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Varying chromaticity: A damping mechanism for the transverse head-tail instability
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A detailed analytical and numerical study of the suppression of the transverse head-tail instability by
modulating the chromaticity over a synchrotron period is presented. We find that a threshold can be developed,
and it can be increased to a value larger than the strong head-tail instability threshold. The stability criterion
derived agrees very well with the simulations. The underlying physical mechanisms of the damping scheme are
rotation of the head-tail phase such that the instability does not occur, and Landau damping due to the
incoherent betatron tune spread generated by the varying chromdig163-651X%97)02410-(

PACS numbegs): 29.27.Bd, 41.75<i

I. INTRODUCTION [6], the observation of higher-order HT instability in the PS
Booster of the Large Hadron Collider at CERHuropean
In particle accelerators, the interactions of the beam parOrganization for Nuclear Reseajdir], and the investigation
ticles with its surroundings creates an electromagnetic fieldof the possible HT oscillation due to a transverse feedback
the so-called wake field, which reacts and perturbs the bearkicker at the High Energy Accelerator Research Organiza-
and can often lead to collective instabilities. These instabilition’s B-Factory(KEKB) [8].
ties limit the beam current in accelerators. Many schemes It can be seen that, from EQ]_), the betatron frequency is
have been devised to control these instabilities, such as th@yried by the momentum oscillation if there is chromaticity,
use of a BNS dampinfil] for linear accelerators, and feed- anq an integer resonance can be reachésitoo large. For

back systems for circular machines. In this paper, we depqst acceleratorg must be sufficiently minimized to avoid

scribe a met'ho'd for contrpllmg such instabilities: thrqugh ,asingle-particle orbital resonances. Under this circumstance,
temporal variation of the ring parameters. We exemplify this

. analysis(by a moment expansion of the linearized Vlasov
method by the suppression of the transverse headHdi) . o oo !
instability by means of variation of the chromaticf]. equation describing the coupled longitudinal and dipole

When traveling in a storage ring, particles of diﬁeremtransverse motions[9] shows that the lowest-order mode

momentum can receive different transverse focusin%;/""S a large growth rate fa <0, and is strongly damped
strength, and thus have different betatron frequencies. Chrd¢n€n é/»>0. Higher-order modes grow, with substantially
maticity & defined as the ratio of the relative frequency dif- Smaller growth rates than the lowest-order mode, when
ference to the relative momentum difference, gives the betzf! 7>0. They are damped f@ 7<<0. The growth rate of the
tron angular frequency of an off-momentum particle as  instability depends on the magnitude &f» and how the
beam spectrum overlaps with the impedagigeurier trans-
wg(8)=wgo(1+£6), (1)  form of the wake field) spectrum. Herey=pdC/Cdp— 1/y?
is the slippage factoC=27R=cT, is the circumference of

where wg is the betatron angular frequency of the on-the ring, y=(1—B?%) %2, and we take8=v/c~1.
momentum particle, and= Ap/p is the relative momentum As the sign ofé/ n is crucial to the stability of the lowest-
difference. The longitudinal motion of a bunched beam isorder mode and higher-order modes of the head-tail oscilla-
maintained by rf fields, and the particle’s momentum oscil-tions, we consider, in analogy to the strong focusing effect
lates with the synchrotron period. (on collective modes, instead of on single particle opbits

When £€=0, there is an instability in the particle’s trans- alternating the sign of within a synchrotron period to sta-
verse motion called the strong head-t€8HT) instability.  bilize all modes. Two effects can be anticipated: first, an
This instability has a threshold which depends on bunch curenhanced Landau damping from the incoherent tune spread
rent, wake force, and synchrotron period. When the thresholthduced by the chromaticity variation, and second, an other-
is exceeded, the bunch’s transverse motion blows up. Whewise accumulating chromatic effect during the synchrotron
£+0, there are both the SHT instability with a threshold andoscillation is canceled out if the sign of the chromaticity is
the HT instability. The HT instability, driven by the chroma- reversed within a synchrotron period. Instead of varyifg
ticity, has no stability threshold. It was observed in experi-we choose to vary, since varyingy means transition cross-
ments[3], has been well analyzedl], and has been con- ing, and therefore involves many undesirable phenomenon,
firmed by simulations[5]. The HT instability is still a such as vanishing Landau damping, large momentum spread,
concern for many circular accelerators, for exam(miging  bunch-shape mismatch and nonlinear eff¢tt.
from the recent literature on the subjedhe observations We were advised of the existence of the paper written by
and simulations of single-bunch transverse excitation of thd. Nakamura[11], recently. Nakamura suggested, as we
beam in the proton ring of the HER@&Jadron Electron Ring have also(independently, the concept of the varying chro-
Anlage collider at DESY (German Electron Synchrotrpn maticity. In this paper, going considerably beyond what Na-
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kamura has done, we provide a complete analysis, simulatioequation of motion for a particle in a bunch is
results, and a stability criterion for the head-tail instability.
We assume the chromaticity is varied as

E(S)=¢&pt &1 Sin @y(9), 2

which is no longer a constant but a function of “times; =— r_g f dz' p(z'" )W, (z—2")y(Z',s), (4)
where s measures the distance around the ring, Y- Jz
¢,(S) = wss/c is the synchrotron phase advanee, is the
synchrotron angular frequency. The constad part of the
chromaticity, &y, causes the HT instability. The dc incoher-

ent tune spread is not effective in stabilizing the HT instabil- ~ ~ "> 2 . .
ity. As will be shown, the ac part of the chromaticity,, is fo=e/moC’, W, is the transverse wake function, and the

. f . _ 2 . . . .
introduced to provide an incoherent tune spread that Sudig?:gglriebsédegergy IsE= ymoc®. The longitudinal motion is
presses the HT instability without causing additional insta-" y

bilities. = = i

In this work, we concentrate on the case of modulation of 212 C08gz, 0= {ws/Cn)r; sin ¢y, ©
the chromaticity by the same period of the synchrotron oswhere ,,¢,) are the action-angle variables in the longitu-
cillation. A faster modulation is of course also possible. Indinal phase space, and we have neglected longitudinal wake
general, the chromaticity can be expanded in a Fourier seriggrce, nonlinear slippage factor, and synchrobetatron cou-

5(9)
V'(25)+ “2y(z,9)

wherey(z) is the transversdongitudina) oscillation ampli-
tude with respect to the bunch center, the prime denotes
d/ds, N=[dZ p(z') is the number of particles in a bunch,

in terms of¢,, as pling.
There are three parameters essential to the dynamics
E(s)=bo+ D, &y coANg,+by), (3 ~ 9given by Eds(4) and(®),
n=0

