra
of the soliton predicted by GVA is so slow that it should b
regarded as a quasistable~and therefore physically meaning
ful! state. This ‘‘quasistability’’ is enhanced if the mismatc
parameterg is large enough.

Some conclusions about the stability of the solitons c
also be obtained within the framework of the GVA, using t
known Vakhitov-Kolokolov~VK ! stability criterion for soli-
tons of the nonlinear Schro¨dinger type@17# ~see also@2#!.
According to this criterion@which was recently applied to
(111)D solitons in quadratically nonlinear medium@13#
and to stationary cylindrical beams in@12##, a necessary con
dition for the stability of the soliton is a positive slope in th
graph the soliton norm vs the propagation constant. Our
lution does not explicitly contain the latter parameter.

In order to apply the VK criterion to Eqs.~1! and~2!, one
needs to perform a renormalization that expunges the m
matchg from the equations, transforming it into an intern
parameter of the solution family@12,13#. This transformation
generates the above-mentioned propagation constant
other words, we need to define a transformation of the fo
(u,v,g)→( ũ , ṽ , g̃ ) such that ifu,v are stationary solutions
of the original equation with phase-matchg, then ũ , ṽ are
solutions to the equation with phase-matchg̃ . In this way, all
solutions obtained by varyingg can be mapped into solu
tions of the same equation, but with different propagat
constants—as required in the application of the VK criterio
The transformation can be written as

ũ~r,t,j!5a2uS r

a
,
t

a
,

j

a2D ei j/a2
, ~26!

FIG. 2. The inverse squared widths of the spatiotemporal sol
@Eq. ~6!# vs the relative dispersion parameterd for d53 and g
51, as produced by the variational approximation.
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56 4729SPATIOTEMPORAL SOLITONS IN MULTIDIMENSIONAL . . .
ṽ ~r,t,j!5a2vS r

a
,
t

a
,

j

a2D ei ~2/a261!j, ~27!

wherea5A2/u42gu. In Eq.~27! ‘‘ 1’’ and ‘‘ 2 ’’ correspond
to g,4 andg.4, respectively.

We chooseg̃52 as the reference value for this purpos
leading to a ‘‘renormalized norm’’W̃. After some manipu-
lations, the renormalized normW̃ takes the form

W̃5a~32d!/2W, ~28!

whereW is defined by the density~8!. It can also be shown
that the necessary condition for stability of the soliton fina
amounts to

sgn~42g!
dW̃

dg
.0. ~29!

@In the critical case of exact phase matching,g54, the trans-
formation Eqs.~26! and ~27! is singular and the criterion
does not give a definite verdict.#

The dependences of the renormalized norm~28! vs g for
both casesd53 andd52, obtained from the GVA solution
are shown in Figs. 3~a! and 3~b! for two different values of
the relative dispersion,d51 andd50. In the same figures
we show the values of the renormalized norm obtained fr
the full numerical solution in the special cased51. Notice
that Fig. 3 not only tells us about stability of the solitons, b
also helps to estimate the accuracy of the GVA.

We conclude from Fig. 3 that, for eachd andd, there is a
single critical valuegcr of g that separates, according to th
criterion ~29!, stable solitons atg.gcr and unstable ones a
g,gcr . In the GVA approximation, these critical values
d53 aregcr'0.65 for bothd52 andd50 . At d52 they
aregcr'0.37 ford52 andgcr'0.52 ford50. However, in
the next section we will show numerical results that indic
that these predictions are unreliable ford<0, where it seems
that gcr→`.

The GVA predictions for the existence of thestablesoli-
tons in the casesd52 andd53 are summarized in Fig. 4
where we show a boundary curve separating stable and
stable solitons in the parametric plane (d,g). This plot is
quite important by itself, and also because its portion~a!
~pertaining tod52) will be used in the next section fo
comparison with results of direct numerical simulations
the same case.

