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Varying chromaticity: A damping mechanism for the transverse head-tail instability
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A detailed analytical and numerical study of the suppression of the transverse head-tail instability by
modulating the chromaticity over a synchrotron period is presented. We find that a threshold can be developed,
and it can be increased to a value larger than the strong head-tail instability threshold. The stability criterion
derived agrees very well with the simulations. The underlying physical mechanisms of the damping scheme are
rotation of the head-tail phase such that the instability does not occur, and Landau damping due to the
incoherent betatron tune spread generated by the varying chromaticity.@S1063-651X~97!02410-0#

PACS number~s!: 29.27.Bd, 41.75.2i
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I. INTRODUCTION

In particle accelerators, the interactions of the beam p
ticles with its surroundings creates an electromagnetic fi
the so-called wake field, which reacts and perturbs the be
and can often lead to collective instabilities. These instab
ties limit the beam current in accelerators. Many schem
have been devised to control these instabilities, such as
use of a BNS damping@1# for linear accelerators, and feed
back systems for circular machines. In this paper, we
scribe a method for controlling such instabilities: through
temporal variation of the ring parameters. We exemplify t
method by the suppression of the transverse head-tail~HT!
instability by means of variation of the chromaticity@2#.

When traveling in a storage ring, particles of differe
momentum can receive different transverse focus
strength, and thus have different betatron frequencies. C
maticity j, defined as the ratio of the relative frequency d
ference to the relative momentum difference, gives the b
tron angular frequency of an off-momentum particle as

vb~d!5vb0~11jd!, ~1!

where vb0 is the betatron angular frequency of the o
momentum particle, andd5Dp/p is the relative momentum
difference. The longitudinal motion of a bunched beam
maintained by rf fields, and the particle’s momentum os
lates with the synchrotron period.

Whenj50, there is an instability in the particle’s tran
verse motion called the strong head-tail~SHT! instability.
This instability has a threshold which depends on bunch c
rent, wake force, and synchrotron period. When the thresh
is exceeded, the bunch’s transverse motion blows up. W
jÞ0, there are both the SHT instability with a threshold a
the HT instability. The HT instability, driven by the chroma
ticity, has no stability threshold. It was observed in expe
ments @3#, has been well analyzed@4#, and has been con
firmed by simulations@5#. The HT instability is still a
concern for many circular accelerators, for example~citing
from the recent literature on the subject!: the observations
and simulations of single-bunch transverse excitation of
beam in the proton ring of the HERA~Hadron Electron Ring
Anlage! collider at DESY ~German Electron Synchrotron!
561063-651X/97/56~4!/4695~15!/$10.00
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@6#, the observation of higher-order HT instability in the P
Booster of the Large Hadron Collider at CERN~European
Organization for Nuclear Research! @7#, and the investigation
of the possible HT oscillation due to a transverse feedb
kicker at the High Energy Accelerator Research Organi
tion’s B-Factory~KEKB! @8#.

It can be seen that, from Eq.~1!, the betatron frequency is
varied by the momentum oscillation if there is chromatici
and an integer resonance can be reached ifj is too large. For
most accelerators,j must be sufficiently minimized to avoid
single-particle orbital resonances. Under this circumstan
analysis~by a moment expansion of the linearized Vlas
equation describing the coupled longitudinal and dip
transverse motions! @9# shows that the lowest-order mod
has a large growth rate forj/h,0, and is strongly damped
when j/h.0. Higher-order modes grow, with substantial
smaller growth rates than the lowest-order mode, wh
j/h.0. They are damped forj/h,0. The growth rate of the
instability depends on the magnitude ofj/h and how the
beam spectrum overlaps with the impedance~Fourier trans-
form of the wake field! spectrum. Hereh5pdC/Cdp21/g2

is the slippage factor,C52pR5cT0 is the circumference of
the ring,g5(12b2)21/2, and we takeb5v/c'1.