Xo=0poé00,1Cn,  x1=wgoé10,/C, (6)
In Appendix A, we show that the periodicity of the varying
chromaticity,n, must be an odd number, such that #e Y = wNro(W, )c?/8yCawgows, (7)

does not cause instability. ) )
The lattice design may give a constant chromaticity with aVheré xo (x1) is the dc(ag phase shift between the head

significant  nonlinear ~ component &, in  which  and tail of a bunch{W,)=(1N)SZ.dz p(z')W(z~2").
Epc=&o+ £010. This nonlinear component also generates anTh_e parametel is approxmately_the ratio of betatron tune
incoherent tune spread, but note that this tune spread Rift to the synchrotron tune. It is well knowi9,12] that,
smaller by a factor s than the tune spread from the varying When x;=0, the SHT instability occurs whedi=1.
chromaticity, and is not significant in most cases. Here

os=(ws/cn)o, is the rms bunch energy spread, amgdis A. Eigenmode equation

the rms bunch length. We now present a linearized Vlasov analysis of a many-

In Sec. Il, a Vlasov analysis is presented. We examine theicje system. We first write down expressions for the dy-
growth rates for beams with a hollow distribution and with aamical variables in the four-dimensional phase space

Gaussian distribution, where both the contributions of the a(fz y:8,y"), in terms of the action-angle variables. The lon-

and dc parts are included. Results of macroparticle SimUIagitudinal dynamical variables are shown in Ef), and the

tion are discussed. _ o transverse dynamical variables are
In Sec. Ill, the effect of Landau damping, which is not

considered in Sec. Il, is included by the method of singular ® o _

eigenfunction expansion. We provide an estimate for the y=ry COS ¢y, Y':—Tfy Sin ¢y, (8
damping rate, an approximate stability criterion, and a dis-

persion relation which includes the incoherent tune spreadyhere b(zy)= (s p0)S/C. The linearized Vlasov equation
We compare the stability limit with macroparticle simula- can then be expressed as

tions. The conclusion is given in Sec. IV.

Q wpay 0 we d F.(z,5s) d
Il. VLASOV ANALYSIS —i— 1+_ﬂoﬂ+—S ¢1+ o i?~0, 9
: C c a¢y Cc do, E ay

In this section, we derive a linear eigenmode equatioRyhere the distribution function is expanded as
which includes both the dc and ac parts of the chromaticity., — Yo+ ¥, exp(-iQsc), and Q is the mode frequency.
As a starting point of the analysis, we calculate the cohere quation(9) can be solved by9] (1) decomposition of the

tune shift of a hollow beam and a Gaussian beam in thennerturbed and perturbed distribution functions as
longitudinal phase space for arbitragy and &;, neglecting

any damping from the incoherent tune spread. The effect of  y,=yo,(r,) Poy(ry), 1= 1,12, ) Py (ry, by);

the incoherent tune spread will be included in Sec. Ill. 1
We assume the particle in a bunched beam experiences

two forces: the external focusing force and the wake forcd2) assuming

generated from the interaction between the beam and its en- ) .

vironment. The transversdor either vertical or horizontal Yy(ry, dy)=—(y) ¢0y(ry)e' ?, 11
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which describes the transverse dipole oscillation, whghe Q- wgo—lwg) yR(r)
is the beam centroid of transverse motion; 48 using a

linear model of the deflecting force given by . AwsY ~
" =1 W, T, Vo1 2 Paleg)Zi(wgli(wg).  (18)
\y)e

— —iQslc -~ L iwyz/c
Fy(z8)=l CT, € Ep: pul@p)Zy(@p)€PE, where wq=qwo+ wgo+lwg, by using the generating func-

(120  tions of Bessel functions

wherew,=pwg+ {2, wo=Cc/R is the revolution angular fre-

quency, etix cosgS:; iime(x)eim‘f’, (19)
pl(Z):j dé wlz(rz,¢z), (13) eiix sin ([):E iIme(X)eimd)eimw/Z, (20)
m
[dz déyo,=N, andZ; (w) is the total transverse impedance d Ea.(13
of the ring. Note that Eq(12) can be obtained by a Fourier and Eq.(13),
transform of the right-hand side of E¢). The linearized | (wq) = (&1 #2+i(0q= 01, /c)cos ¢, —iwp(rHA0)cos24,)y
Vlasov equation, including the chromatic term, now becomes q 2
. We Wq™ W0
. Iz c?roto, =|'G(')*<—§r g r ) (21)
_ _ by _ q Z z |
I(Q wﬁO) lplz Wg &(ﬁz ey 27wBOCTO 4c c
. . _ . -~ — —iwgz/c
X(elgby_eflt,by)% pl(wp)zi(a)p)elwprz COSqﬁZ/C:O, Pl(wq) f dze q pl(z)
14 w , e
( ) :2770_32 i7| a|,J dr;r;Rp(r;)
where i1, has an implicitly infinite number of oscillation 7 0
modes. o _ an[@e , ©@q— @
To solve the oscillation frequency for each eigenmode of X Gy ez T ') (22
1,, we Fourier expand the longitudinal perturbed distribu-
tion function as ® o —w
&1 £0
) GEP(Erz- 1 C rz)
1= aR(r)e %), (15)
' i) Wg— W
_ mq @ q £0
where % | Jm( 4c rz)‘]2m+l< c rZ)!
23
b= S o — 260 _%a 2 =
=wpo | 0= 12 COS¢,— 5 =1, COS24,), Za>nd<t>he<§)racke(t> means a longitudinal phase-space average:
(16) = r, ¢Z,
w01~ @go.n/ 7, Ri(ry) is the radial eigenfunction, and %
| is the azimuthal mode index. We emphasize that, in this fo drr,f(ry) hos(r,)
paper, the radial and the azimuth refer, respectively, to the <f(rz)>rzz 7 (24)

amplitude ¢,) and phase ¢,) in the longitudinal phase
spacegcf. Eq. (5)].
Note that, in deriving Eq.(16), we used é=§&;
+£1 cos¢,, such that the tune spread generated by the in- 1 (2«
phase oscillation between the chromaticity modulation and (f(h2))g,= o | déf(). (29
the energy oscillation does not contribute to the chromatic 0
phase advancé in Eqg. (16). Here we attempt to find the
growth rate of the HT instability, neglecting the effect of
resonance that causes Landau damping. =
To obtain the eigenmode equation for the mode, we ~X0) =Ji(Xq=X0)-

fwdrzrz¢02(rz)
0

Note that, whené;=0, Eq.(18) is the eigenmode equation
for the case of a constant chromaticfi§], where G{(x,

apply ,
B. Degenerate radial mode
1 2 ) ) 2 ) . . . .
—il' p,+id —i¢ The eigenmode equation shown in E@8) can be sim-
2 ), 40° fo déye™® (1D lified by assuming a hollow distribution,
on both sides of Eq(14), in which ¢, is replaced by Eq. N7c