E. GVA accuracy

Our general inference, based on a comparison of Fig.~a!
with similar figures from@11#, is that the accuracy of GVA
deteriorates with increasing dimensionality. We assume
this feature of GVA may be quite generic. The reason for t
is that the soliton presumably has tails which decay at le
exponentially at large radius, and the contribution of the
tails is of increasing significance at larger dimensional
These tails are suppressed by GVA, which has a more r
~than exponential! cutoff at large radius.
,
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III. NUMERICAL RESULTS

Direct simulations of Eqs.~1! and~2! were performed for
~211! dimensions, starting from an initial configuration su
gested by the variational ansatz~6!, with the parameters de
termined by Eqs.~11!–~14!. When designing the Fourier
transform scheme for the numerical simulations@18#, special
care was taken to absorb periodic reflection of the emit
radiation from the edges of the integration domain, in ord
to avoid the so-called aliasing problem, when dynamics
the solitary wave can be distorted by its interaction with t
reflected ‘‘radiation.’’ In all cases, discretization errors~due
to finite step-size! were monitored and kept to a level of 1%
or less. Typical lattice sizes employed were around 20 0
31283128 points for the~211!D simulations.

For real physical applications, it is important to consid
the case of small positive and general negatived, as it is
natural to expect that the dispersion at SH should be ei
essentially less anomalous than at FH, or normal.

A. Stable propagation: d>0

In Fig. 5, we show a typical example of the evolution
the solitary wave generated by the variational ansatz at s

FIG. 3. The renormalized normW̃ @Eq. ~28!# vs the mismatchg
for the spatiotemporal soliton:~a! d52; ~b! d53. The solid and
dashed curves are obtained from the variational approximation
respectively,d50 andd51. The stars are exact numerical resu
for d51.
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4730 56BORIS A. MALOMED et al.
d and relatively large phase mismatch parameterg (d
50.1430, g58.2868). The variationally predicted ansa
generates a stable spatiotemporal solitary wave with s
internal oscillations. A noticeable feature of the oscillatio
is that, while they are not growing and hence do not give r
to an instability, neither do they demonstrate any consp
ous radiative damping.

The stability of the soliton against internal vibrations an
simultaneously, the stability of the vibrations against rad
tive damping, even when the vibration amplitude is qu
large, are known features of the usual~low-dimensional!
SHG model@15#. Detailed analysis has demonstrated th
these features are strongly related to the structure of inte
modes of the dynamical soliton in this model: it has o
genuine internal mode, and one ‘‘quasimode’’ belonging
the continuum spectrum. It was shown that the eigenfrequ
cies of the two modes are quite close~which gives rise to
long-lived internal beatings of the perturbed soliton!, and
that even the quasimode, though it directly resonates with

FIG. 4. The stability boundary for~a! ~211!-dimensional and
~b! ~311!-dimensional spatiotemporal solitons on the parame
plane (d,g). In the portion~a!, the circles correspond to the cas
for which direct simulations have been run~see Figs. 5–7, 9, and 1
below!. The marksS, U, andO are to distinguish between the cas
in which the direct simulations have revealed, respectively, sta
ity, instability ~decay!, and an oscillatory behavior of the soliton.
e
s
e
-

,
-

t
al

o
n-

e

radiation, decays extremely slowly. The study of intern
modes of the multidimensional soliton is a challenging b
much more complicated problem.

The smallness ofd does not essentially affect the acc
racy of the variational approximation, as estimated by
amplitude of the internal oscillations of the soliton genera
by the variationally predicted initial configuration, in com
parison with the ‘‘isotropic’’ cased51, which is displayed
in Fig. 6. Another relevant example, pertaining to a sma
g, is displayed in Fig. 7.

To check another general inference formulated in the p
ceding section, i.e., that the accuracy provided by the va
tional approximation deteriorates with increasing dimensi
ality, we have additionally run direct simulations of Eqs.~1!
and~2! for the (111)-dimensional case, starting again fro
the variationally predicted ansatz. A typical example
shown in Fig. 8. One sees that, while the variational ans
still produces some error, the error is conspicuously sma
than in the (211)-dimensional model, giving rise to interna
oscillations with a smaller amplitude.

c

il-

FIG. 5. An example of evolution of the spatiotemporal soliton
~211! dimensions, with a weak anomalous dispersion at the sec
harmonic,d50.1430, and relatively large mismatch,g58.2878.
The initial configuration is taken as per the variational ansatz~6!.
Shown is the cross sectiont50 of the evolution of the fundamenta
intensity, i.e.,u2(r,0,j).