As the sign ofj/h is crucial to the stability of the lowest
order mode and higher-order modes of the head-tail osc
tions, we consider, in analogy to the strong focusing eff
~on collective modes, instead of on single particle orbit!,
alternating the sign ofj within a synchrotron period to sta
bilize all modes. Two effects can be anticipated: first,
enhanced Landau damping from the incoherent tune sp
induced by the chromaticity variation, and second, an oth
wise accumulating chromatic effect during the synchrotr
oscillation is canceled out if the sign of the chromaticity
reversed within a synchrotron period. Instead of varyingh,
we choose to varyj, since varyingh means transition cross
ing, and therefore involves many undesirable phenomen
such as vanishing Landau damping, large momentum spr
bunch-shape mismatch and nonlinear effects@10#.

We were advised of the existence of the paper written
T. Nakamura@11#, recently. Nakamura suggested, as w
have also~independently!, the concept of the varying chro
maticity. In this paper, going considerably beyond what N
4695 © 1997 The American Physical Society
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4696 56CHENG, SESSLER, AND WURTELE
kamura has done, we provide a complete analysis, simula
results, and a stability criterion for the head-tail instability

We assume the chromaticity is varied as

j~s!5j01j1 sin fz~s!, ~2!

which is no longer a constant but a function of ‘‘time’’s,
where s measures the distance around the rin
fz(s)5vss/c is the synchrotron phase advance,vs is the
synchrotron angular frequency. The constant~dc! part of the
chromaticity,j0 , causes the HT instability. The dc incohe
ent tune spread is not effective in stabilizing the HT instab
ity. As will be shown, the ac part of the chromaticity,j1 , is
introduced to provide an incoherent tune spread that s
presses the HT instability without causing additional ins
bilities.

In this work, we concentrate on the case of modulation
the chromaticity by the same period of the synchrotron
cillation. A faster modulation is of course also possible.
general, the chromaticity can be expanded in a Fourier se
in terms offz , as

j~s!5j01 (
n50

jn cos~nfz1un!, ~3!

In Appendix A, we show that the periodicity of the varyin
chromaticity,n, must be an odd number, such that thejn
does not cause instability.

The lattice design may give a constant chromaticity wit
significant nonlinear component j01, in which
jDC5j01j01d. This nonlinear component also generates
incoherent tune spread, but note that this tune sprea
smaller by a factorsd than the tune spread from the varyin
chromaticity, and is not significant in most cases. H
sd5(vs /ch)sz is the rms bunch energy spread, andsz is
the rms bunch length.

In Sec. II, a Vlasov analysis is presented. We examine
growth rates for beams with a hollow distribution and with
Gaussian distribution, where both the contributions of the
and dc parts are included. Results of macroparticle sim
tion are discussed.

In Sec. III, the effect of Landau damping, which is n
considered in Sec. II, is included by the method of singu
eigenfunction expansion. We provide an estimate for
damping rate, an approximate stability criterion, and a d
persion relation which includes the incoherent tune spre
We compare the stability limit with macroparticle simul
tions. The conclusion is given in Sec. IV.

II. VLASOV ANALYSIS

In this section, we derive a linear eigenmode equat
which includes both the dc and ac parts of the chromatic
As a starting point of the analysis, we calculate the cohe
tune shift of a hollow beam and a Gaussian beam in
longitudinal phase space for arbitraryj0 andj1 , neglecting
any damping from the incoherent tune spread. The effec
the incoherent tune spread will be included in Sec. III.

We assume the particle in a bunched beam experie
two forces: the external focusing force and the wake fo
generated from the interaction between the beam and its
vironment. The transverse~for either vertical or horizontal!
on
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equation of motion for a particle in a bunch is

y9~z,s!1
vb

2~d!

c2 y~z,s!

52
r 0

gC E
z

`

dz8r~z8!W'~z2z8!y~z8,s!, ~4!

wherey(z) is the transverse~longitudinal! oscillation ampli-
tude with respect to the bunch center, the prime deno
d/ds, N5*dz8r(z8) is the number of particles in a bunch
r 05e2/m0c2, W' is the transverse wake function, and th
particle’s energy isE5gm0c2. The longitudinal motion is
prescribed by

z5r z cosfz , d5~vs /ch!r z sin fz , ~5!

where (r z ,fz) are the action-angle variables in the longit
dinal phase space, and we have neglected longitudinal w
force, nonlinear slippage factor, and synchrobetatron c
pling.