(15); we then have boor2) = 2nwZ orz=2), (26)
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where the radial perturbation occurs only on the surface of a

& shell in longitudinal phase space, i.®,(r,)>d(r,—2). % 2 .
For the zero-order perturbation,) =&, Q= w g+ ws. : 1
The mode frequency of the first-order perturbation, for the L —~ A B
Ith mode, is thericf. Egs.(18)—(23)] 0 of==BL T e
o - = S rl\" y =
QY= wg—lwy) g1 S AN
o 0
4ogY X1 2 3 -2
=i 2 Z1(wg) G<'>(—,x ~xol| - ’ :
W, To “q MR -4 -2 0 2 4
(27) X

0
where xq=wqZ/c=(quo+wgotlwgz/c, and  x1
— w012/ C. ~ FIG. 1. Scaled growth rate ﬂg)/.Y of a hollow beam due to the
With Eq. (27), we can now find the growth rate, which is impedances of a unlf_orm-wal(esolld line) and a broadband reso-
the imaginary part of the mode frequency. For a broadban@ator modeldashed ling wheny,=0 andz=0.1. Curves are la-
impedance, the growth rate of the head-tail instability pei€!ed by the azimuthal mode indéx See Eqs(6) and (7) for
synchrotron period, given in terms of the imaginary part ofd€finitions ofxo, xa, andY.

the mode frequency, is then creased by the ac amplitudg . When y;=0, Eq. (31) re-

2 duces to the well-known [4,9] formula 1~
, =32Y xo/ w3 (41?—1).
(28)

X1
Gg')(zqu—)(o

U=~ [ o Z (o)
Ts = p wq,wq

_ _ _ C. Radial modes
where  Zi(wg)=-W, Z(wg)=~W,[Z(0g) +iZ{(w)],
and =, has been replaced fywq/wq. In Fig. 1, we show di
the growth rate of the impedance corresponding to a uniforn&
wake function, wher¢9]

When considering realistic particle distributions, the ra-
al eigenfunction}|(r,) are no longer degenerate. In this
ection, we assume a Gaussian longitudinal distribution, i.e.,

N#c
Yoo 1) = e~ 13120%, (32)

2To5wg

~ 1
Z(wq) = w_q_iW5(wq)' (29

@and that the mode frequency sh¥ () is smaller thanws,
so that the mode®@ (" do not couple. The issues of azimuthal
mode coupling will be briefly discussed later. The eigen-

and the growth rate of the impedance of the broadband res
nator model, where

- 1 mode equation, for the uncoupléth mode, is a modified
Z(wq) = 2o 11 (Uo—-3)]" (300 form of Sacherer’s integral equation,
_ ~ = - _ QM- o
Q=1, 7Z=2b, G=wg/ws, we=c/b, and W, —“"B"—I)Rl(rz):vv(rz)f dryrR(rK (15,10),
=-—2czR,/b°. Note that impedances for the broadband ws 0

resonator model and the uniform-wake model give a similar (33

dependence of the growth rates ggpand x, (cf. Fig. 1. In

the resonator model, a longer bunch would scale down th#here

growth rate of the HT instability. In the uniform-wake

model, the growth rate is independentogf. To illustrate the W(r,)= &'J/ (r)=

effectiveness of damping mechanism dugo we will em- 27 Nyc 707

ploy Eg.(29) as the function of impedance in the following

analysis and simulations. and the kernel of the integral equation is given by
Note that 1+§')=0 when x,=0, sinceZ(wg) is odd in 8y

wq. As emphasized, the ac part of the chromaticity alone Ki(ry,rh)=—i T_O Eq: Z(wq)Gg)

1
5 e*rg/eri (34)

2oy

Wer - Wgq— ®eo )

does not cause the HT instability. The growth rate for the ac' T ¢
uniform-wake impedance can be approximated as
g[S, tren)
of X1 9 \4c c z)

16Y xq © dy ,
1/7-(5')% - ‘]O( 4 Jl) X_qq‘]I(Xq)‘JI (Xq)

Introducing an orthonormal complete ﬁ'l’(rz) defined by
32Y xo 2| X1
= m2(412-1)"° 4 3D * o 0
0 drzrzW(rz)ej (rz)ejr(rz)zﬁjj'v (36)
up to the first order ofy, where the terms ai+0 in Gg)
[cf. Eq. (23)] are ignored. The growth rate is obviously de- the eigenfunction can be expanded as
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R|(rz>=W<rz>j§0 a;e)(r,). (37)

For a Gaussian unperturbed distribution the weight function
W(r,) [cf. Eq.(34)] has the orthonormal basi§(r,) given

by [13]
112 | 2
S |_§')<r_z> , (39)
\/20'2 J 20'2

whereL](') are the Laguerre polynomials. We now apply

27j!
(I+j)

Normalized frequency spectra

e}'>(rz>=(

[Cara i @9
0

to both sides of Eq(33). The integral equation becomes an
eigenvalue system,

Normalized frequency spectra
TTT T

Q-
’(—BO—I I-M")| =0, (40)
Wg
wherel is an identity matrix, ) .
FIG. 2. Normalized frequency specti@q(x,)|* of a Gaussian
| 8Y _ beam, wheny,=0.1, (a) I=0 and 1, andb) |=2 and 3. See Eq.
ij)' =—j T_o % Z(0g)gjj(we1, 00— @) (6) for definitions of yo and x; .
_ 2m+|
Xgﬁ/(wgl,wq_wgo), (41) (Xq= %)™ Xo) 2 (—1)P
C2m+h! p=0

and

F(p+|+3m/2+1)(x1)2p
4

. p!T'(p+m+1)
glj(wgliwq_wgo): JO drzrzW(rz)e}D(rz)

XzFl[ p,—m-— p2m+|+1( 0)} (44)