FIG. 6. Propagation of fundamental intensityu2(r,0,j) with an
initial variational ansatz, for the ‘‘isotropic’’ cased52, d51, at
g56.75.
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B. Unstable propagation:d<0

An issue of principal interest~first of all, for application
to real physical media! is to check the possibility of the ex
istence of solitons atd,0, when the SH dispersion is no
mal. As mentioned in the preceding section, the variatio
approximation@for the ~211!-dimensional case# produces a
solution at all negatived, and the usual stability criteria in
dicate that these should be stable at largeg.

If udu is small, the pulse generated by GVA seemsprac-
tically stable: its decay is so slow that it appears to be a fai
stable soliton that does not have any visible difference fr
the stable solitons found at positived. An example ford5
20.01 andg50.8571 is shown in Fig. 9. It is relevant t
stress that atd exactly equal to zero, when Eq.~2! does not
contain the second time derivative, the soliton still exists a
is very close to that shown in Fig. 9. We conjecture that
soliton exists in the rigorous sense ifd50. However, the
simulations indicate that, strictly speaking, stable pulses
not exist at negatived. This is especially true for largeudu,
where the decay of the pulse is very rapid. An example
shown, ford521 and g510, in Fig. 10~a!. At the same
value of g and moderately smalld520.1, the soliton is
quasistable@Fig. 10~b!#. As a general trend, we observed th

FIG. 7. Propagation of fundamental intensityu2(r,0,j) with an
initial variational ansatz, for the cased52, d50.2055, andg
50.9229.

FIG. 8. An example of evolution of the pulse generated by
initial configuration taken as per the variational approximation
the (111)-dimensional case ford5d5g51. Displayed is the fun-
damental intensityu2(t,z).
l

d
e

o

is

t

a larger mismatchg helped to effectively stabilize the pulse
at negatived.

All the cases considered above lay sufficiently deep ins
the stability region predicted by GVA; see Fig. 4~a!.

C. Stability boundary curve

We have performed another series of the simulations
order to check the stability boundary curve. To this end

e

FIG. 9. Propagation of fundamental intensityu2(r,0,j) with an
initial variational ansatz, for the cased52, d520.01, andg
56/7, showing quasistable propagation with normal dispersion
the fundamental wavelength.

FIG. 10. Propagation of fundamental intensityu2(r,0,j) with an
initial variational ansatz, for the casesd52, g510 and ~a! d5
21.0, ~b! d520.1. This shows unstable and quasistable propa
tion, respectively.
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FIG. 11. Propagation of fundamental intensityu2(r,0,j) with an initial variational ansatz, for the casesd52, g50.7 on the parametric
plane of Fig. 4:~a! d516; ~b! d514; ~c! d513; ~d! d512; ~e! d511; ~f! d50; ~g! d521; ~h! d522; ~i! d524; ~j! d526.
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string of parametric points along the lineg50.7 ~which is
expected to intersect this stability boundary curve twice! was
selected. The results are shown in Fig. 11. Comparing th
with the location of the corresponding points in Fig. 4, o
concludes that, providedd>0, the points lying deep enoug
inside the regions that are expected to be stable indeed
erate pulses that are stable@cases~d!, ~e!, and~f!#. The points
obtained ford,0 all decay rapidly@cases~g!, ~h!, ~i!, and
~j!#, while cases outside the stability boundary in the reg
d@1 show evidence of oscillatory behavior.

Thus, the stability boundary predicted by GVA proves
be rather ‘‘fuzzy’’ in comparison with the direct simulation
but, nonetheless, this border definitely has its meaning. H
ever, one should notice, in accordance with what was s
m

n-

n

-
id

above, that the stability boundary predicted by GVA at ne
tive d appears to be incorrect, with the possible exception
cases whereudu is very small.