There are three parameters essential to the dynam
given by Eqs.~4! and ~5!,

x05vb0j0sz /ch, x15vb0j1sz /ch, ~6!

Y5pNr0^W'&c2/8gCvb0vs , ~7!

wherex0 (x1) is the dc~ac! phase shift between the hea
and tail of a bunch,̂ W'&5(1/N)*2`

` dz8r(z8)W(z2z8).
The parameterY is approximately the ratio of betatron tun
shift to the synchrotron tune. It is well known@9,12# that,
whenx150, the SHT instability occurs whenY*1.

A. Eigenmode equation

We now present a linearized Vlasov analysis of a ma
particle system. We first write down expressions for the d
namical variables in the four-dimensional phase sp
(z,y;d,y8), in terms of the action-angle variables. The lo
gitudinal dynamical variables are shown in Eq.~5!, and the
transverse dynamical variables are

y5r y cosfy , y852
vb0

c
r y sin fy , ~8!

where f (z,y)5v (s,b0)s/c. The linearized Vlasov equation
can then be expressed as

2 i
V

c
c11

vb0

c

]c1

]fy
1

vs

c

]c1

]fz
1

Fy~z,s!

E

]c0

]y8
'0, ~9!

where the distribution function is expanded
c5c01c1 exp(2iVs/c), and V is the mode frequency
Equation~9! can be solved by@9# ~1! decomposition of the
unperturbed and perturbed distribution functions as

c05c0z~r z!c0y~r y!, c15c1z~r z ,fz!c1y~r y ,fy!;
~10!

~2! assuming

c1y~r y ,fy!52^y&c0y8 ~r y!eify, ~11!
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56 4697VARYING CHROMATICITY: A DAMPING MECHANIS M . . .
which describes the transverse dipole oscillation, where^y&
is the beam centroid of transverse motion; and~3! using a
linear model of the deflecting force given by

Fy~z,s!5 i
^y&e2

CT0
e2 iVs/c(

p
r̃1~vp!Z1

'~vp!eivpz/c,

~12!

wherevp5pv01V, v05c/R is the revolution angular fre
quency,

r1~z!5E dd c1z~r z ,fz!, ~13!

*dz ddc0z5N, andZ1
'(v) is the total transverse impedanc

of the ring. Note that Eq.~12! can be obtained by a Fourie
transform of the right-hand side of Eq.~4!. The linearized
Vlasov equation, including the chromatic term, now becom

F i ~V2vb0!c1z2vs

]c1z

]fz
Geify2

c2r 0c0z

2gvb0CT0

3~eify2e2 ify!(
p

r̃1~vp!Z1
'~vp!eivpr z cosfz /c50,

~14!

where c1z has an implicitly infinite number of oscillation
modes.

To solve the oscillation frequency for each eigenmode
c1z , we Fourier expand the longitudinal perturbed distrib
tion function as

c1z5(
l

a lRl~r z!e
i ~ lfz2F!, ~15!

where

F5vb0E ds

c
jd52

vj0

c
r z cosfz2

vj1

4c
r z cos~2fz!,

~16!

vj(0,1)5vb0j (0,1) /h, Rl(r z) is the radial eigenfunction, an
l is the azimuthal mode index. We emphasize that, in
paper, the radial and the azimuth refer, respectively, to
amplitude (r z) and phase (fz) in the longitudinal phase
space@cf. Eq. ~5!#.

Note that, in deriving Eq. ~16!, we used j5j0
1j1 cosfz, such that the tune spread generated by the
phase oscillation between the chromaticity modulation a
the energy oscillation does not contribute to the chrom
phase advanceF in Eq. ~16!. Here we attempt to find the
growth rate of the HT instability, neglecting the effect
resonance that causes Landau damping.

To obtain the eigenmode equation for thel th mode, we
apply

1

~2p!2 E
0

2p

dfze
2 i l 8fz1 iFE

0

2p

dfye
2 ify ~17!

on both sides of Eq.~14!, in which c1z is replaced by Eq.
~15!; we then have
s

f
-

is
e

-
d
ic

~V~ l !2vb02 lvs!a lRl~r z!