0 Wq~ @0 X1/4

G 4C DTrz . (42

where X 1y= w010, /V2¢, xqzwq(rz/\fzc, Smo IS the_
Note that the meaning af; is related to the frequency spec- Kronecker delta, andF,(a,b;c;x) is the hypergeometric

trum of the (,j) mode of the perturbed beam density, sincefunction. Note thatx 14 =x(01q)/v2. The beam spectra
[cf. Egs.(22), (23), and(42)] |9i0(xq)|? are shown in Fig. 2. It can be seen that, the center

of spectra is shifted by an amount gf, and, with a large

enoughy,, the spectral amplitudes are suppressed for all

Pr(wg) = 277— E E i~ @91 (we,0q— w0)- azimuthal modes. This implies that, besides the additional
(43) incoherent tune spread due g, which causes Landau
damping, the HT instability induced by, is further sup-

The eigenvalues need to be solved by diagonalization of"eSSed by, although the latter effect is much less effec-

the infinite-dimensional matrixM(®). Note that, when UV€ than the first one, as will be seen in Sec. IlI.
Xo=x1=0, the number of azimuthal and radial nodes in the The beam spectrurgo(0.xq— xo) reduces to the spec-
longitudinal phase space ateand j, respectively. When trum of the dc case whegy=0:

there is the chromaticity, more ripples would appear in the

longitudinal phase space. To achieve a qualitative descrip- 9o Xa—Xo) =

tion of the eigenmodes, we now focus only on the dominant l0\Xq™ Xo V212112
radial mode, wherg@=0. Using Eqs(23), (34), and(38), for

_ _ 2
(Xq— X0)'e” Xa X072 (45)

the integral in Eq(42), in which Lg')(xz):l, we have13], The mode frequency can now be approximated for the
for the (1,j)=(1,0) mode, dominant radial mode of a Gaussian beam, as
(X1,Xg— Xo) 8Y w
JolXaXe™X0 Q<'>—wﬁo—|w5:—iT—N Z4, (46)
m 0
\/ ml! m=o0 ~omo)| = ) where
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Ng'=2 19i0o(x1:Xq~ X0)I? (47) g 2
q - 1 Q.” \
'ﬂ s A
R SRR 1. Ao
and the effective impedance is @ Ops========t A
5 A
_ _ b-1 S Y L
| | — \ e
Zai=INg'1 2 Z(ag)lgolxuxa~ X0l (49 T oo
9 .
8 -3 0
Wheny;<1, one can approximate the beam spectrum by “ 4
1 -4 -2 0 2 4
C(y—y)2q2[ X1
|9|0(X1,Xq_Xo)|2“—|r(Xq_Xo)2|e (Xa=x0" g8 == . X
2712 4 0
(49

S ] ] FIG. 3. Scaled coherent tune shift of a Gaussian beam due to the
For simplicity, instead of using the exact representation ofmpedance of Eq(29) vs x,, when y;=0, and where the solid

the beam spectrum shown in E@4), we use the approxi- (dashedllines are the reaimaginary part of 27Av"/,Y . Curves
mate form of Eq(49) in the following study, for the case of are labeled by the azimuthal mode indexSee Eqs(6) and(7) for

x1<1. In this way, for a broadband impedance, the growthdefinitions ofx,, x;, andY.
rate per synchrotron period is simply

Figure 4 shows examples of the bunch centroid motion of a
1D~ _SYJ do-Z (o Xea— 2 Gaussian beam, where the evolution of the envelope agrees
s aZr(@g)lGio(x1:Xa™ Xo)| very well with the theory’s prediction. In other words, the

—_8YN, Re[zgf}], (50) imaginary part of the coherent tune shift calculated is con-

firmed by simulations.

When the SHT effect is prominent, i.e., wh&hnis close
to 1, the azimuthal mode coupling is likely to occur. Exami-
nation of Egs.(52), (53), and(54) shows that both the real
and imaginary parts of the coherent tune shift of th@®)(

mode are approximately reduced Bé(xlm). Even before
The coherent tune shift is given by the real part of the mod&olving the matrix of infinite dimension, or including the

frequency. For a uniform-wake impedaricé. Eq.(29)], we  Landau damping, this suggests that the SHT threshold can be
have raised by a large value of; .
The most important results in this section are Hg®),
0 4Y 21— 22 X1 (53), and(54), which are the real and imaginary parts of the
2m REAVT]~—rorvsxo e ¥oJo| 7|, (52 yne shift of a Gaussian beam with the model impedance of
Eqg. (29). These results will be used in Sec. lll.

where, for a Gaussian beam,

r(+12 ¢

X1
lef dwglgiol*~ T U_Jo -
- V4

2 (51)

where AV(I)=(Q(I)—wBO)/w0—|VS, vs=ws/wg; and the

growth rates of the two fundamental modes are approxi-
mately

Ill. LANDAU DAMPING
In this section, we include in the linearized Vlasov analy-
17O~ -4y Erfi(XO)eXS\]g<é), (53) sis t_h_e incoherent tune spread_induced b_y the _varying chro-
4 maticity. We present an approximate stability criterion, a rig-
orous criterion using the dispersion relation, and
and comparisons with simulation results.

2 X Let us first estimate the incoherent chromatic tune spread
17~ \/;YXOL(l/_zl/z)(XS)e_XOJS(Zl)* (54) duetoé;:

where 160 =271m[Av" /v, Erf(x)=—i Erf(ix), and o, ~vpot1\((8 sin ¢,)%)~\/3/80,vp0é105, (55

Erf(x) is the error function. One can see that, whgy=0,

the growth rate of HT instability is zero, even whgp+ 0. TABLE |. Comparisons of the geometric factor of the growth

This means that the varying part of the chromaticity does notate of the HT instability, for a bunched beam with a hollow distri-

cause instability. bution and with a Gaussian distribution, whgp<<1. A uniform-
Figure 3 show the real and imaginary parts of the cohereriake impedance is assumed, and the effect of Landau damping is

tune shifts fod =0 andl=1. Wheny,<1, the growth rates not included.

can be further approximated by using Befi~2xo/\,

()] 2 -1
LY (x3)~2/m. For a uniform-wake impedance, and ol L7s XOYJO(XlM)]G _
x1<1, we recapitulate the growth rates in Table I, when oflow aussian
Xo<1l. =0 —3.242 —4.514
Simulations agree very well with E¢63) for the damping  |=1

. 1.081 1.128
and growth rates of thé=0 mode of a Gaussian beam.
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0 500 1000 1500 2000 0 500 1000 1500 2000

turn turn

(b} X= 0.5
1

<y>

0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000

turn turn

FIG. 4. Multiparticle simulation results showing the motion of
buECh centroid of a_GaUSS|an beam, whep=0, Y=0.22, (&  ne centroid motion of a Gaussian beam, when 0.11, x0=0, (3
Xo=+0.2, and(b) Xo= —0.2. The solid (I(l)r)les are where, according , _q 5 and(b) y,=0.5. The solid lines are where, according to
to Eq. (53), (y)[turn]=0.1 exgu(turn)/7s”]. See Eqs(6) and(7)  gq (5, (y)[turn]=0.1 exp—(turn)/74.J. See Eqs(6) and(7) for
for definitions ofyq, x1, andY. definitions ofxo, x1, andY.