Thus far, we have considered the evolution problem fo
Gaussian initial pulse. The numerical solutions display
above clearly demonstrate existence and stability of solit
both at positive and, effectively, at small negatived and at
arbitrary mismatchg. However, they do not show the exa
shape of the stationary soliton. This can be obtained from
numerical solution of the stationary version of Eqs.~1! and
~2!, i.e., the equations without thej derivatives. We do not
pursue this problem here, since practical inputs in exp
ments are most likely to have a Gaussian-like shape. E
solutions of the stationary problem are known when the s
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FIG. 11 ~Continued!.
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ton is ‘‘isotropic,’’ i.e., in the physically unrealistic cased
51 ~provided that the temporal and spatial variables h
been appropriately rescaled!. This rescaling to the formally
isotropic form is not possible ifdÞ1.

We finally present here a snapshot of an ‘‘asymmetr
Gaussian initial pulse after propagating for a distance of
The parameters used here ared50 and g56/7. Figures
12~a!–12~d! are the snapshots of both the first and the sec
harmonic from two different angles. Figures 12~e! and 12~f!
are contour plots of the pulses. This result shows v
strongly the anisotropic behavior caused by a small value
d, which causes a distortion in the second-harmonic pu
shape.

IV. CONCLUSION

In this work, we have considered spatiotemporal solita
wave solutions to the~211!D and~311!D second-harmonic-
generation equations with group-velocity matching. Us
the variational approach, we have constructed in an ana
cal form a full family of approximate soliton solutions fo
both cases. We have also tested their stability by mean
the Vakhitov-Kolokolov criterion. Next, using the variation
approximation as the initial condition, we have perform
direct numerical simulations for~211! dimensions. We have
found that the variationally predicted initial configuratio
give rise to stable solitary waves with some internal osci
tions. The oscillations demonstrate almost no radiat
damping. Stable solitons exist provided that the dispersio
e

’
0.

d

y
of
e

-

g
ti-

of

-
e
at

both the fundamental and second harmonics is anomal
including the case of zero dispersion at the second harmo
If the second harmonic has a weak normal dispersion,
effectively stable quasisoliton is still possible.

As concerns the experimental search for multidimensio
spatiotemporal solitons in higher dimensional seco
harmonic-generating media, the fact that the dispersion
both harmonics should be anomalous is the most esse
limitation. Typically this might require launching the funda
mental harmonic with a wavelength>3mm, if we assume
anomalous dispersion is achieved for a second-harm
wavelength above 1.5mm. Next, it is necessary to match th
group velocities of the harmonics. Another problem is t
rather weak temporal dispersion of real media. Group vel
ity matching typically requires the use of birefringenc
while weak dispersion implies rather long interactio
lengths, unless the pulses are very short.

A powerful and elegant way to induce a strongeffective
dispersion in a medium with weak intrinsic dispersion is
use linearly coupled modes. The dispersion-generating c
pling may be induced by the Bragg scattering in a medi
with a resonant grating@19#. Another system in which essen
tially the same mechanism works is an asymmetric opt
coupler~see, e.g.,@20#!. In either case, the soliton in such
system will be a so-calledgap soliton@21,19#.

Recently, gap solitons were analyzed in~111!-
dimensional and ~211!-dimensional second-harmonic
generating models@22#. The results showed that the gap so
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FIG. 12. Snapshots of an initial variational soliton at distancej510 for d52, d50, g56/7. Displayed are views of the intensity profil
u2(r,t,10) of the soliton’s fundamental-harmonic component from two different directions,~a! and~b!, second-harmonic component~c! and
~d!, and their level contours, i.e., a set of the cross sections by the (t,r) plane~e! and ~f!.
e
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ton equations can be mapped onto the present param
equations, provided the effective mass approximation
valid ~i.e., near the center of the band gap!. In the multidi-
mensional case, the necessary resonant grating can be im
mented as a system of parallel scores on the planar w
guide, or as a layered structure in the bulk medium. As
the coupler, it does not exist in the (311)-dimensional case
but in (211) dimensions it can be realized as a system
two parallel planar waveguides. This technique also redu
tric
is

le-
e-
r

f

the difficulty of achieving the group-velocity matching. Ana
lytical and numerical consideration of multidimensional g
solitons in the second-harmonic-generating media, as we
simulations of the usual soliton in the~311! dimensions, are
now underway@23#.

In summary, it seems feasible that in at least one of th
types of media, a well-defined stationary wave, localized
time and space, will be experimentally observed.
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