5 i
4vsY

pNW'T0
c0z~r z!(

q
r̃1~vq!Z1

'~vq!I l~vq!, ~18!

wherevq5qv01vb01 lvs , by using the generating func
tions of Bessel functions

e6 ix cosf5(
m

i 6mJm~x!eimf, ~19!

e6 ix sin f5(
m

i 7mJm~x!eimfeimp/2, ~20!

and Eq.~13!,

I l~vq!5^e2 i l fz1 i ~vq2vj0!~r z /c!cosfz2 ivj1~r z/4c!cos~2fz!&fz

5 i lGq
~ l !* S vj1

4c
r z ,

vq2vj0

c
r zD , ~21!

r̃1~vq!5E dze2 ivqz/cr1~z!

52p
vs

ch (
l 8

i 2 l 8a l 8E
0

`

drz8r z8Rl 8~r z8!

3Gq
~ l 8!S vj1

4c
r z8 ,

vq2vj0

c
r z8D , ~22!

Gq
~ l !S vj1

4c
r z ,

vq2vj0

c
r zD

5(
m

i 2mJmS vj1

4c
r zD J2m1 l S vq2vj0

c
r zD ,

~23!

and the bracket̂ & means a longitudinal phase-space avera
^&5^& r z

^&fz
,

^ f ~r z!& r z
5

E
0

`

drzr zf ~r z!c0z~r z!

E
0

`

drzr zc0z~r z!

, ~24!

^ f ~fz!&fz
5

1

2p E
0

2p

dfzf ~f!. ~25!

Note that, whenj150, Eq. ~18! is the eigenmode equatio
for the case of a constant chromaticity@9#, where Gq

( l )~xq

2x0)5Jl(xq2x0).

B. Degenerate radial mode

The eigenmode equation shown in Eq.~18! can be sim-
plified by assuming a hollow distribution,

c0z~r z!5
Nhc

2pvsẑ
d~r z2 ẑ!, ~26!
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4698 56CHENG, SESSLER, AND WURTELE
where the radial perturbation occurs only on the surface
d shell in longitudinal phase space, i.e.,Rl(r z)}d(r z2 ẑ).
For the zero-order perturbation,a l 8

( l )
5d l l 8 , V ( l )5vb01 lvs .

The mode frequency of the first-order perturbation, for
l th mode, is then@cf. Eqs.~18!–~23!#

~V~ l !2vb02 lvs!

5 i
4vsY

pW'T0
(

q
Z1

'~vq!UGq
~ l !S x1

4
,xq2x0D U2

,

~27!

where xq5vqẑ/c5(qv01vb01 lvs) ẑ/c, and x (0,1)
5vj(0,1)ẑ/c.

With Eq. ~27!, we can now find the growth rate, which
the imaginary part of the mode frequency. For a broadb
impedance, the growth rate of the head-tail instability p
synchrotron period, given in terms of the imaginary part
the mode frequency, is then

1/ts
~ l !52

4Y

p E dvqZ̃r~vq!UGq
~ l !S x1

4
,xq2x0D U2

,

~28!

where Z1
'(vq)52W'Z̃(vq)52W'@ Z̃r(vq)1 i Z̃ i(vq)#,

and (q has been replaced by*vq /v0 . In Fig. 1, we show
the growth rate of the impedance corresponding to a unifo
wake function, where@9#

Z̃~vq!5
1

vq
2 ipd~vq!, ~29!

and the growth rate of the impedance of the broadband r
nator model, where

Z̃~vq!5
1

2vqz̃@11 i ~1/ṽ2ṽ !#
, ~30!

Q51, z̃5 ẑ/b, ṽ5vq /vR , vR5c/b, and W'

522cẑRs /b3. Note that impedances for the broadba
resonator model and the uniform-wake model give a sim
dependence of the growth rates onx0 andx1 ~cf. Fig. 1!. In
the resonator model, a longer bunch would scale down
growth rate of the HT instability. In the uniform-wak
model, the growth rate is independent ofsz . To illustrate the
effectiveness of damping mechanism due tox1 , we will em-
ploy Eq. ~29! as the function of impedance in the followin
analysis and simulations.