FIG. 5. Multiparticle simulation results showing decoherence of

where vgo=wgo/wg, and g,= M/Uz is a geometric A. Approximate stability criterion
factor depends on the longitudinal distributigg,(r,). For a With the knowledge of the incoherent tune spread and
Gaussian distributiorg,, = 1. coherent tune shift, which cause damping and instability, re-

The ac part of the incoherent tune spread contributes to 8P€ctively, we can estimate a stability condition. The stabil-
Landau damping without driving the HT instabilifgf. Eqgs. ity criterion can be estimated by requiring that the incoherent

(53 and (54)]. The Landau damping rate needs to be solvedune spread exceeds the absolute value of the coherent tune

by the dispersion relation including the tune spread, Wheréh'ft’ that is,
the beam frequency spectrum, beam intensity, and imped-
ance are involved. In general, a larger width of the tune
spread can give a faster Landau dampifig This implies  From Eqs.(55) and(46), a general expression for the stabil-
that, within the tolerance of dynamic aperture reduction dugty condition is
to resonance, one can increase the damping(bste large
. o 1/2
enoughy;) to suppress the HT instability. 8 [2)7 NI\ =0y
The ac part of the incoherent tune spread also contributes X1= 13 g, Y| Zet(xo)l, (58)
to the decoherence. Decoherence is an effect that causes de-
cay of centroid oscillation of an off-centered beam with fre-where the factor]é()(1/4) is neglected. From Eq#46), (47),
qguency spread, and is an excitation response to a nonzeamd (49), and Fig. 2, one can see that, without taking into
initial condition[9,14]. The decoherence rate per turn can beaccount Landau damping;; does not significantly reduce
estimated as the coherent tune shift, unlegg>1. Expressed in terms of
the accelerator parameters, the approximate stability criterion
is

0'V>|AV(I)|. (57)

Taee= 2T, . (56)

elolzzV(&)ler [ R\?[ 7R
§l>C| E 2 [}
VSVBO

- (59
z
In Figs. 5 and 6, we show that, when there is no HT insta-
bility ( xo=0), the approximation for the decoherence rate isvherec,= 2/30' (1 + 1/2)/=112' "1, and the average current
confirmed by simulations of a bunched beam traversing ais |,=NedC. When 0< x4<1, thel=1 mode is usually the

impedance in a storage ririgf. Appendix BJ. dominant unstable mode, ard=0.058. In contrast, when



4702 CHENG, SESSLER, AND WURTELE 56

17.5

X = X =
15 (a) X =-02 1 09
12.5
A 10 0.06
>
vV 7.5
-0.05 ' 5
0.1
2.5
-0.1 0 - 0.15
0 500 1000 1500 2000 500 1000 1500 2000 2500 3000
turn turn
4
3.5 /
b) X =-02 = /
3p @ X % 0.0/
>~ 2.5
g 2
0.1
H 1.5
-0.05 1
0.5 0.15
-0.1 0
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FIG. 6. Multiparticle simulation results showing the decoher- 150 % oo y o0
ence of the centroid motion of a Gaussian beam, w¥ier0.328, o o 1 ’
x0=0, (@ x1=0.2, and(b) x;=0.5. The solid lines are where, 812'5
according to Eq(56), {y)[turn]=0.1 exp—(turn)/74e]. See Egs. 8 10
(6) and(7) for definitions ofxy, x1, andY. t'»
‘4 7.5
. . £
—1<x(<0, thel =0 mode is the dominant unstable mode, © 5
andcy,=0.23. Note that, as the dimensionality2 is /m, 2
both sides of Eq(59) are dimensionless. §9.2.5
As an example, consider a Gaussian beam distribution, ar 0

impedance functiorZ =1/wy—imd(wy), and x,=0.2, the 500 1000 1500 2000 2500 3000

stability criterion[cf. Eq. (58)] predicts that thé=0 mode is

stabilized if y;>Y, and thel=1 mode is stabilized if

x1=>0.058Y. In Figs. 7 and 8, we show the growth of the i, 7. Multiparticle simulation results showing stabilization of

bunch centroid, rms size, and rms emittance due to the Hfhe HT motions ofa) the centroid(b) the rms size, an¢t) the rms

instability, and its stabilization by various amounts yf. emittance of a Gaussian beam by, when y,=—0.2 and

The value ofy; needed to stabilize the bunch centroid mo-y=0.22. The estimated stability threshold for the0 mode, ac-

tion is approximately consistent with the estimated criterioncording to Eq(58), is x;=0.22. See Eqg6) and(7) for definitions

of Eq. (58). In Fig. 8, the bunch centroid motion is initially of xo, x;, andY.

dominated by thd =0 mode, which is a damping mode

when xo>0 [cf. Figs. 3 and % the higher-order unstable include the damping mode by the method of singular eigen-

modes cause the growth of averaged bunch center after tignction expansion, and solve the dispersion relafibs].

initial damping. The varying chromaticity, nonetheless, Lan-The basic derivations are formulated in Sec. Il B.

dau damps all the higher-order unstable modes whgeis

larger than the threshold estimated in E8g). Note that the B. Singular eigenfunction expansion

emittance growth is much slower than the initial centroid

damping(cf. Fig. 8. This is a result of the growth rates of

the unstable higher-order modds=(1) being much smaller

than the damping rate of thel=£0) mode, e.g.,

73 Y(1=0)~—47;1(I1=1), whenyy,<1 (cf. Table |).
Equation (58) is usually sufficient for estimating the ds wgy W

threshold for bunch centroid motions. An improved stability q)ﬁ:f Fwﬁ( o) = < St ¢ f ds £6=¢p+ @,

criterion, useful for estimating the threshold for a growth of (60)

the emittance, can be derived by incorporating the incoherent

tune spread in the Vlasov analysis. In doing so, one needs tohere ¢s= ¢+ S; o I,

turn

In this section, we use the method of singular eigenfunc-
tion expansion15] to include the Landau damping in the
Sacherer equation. We first rederive the betatron phase ad-
vance, wheré= &y+ £, sin ¢,,
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FIG. 8. Multiparticle simulation results showing stabilization of
the HT motions of@) the centroid(b) the rms size, anct) the rms
emittance of a Gaussian beam gy, when x,=0.2 andY =0.22.
The estimated stability threshold for the=1 mode, according to
Eq. (59), is x1=0.0127. See Eq$6) and(7) for definitions of y,,
X1, andy.

wfo

Weg
d r cos¢,— 4—Cr sin(2¢,), (62

r,—r, andS; = wg/2c. The in-phase oscillation between the

chromaticity modulation and the energy oscillation generates

a tune spread proportional &r. We now rewrite Eq(33)
as

W(r)

Rl(r): V|_Slr

fxdr%’R(W)Kmrm’L 62)
0

where  »=(QW—wg) ws—1=Av"1vs,  wg—wg
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V

FIG. 9. Stability diagram of a Gaussian beam with the imped-
ance function given by Eq29), for thel =0 mode. Parameters that
label the ellipses are~ xq,Y)= (a) (0.2, 0.22, (b) (0.5, 0.28, (c)
(0.7, 0.36, and(d) (0.85, 0.45. The outer curve is wherg,;=0.7.
See Eqs(6) and (7) for definitions ofyq, x1, andY.

+S,w¢f, and vj— v, —S;r. According to the orthogonality
condition defined in Eq(36), the kernelK,(r,r’) can be
expanded as

Ki(r,r)=2 Mijg(ne)(r), (63)
i’

where
szfdwwu@WQfmwww@WMmmwy
0 0

(64)

As in Sec. II, we now applydr rel’(r) on both sides of
Eqg. (62). The eigenvalue system becomes

| |
511'—Ek afIMg, =0, (65)
where
(H (D
€ (r)g’(r)W(r)
| | .
Oll(k):f drr V|_Slr =ij(V|)+|ij(V|),
(66)
0.002
0
a
-0.002
D -0.004 b
-0.006
-0.008
-0.01
-0.0075 -0.0025 0 0.0025 0.0075

\Y%

FIG. 10. Stability diagram of a Gaussian beam with the imped-
ance function shown in E¢29), for thel =1 mode. Parameters that
label the ellipses arexg,Y)= (a) (0.05, 0.83 and(b) (0.2, 0.22.
The outer curve is wherg;=0.026. See Eq<6) and(7) for defi-
nitions of xo, x1, andY.
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(I)(r) (1) r)W(r) 8Y _ ] —
Ff) =g P drn sl — S N{REZUI+ IMZR) (69)
N T o y,n - a i i i i/a)
Gj(f)=— s ref”(r)q((')(r)W(r), 67) yvh%eV(U) is the real(imaginary part of .thellaoo, and
1 il agg is the so called “beam transfer functioBTF). For a

f=1/S,, and P is the Cauchy principal value. In E@6), Gaussian beam, we have

we have used the formula: T47)—P/(r—7)+imd(r).
The dispersion relation of the dominant radial mode is [

1 | Foo(v0) +1G gl vo)
—m=MJ), 68
oy o (©9 i .
lcitl o ~2d s V220) i| "
or, explicitly, 2mx1—2mvge” “"OX Erf; X =i
1
i i
V+iU=—5= . =iM{)
gy Fodv) TiGoo(v)) and
. 4
[ —i
Foo#1) +iGoo(v1) - V2v ’ 7y
00 O (3 + Ay vd) —8mvle 2”1’X1[Erf( " 1) i}
1

for thel=0 andl =1 modes. The real and imaginary parts of the effective impedance are gien Bgs.(52), (53), and
(54)]

4Y Erfy( Xo)exﬁag(%) (1=0)
8YN, RgZW]= (72)
- JEYXOLarzl’2><xé>eX3JS(%) (1=1),
=) 4Y 2| -
YN, Im[Z{{]=— X OJO (73

In Figs. 9 and 10, we show the stability diagrams in the
U-V space, wheh=0 andl=1. The curve of the BTKthe
outer limit on theU-V plane, is determined byy;. The
parameters related to the beam intensity and the effective 2.
impedance, i.e.Y and x, [cf. Egs. (52), (53), and (54)],
determine the curve of the inner elliptical circle on theV
plane. Note that, in drawing the figures, the contribution of
J3(x1/4) in the beam spectruficf. Eq.(49)] is moved to the
left-hand side of the dispersion relatipef. Eq. (69)]. 0

We find that, the stability limit for thé=0 mode is where
vo=0, i.e., Re(BTF}0. According to the dispersion rela-
tion [cf. Eqg. (69)], the stability condition isY(I=0)

[y
[ R S N L S ¥ B v

sO.SleeXg. For thel=1 mode, the stability limit is usu- v

ally given by whereF,,=0, i.e. In(BTF)=0. Unlike the

=0 mode, one needs to solve the dispersion relation nu-

merically to obtain the stability condition of tHe=1 mode.

In short, it is the realimaginary part of the effective im- FIG. 11. Stability diagram of a Gaussian beam with the imped-
pedance that gives rise to the stability limit, for the ance function shown in Eq29), for thel=0 mode. The stability
[=1(I=0) mode. boundaries are enlarged lyy. See Eqs(6) and(7) for definitions

Figures 11 and 12 show that the stability area can bef x,, x;, andY.
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FIG. 12. Stability diagram of a Gaussian beam with the imped-  FIG. 14. Multiparticle simulation result showing stabilization of
ance function shown in Eq29), for thel=1 mode. The stability the HT motions of the rms emittance of a Gaussian beam when
boundaries are enlarged ky . See Eqs(6) and(7) for definitions  x;—0.026—the theoretical stability threshold of the1 mode|cf.
of xg, x1, andY. Eq. (69)]. Here x,=0.2 andY =0.22. See Eqs(6) and (7) for

definitions ofyg, x1, andY.

enlarged by a largey,, for both thel=0 andl=1 modes. . . o :
Equations(70) and (71) show that the left-hand side of the Lhrestf)wold, W'thf(.)m vgr;k;mg .thelchrorg_?]tllut_y, \SI._l (r‘]Nh'CE
dispersion relation is approximately proportionalxtp; this as been confirmed by simulatigndThis implies that the

implies that the SHT threshold can be enlarged by increasin m|tat|o_n of peak currenF ina storagg' fing can be m_crea_sed
X1 y varying the chromaticity. The stability criterion derived in