Note that 1/ts
( l )50 whenx050, sinceZ̃r(vq) is odd in

vq . As emphasized, the ac part of the chromaticity alo
does not cause the HT instability. The growth rate for
uniform-wake impedance can be approximated as

1/ts
~ l !'

16Yx0

p
J0

2S x1

4 D E
0

` dxq

xq
Jl~xq!Jl8~xq!

'
32Yx0

p2~4l 221!
J0

2S x1

4 D ~31!

up to the first order ofx0 , where the terms ofmÞ0 in Gq
( l )

@cf. Eq. ~23!# are ignored. The growth rate is obviously d
a

e

d
r
f

m

o-

r

e

e
e

creased by the ac amplitudex1 . Whenx150, Eq. ~31! re-
duces to the well-known @4,9# formula 1/ts

( l )

532Yx0 /p2(4l 221).

C. Radial modes

When considering realistic particle distributions, the r
dial eigenfunctionsRl(r z) are no longer degenerate. In th
section, we assume a Gaussian longitudinal distribution,

c0z~r z!5
Nhc

2psz
2vs

e2r z
2/2sz

2
, ~32!

and that the mode frequency shiftDV ( l ) is smaller thanvs ,
so that the modesV ( l ) do not couple. The issues of azimuth
mode coupling will be briefly discussed later. The eige
mode equation, for the uncoupledl th mode, is a modified
form of Sacherer’s integral equation,

S V~ l !2vb0

vs
2 l DRl~r z!5W~r z!E

0

`

drz8r z8Rl~r z8!Kl~r z ,r z8!,

~33!

where

W~r z!5
vs

Nhc
c0z~r z!5

1

2psz
2 e2r z

2/2sz
2
, ~34!

and the kernel of the integral equation is given by

Kl~r z ,r z8!52 i
8Y

T0
(

q
Z̃~vq!Gq

~ l !S vj1

4c
r z ,

vq2vj0

c
r zD

3Gq
~ l !* S vj1

4c
r z8 ,

vq2vj0

c
r z8D . ~35!

Introducing an orthonormal complete setej
( l )(r z) defined by

E
0

`

drzr zW~r z!ej
~ l !~r z!ej 8

~ l !
~r z!5d j j 8 , ~36!

the eigenfunction can be expanded as

FIG. 1. Scaled growth rate 1/ts
( l )/Y of a hollow beam due to the

impedances of a uniform-wake~solid line! and a broadband reso
nator model~dashed line!, whenx150 andz̃50.1. Curves are la-
beled by the azimuthal mode indexl . See Eqs.~6! and ~7! for
definitions ofx0 , x1 , andY.
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Rl~r z!5W~r z!(
j 50

`

ajej
~ l !~r z!. ~37!

For a Gaussian unperturbed distribution the weight funct
W(r z) @cf. Eq. ~34!# has the orthonormal basisej

( l )(r z) given
by @13#

ej
~ l !~r z!5S 2p j !

~ l 1 j !! D
1/2S r z

&sz
D l

L j
~ l !S r z

2

2sz
2D , ~38!

whereL j
( l ) are the Laguerre polynomials. We now apply

E
0

`

drzr zej
~ l !~r z! ~39!

to both sides of Eq.~33!. The integral equation becomes a
eigenvalue system,

US V~ l !2vb0

vs
2 l D I2M ~ l !U50, ~40!

whereI is an identity matrix,

M j j 8
~ l !

52 i
8Y

T0
(

q
Z̃~vq!gl j ~vj1 ,vq2vj0!

3gl j 8
* ~vj1 ,vq2vj0!, ~41!

and

gl j ~vj1 ,vq2vj0!5E
0

`

drzr zW~r z!ej
~ l !~r z!

3Gq
~ l !S vj1

4c
r z ,

vq2vj0

c
r zD . ~42!