The multiparticle simulations show that the rms emittancethls section are in good agreement with the simulation re-

of a Gaussian beam is stabilized when the the valug,of .SUItS' and the Criterion prqvides a usgf_ul guidance for the
approaches the stability threshold of H69) [cf. Figs. 13 implementation of the varying chromaticity scheme.

and 14. Figure 15 shows that, the results of simulation of the

bunch centroid motion agree very well with the approximate IV. CONCLUSION

stability limits, and the results of emittance growth agree
with the exact stability criterion. Compared with the rigorous bili
criterion, to stabilize the bunch’s higher moments, such a

In summary, the chromaticity, causing the head-tail insta-
ty in a storage ring without threshold, usually needs to be
. . Tontrolled by sextupoles. We have shown that, by varying
the rms size and rms emittangg, usually needs to be larger the chromaticity, the head-tail instability is suppressed, and a

than the estimate from the approximate criteriaf. Eq. stabilit : ; -

y threshold is developed. The varying chromaticity
(58] by a factor of between 1 and 2. So far, we show thecontributes to Landau damping without inducing instabili-
results of wherlY =0.22, for other values oY, simulations

) . " o ties, one may use an ac amplitude as large as pogsifiten
also agree with the theoretlcal Stab'l'ty criterifor Y<0.2 6 tolerance of dynamic aperture reducjiém increase the
such that the SHT effect is not promingnt

. . . ) . SHT instability threshold, so as to achieve a higher bunch
As mentioned in previous sections, the varying chroma-,

- e . current in a storage ring. Multiparticle simulations confirmed
ticity cannot only stabilize the HT effect, but also increasey,» astimated decoherence rate, the mode analysis, and the

the SHT threshold. Figure 16 shows the simulation results
for the stabilization of the SHT instability by a large enough

| I I T I
x1, whenY =1.65 andy,=0. Note that the SHT stability 0.05 - MEmmyimn ] @O0 Q0L (0001
—E
0.04 | — Approx. ©.00,1)% ©.00,L)x (0.002.)%
.07 N
0.0 0.03- ;S‘?:;l:"zﬂes) | ©001x 0.0072.)x 0.01,3)% o
©0.06F X =02 x = 0.15 = [ s
O 0 1 0.02 ©026)x  (0.06,13)%.
80.05 0.01 2036352 (234760L)%
40
J-:)l 0.04 0.00 (2.03,7540.)% (8.82,87864.)
=T ] ] ] ] ]
o 0.03 0.0 0.1 0.2 0.3 0.4
UE) 0.17 %o
~0.02 022
0. 01 0.70 FIG. 15. Stability limits of a Gaussian beam with the impedance
’ 500 1000 1500 2000 2500 3000 3500 function of Eq.(29) for thel=1 mode, in the ac;) vs dc (o)
turn space. HereY =0.22, (y) is the averaged centroid motion at the

8000th turn,A &= €md 8000) /e, 0), and theapproximate and
FIG. 13. Multiparticle simulation result showing stabilization of exact stable limits are plotted according to the criteria shown in
the HT motions of the rms emittance of a Gaussian beam whefqgs. (58) and (69), respectively. The region above the solid
x1— 0.7—the theoretical stability threshold of the 0 mode|[cf. (dashedlline is stable for the bunch’s rms-emittan@entroid mo-
Eq. (69)]. Here xo=—0.2, Y =0.22. See Eq46) and(7) for defi- tion. Note thafy)(0)=0.1[cm], &;,{0)=0.01[cm], andA& s iS
nitions of xo, x1, andY. rounded to the closest integer.
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turn APPENDIX A: PERIODICITY
. OF VARYING CHROMATICITY
30f X = 00 In this appendix, by using a two-particle model, we show
! that the periodicity of the chromaticity modulatiormust be
o 25 , an odd number, such that the ac part of the chromaticity does
o 201 ® 0.5 ,/ not cause additional HT instability. For a two-macroparticle
g 15 A0 system, the longitudinal motion of the two macroparticles is
M o prescribed as
5 L 7] wZ
5 7 12 Zi,=*7sing,, & ,=— %2= I% cos ¢,,
200 400 600 800 1000 (A1)
turn o o ] ]
20 wherez is the oscillation amplitude with respect to the bunch
center, and the uppélower) sign denotes for the firdsec-
o 80 Xl = 05 ond particle. The transverse motion in the first half-
850 synchrotron period, i.e., 9s/c<T42, can be described as
] follows:
L 40
e (c) 1.0 )
g 30 v, ©@5(51)
20 yit —z %170, (A2)
0]
A ST e 2(8,) N
0 S—— : " wﬁ 2 ro
+ =— W, vyq, A3
200 400 600 800 1000 & Z Y2 2yC Y1 (A3)

turn .
where a constant short-range transverse wedke is as-

. -peri I.8.4/2<s/c<
FIG. 16. Multiparticle simulation results showing stabilization sumed. For the second half-period, i.d4/2<s/c<Ts,

of the SHT motions ofa) the centroid(b) the rms size, an¢t) the YieYa.
rms emittance of a Gaussian beam oy, where the SHT stability According to Eqs(1), (3), and(Al), the betatron frequen-

limit is Y<1 (wheny,=0). In these figuresy,=0 andY =1.65. cies of the head and tail split as
See Egs(6) and(7) for definitions ofyq, x1, andY.

wp1AS)=wgoT anZO Xn COS b, COSN,+ 6,,).

stability criterion. The physics of the underlying mechanism (A4)

is simple: Landau damping and rotation of the head-tail Tp¢ approximate solution of EqéA3) can be found by

phase(such that the ac part of the chromaticity does notassyming

cause instabilities Studies of practical operation issues,

such as the design of rapidly modulated sextupole magnets; yiAS)=YAs)exgd —iP As)], (A5)

and theoretical issues, such as the reduction of dynamic ap-

ertures, as well as exact calculations including the azimuthakhere bothY(s) and ®(s) vary slowly compared with the

mode-coupling, are required. Also, the practical aspects dfetatron oscillation,

the varying chromaticity must be compared with the other

schemes that also introduce an incoherent tune spread, e.g., P _ JS , g1 AS'
; . : . 1As)=] ds' ——

space charge, ion trapping, rf nonlinearity, and octopole ' 0

magnets. Finally, this work suggests that temporal variation (AB)

of accelerator parameters might be useful in control of other

instabilities. and



sin(n+1) ¢,
+
n+1
cogn+1)¢,—1
n+1

gn(n#1)=cos 6, —

. cogn—1)¢,— 1},
n—-1

Sin(n -1) ¢z}

+sin 6,

(A7)

g,=C0S 6;(3sin 2¢,+ ¢,)+ isin 6;(cos 2p,—1).
(A8)

Substituting Eq(A5) into Eq.(A3) and neglecting the small
parts, where
(Y51 Yol | D) <[PV Yol =wpoYalCY,  (A9)

and ws<wgp, leads to

.. Ws .
Y(s)=i2—YY(0)exp i >, xnOn|-  (A10)
Cm n=0

Integration of Eq.(A10) leads to

where

(A12)

1 (n )
SI:; J'O do, eXF<InZO Xngn>-

Similarly, for the second half-synchrotron period, we

have

Y1(cT)=Y(cTS2)+i2YS, Yo(cTJ2), (A13)

where
1 27 )
S.|=—J dqbzex;n(—uE xnhn), (A14)
T ) n=0

and

h,(n#1)=cos 6,

sin(n+1)¢, sin(h—1)d¢,
n+1 n—1 }
cogn+1)¢,—(—1)"*1
n+1
cogn—1)¢,—(—1)"*
* n¢—1

+sin 6,

: (A15)

h,=cos 6,(3sin 2¢,+ ¢,— ) + 3sin 6,(cos 2p,—1).
(A16)
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The eigenvalues d¥1 are
A=1-2Y?S+4Y?S(Y?S—1),

whereS=S5,S,, . Note that when the chromaticity is constant,
and the head-tail phase is small, i.e50 and o<1, we
have §,=S,,=1+4ixy/7 [9]. When the chromaticity is
zero, i.e.,xo=0, andY <1, the modulus of the eigenvalue is
1 and the system is stable. The valNie=1 corresponds to
the threshold of the SHT instability.

To investigate the stability of the two-particle system, we
first discuss the situation when the head-tail phase is small,
i.e., xn<<1. The functionsS, andS;, can then be approxi-
mated as

(A19)

S~1+i 2 XnGn. (A20)
n=0
SH”l_inE::OXan, (A21)
where
Gp(n# 1= fo d¢zgn(¢’z)
1 1+(-D)" 1+(—-1)"
=7 O T T 12
i —1 —1 A22
B (A22)
2
Hon21)= | ()
1 14(—=1)" 14+(-1)"
=7 oSO T T =12
. (=" (="
+in Gy ——+——, (A23)
and
v
G,;=H,;=— cos6,— 3sin 6. (A24)

2

The product ofS, andS;, in Eq. (A19) is then

S=SS=1+ X XnXmGnHm+i X xn(Gn—Hy).
n,m=0 n=0
(A25)

The amplitudes of the two-particle system after a com-Note that, in Eqs(A20) and(A21), the real part 05,(S,,) is

plete synchrotron period can therefore be written as

V(slc=Tg)=M;;M|V(s/c=0)=MV(0), (AL17)
whereV=(Y,,Y,)", and the transfer map is
1 i2YS, 1 0] [1-4Y?%SS, i2YS,
|0 1 |li2ys 1] | i2YS 1
(A18)

the resonant term, and the imaginary part is the chromatic

term, in the first(second half of a synchrotron period. Ex-

amining the form of the eigenvalue the stability condition

is, in general, when
SeRe, S>0 and Y2?<1/S, (A26)

where the modulus of eigenvalue of the transfer map

equals 1, i.e|\|=1. SinceG,,—H,=0, when
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nCodd, (A27) TABLE Il. Parameters used in the simulations.
Particle’s classical radius, (cm) 1.534x 10716
or Number of particles per bundi 2x 101
EnergyE (GeV) 40
) CircumferenceC (m) 6400
nCeven & antan* Z(n—:l)}’ (A28) Slippage factory 1073
mn(n“—1) Synchrotron tunesg 0.0094
Betatron tunevg, 16.35
. . . ) rms bunch lengthr, (cm) 1
which makes the imaginary part & vanish, we conclude gy, ¢t impedance, (Q) 3000
that the stability conditions of the head-tail instability with Pipe radius (cm) 3.0
the varying chromaticity wheg,<1, are Eqs(A26)—(A28). Chromaticity 0.1246
Note that, in the case when the chromaticity is a constant, i.qhmal beam troansverse offsety (cm) 01
when n=0 only, we haveGy—Hy=8/m7, Im(S)#0, and Initial rms bunch sizer., (cm) 0'1
[N|# 1, the two-particle system is inherently unstable. Initial rms emitances y cm) 0 61
In other words, for a small head-tail phagg, using the ms '
varying chromaticity with an odd function of synchrotron Head-tail phase 0.02
oscillation period, one can build up a stability threshold forintensity parameteY 0.22
Y from zero to 1{/S. An odd function for the chromaticity
can be achieved, by either alternating the sigi of modu- 7 Ng 12
lating £ by a sinusoidal function within a synchrotron period. _ —
(Y)(mn)= N1 izg_Nsy (I)} : (B1)
Tt N 1/2
APPENDIX B: MULTIPARTICLE SIMULATION < 2.
- _ Yad )= |5 57 > o] . (B
A simulation code has been developed, which follows the s 4i=m—Ng
motion of macroparticles that are initially loaded with a bi- |, .. o
Gaussian distribution in both longitudinal and transverse
phase spaces. The motion of each particle is determined by _ 1 Nm
Egs. (4) and (5), which are transformed into a four- y(i)= N > YD),
dimensional map for particle’s transverse and longitudinal mm=1 (B3)
motions. N
Specifically, the code simulates a bunched beam travers- oi(i)= N mEl [ym(i)—y(i)]1?
m e

ing a ring with a transverse impedance. The momerfyris

changed by the kick of the transverse wake force, wherg s the number of macro-particles used in the simulations,

Py=(c/wﬁo)y_’. The pfarticle’s betatron oscillation is carried 7, is the number of turn, anl; is the integer part of 1.
out by a rotation matrix, where Eq€l) and(2) are used for  The rms emittance is defined as

the angular frequency. In most cases, a uniform transverse
wake function is used. No longitudinal wake force is in- e ()= STV 2 (7)) — o2 - B4
cluded. Results are numerically converged when the number md 7o) = /oy (7o) P, ()= y-p (7). B4)
of macropatrticles simulated is larger than 400. where

The accelerator parameters used in the simulations are
listed in Table I, which can be scaled according to the three 1 Mo
parametersY, xo, and y;. The curve of(y) presented in 2 _ = v p -y
this paper is the bunch centroid motion averaged over a syn(-Ty‘Py(T“) [\ mE:1 Linl70) =Y (] L Pym(7) = Py(70) ]
chrotron period. It is defined as (B5)
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