Note that the meaning ofgl j is related to the frequency spe
trum of the (l , j ) mode of the perturbed beam density, sin
@cf. Eqs.~22!, ~23!, and~42!#

r̃1~vq!52p
vs

ch (
l

(
j 50

i 2 la lajgl j ~vj1 ,vq2vj0!.

~43!

The eigenvalues need to be solved by diagonalization
the infinite-dimensional matrixM ( l ). Note that, when
x05x150, the number of azimuthal and radial nodes in t
longitudinal phase space arel and j , respectively. When
there is the chromaticity, more ripples would appear in
longitudinal phase space. To achieve a qualitative desc
tion of the eigenmodes, we now focus only on the domin
radial mode, wherej 50. Using Eqs.~23!, ~34!, and~38!, for
the integral in Eq.~42!, in which L0

( l )(x2)51, we have@13#,
for the (l , j )5( l ,0) mode,

gl0~x1 ,xq2x0!

5
1

A2p l !
(

m50
~22dm0!S 2 i

x1

4 D m
n

of

e

e
p-
t

3
~xq2x0!2m1 l

~2m1 l !! (
p50

~21!p

3
G~p1 l 13m/211!

p!G~p1m11! S x1

4 D 2p

32F1F2p,2m2p;2m1 l 11;S xq2x0

x1/4 D 2G , ~44!

where x(0,1)5vj(0,1)sz /&c, xq5vqsz /&c, dm0 is the
Kronecker delta, and2F1(a,b;c;x) is the hypergeometric
function. Note thatx(0,1,q)5x (0,1,q) /&. The beam spectra
ugl0(xq)u2 are shown in Fig. 2. It can be seen that, the cen
of spectra is shifted by an amount ofx0 , and, with a large
enoughx1 , the spectral amplitudes are suppressed for
azimuthal modes. This implies that, besides the additio
incoherent tune spread due tox1 which causes Landau
damping, the HT instability induced byx0 is further sup-
pressed byx1 , although the latter effect is much less effe
tive than the first one, as will be seen in Sec. III.

The beam spectrumgl0(0,xq2x0) reduces to the spec
trum of the dc case whenj150:

gl0~xq2x0!5
1

A2p l !2 l /2
~xq2x0! le2~xq2x0!2/2. ~45!

The mode frequency can now be approximated for
dominant radial mode of a Gaussian beam, as

V~ l !2vb02 lvs.2 i
8Yvs

T0
Ng

~ l !Z̃eff
~ l ! , ~46!

where

FIG. 2. Normalized frequency spectraugl0(xq)u2 of a Gaussian
beam, whenx050.1, ~a! l 50 and 1, and~b! l 52 and 3. See Eq.
~6! for definitions ofx0 andx1 .
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Ng
~ l !5(

q
ugl0~x1 ,xq2x0!u2, ~47!

and the effective impedance is

Z̃eff
~ l !5@Ng

~ l !#21(
q

Z̃~vq!ugl0~x1 ,xq2x0!u2. ~48!

Whenx1,1, one can approximate the beam spectrum

ugl0~x1 ,xq2x0!u2'
1

2p l !2 l ~xq2x0!2le2~xq2x0!2
J0

2S x1

4 D .

~49!

For simplicity, instead of using the exact representation
the beam spectrum shown in Eq.~44!, we use the approxi-
mate form of Eq.~49! in the following study, for the case o
x1,1. In this way, for a broadband impedance, the grow
rate per synchrotron period is simply

1/ts
~ l !.28YE dvqZ̃r~vq!ugl0~x1 ,xq2x0!u2

528YNl Re@ Z̃eff
~ l !#, ~50!

where, for a Gaussian beam,

Nl5E dvqugl0u2'
G~ l 11/2!

p l !2 l 11

c

sz
J0

2S x1

4 D . ~51!

The coherent tune shift is given by the real part of the mo
frequency. For a uniform-wake impedance@cf. Eq. ~29!#, we
have

2p Re@Dn~ l !#'2
4Y

l !2 l nsx0
2le2x0

2
J0

2S x1

4 D , ~52!

where Dn ( l )5(V ( l )2vb0)/v02 lns , ns5vs /v0 ; and the
growth rates of the two fundamental modes are appro
mately

1/ts
~0!'24Y Erfi~x0!e2x0

2
J0

2S x1

4 D , ~53!

and

1/ts
~1!'ApYx0L1/2

~21/2!~x0
2!e2x0

2
J0

2S x1

4 D , ~54!

where 1/ts
( l )52p Im@Dn ( l )#/ns , Erfi(x)52 i Erf( ix), and

Erf(x) is the error function. One can see that, whenx050,
the growth rate of HT instability is zero, even whenx1Þ0.
This means that the varying part of the chromaticity does
cause instability.

Figure 3 show the real and imaginary parts of the cohe
tune shifts forl 50 andl 51. Whenx0!1, the growth rates
can be further approximated by using Erf(x0)'2x0 /Ap,
L1/2

(21/2)(x0
2)'2/p. For a uniform-wake impedance, an

x1,1, we recapitulate the growth rates in Table I, wh
x0!1.

Simulations agree very well with Eq.~53! for the damping
and growth rates of thel 50 mode of a Gaussian beam
y

f

h

e

i-

t

nt

Figure 4 shows examples of the bunch centroid motion o
Gaussian beam, where the evolution of the envelope ag
very well with the theory’s prediction. In other words, th
imaginary part of the coherent tune shift calculated is c
firmed by simulations.

When the SHT effect is prominent, i.e., whenY is close
to 1, the azimuthal mode coupling is likely to occur. Exam
nation of Eqs.~52!, ~53!, and ~54! shows that both the rea
and imaginary parts of the coherent tune shift of the (l ,0)
mode are approximately reduced byJ0

2(x1/4). Even before
solving the matrix of infinite dimension, or including th
Landau damping, this suggests that the SHT threshold ca
raised by a large value ofx1 .

The most important results in this section are Eqs.~52!,
~53!, and~54!, which are the real and imaginary parts of th
tune shift of a Gaussian beam with the model impedance
Eq. ~29!. These results will be used in Sec. III.

III. LANDAU DAMPING

In this section, we include in the linearized Vlasov ana
sis the incoherent tune spread induced by the varying c
maticity. We present an approximate stability criterion, a r
orous criterion using the dispersion relation, a
comparisons with simulation results.

Let us first estimate the incoherent chromatic tune spr
due toj1 :

sn'nb0j1A^~d sin fz!
2&'A3/8gsnb0j1sd , ~55!

FIG. 3. Scaled coherent tune shift of a Gaussian beam due to
impedance of Eq.~29! vs x0 , when x150, and where the solid
~dashed! lines are the real~imaginary! part of 2pDn ( l )/nsY. Curves
are labeled by the azimuthal mode indexl . See Eqs.~6! and~7! for
definitions ofx0 , x1 , andY.

TABLE I. Comparisons of the geometric factor of the grow
rate of the HT instability, for a bunched beam with a hollow dist
bution and with a Gaussian distribution, whenx0!1. A uniform-
wake impedance is assumed, and the effect of Landau dampin
not included.

@ts
( l )x0YJ0

2(x1/4)#21

hollow Gaussian

l 50 23.242 24.514
l 51 1.081 1.128
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where nb05vb0 /v0 , and gs5A^r z
2& r z

/sz is a geometric

factor depends on the longitudinal distributionc0z(r z). For a
Gaussian distribution,gs51.

The ac part of the incoherent tune spread contributes
Landau damping without driving the HT instability@cf. Eqs.
~53! and~54!#. The Landau damping rate needs to be solv
by the dispersion relation including the tune spread, wh
the beam frequency spectrum, beam intensity, and imp
ance are involved. In general, a larger width of the tu
spread can give a faster Landau damping@9#. This implies
that, within the tolerance of dynamic aperture reduction d
to resonance, one can increase the damping rate~by a large
enoughx1! to suppress the HT instability.

The ac part of the incoherent tune spread also contrib
to the decoherence. Decoherence is an effect that cause
cay of centroid oscillation of an off-centered beam with fr
quency spread, and is an excitation response to a non
initial condition @9,14#. The decoherence rate per turn can
estimated as

tdec
21'2psn . ~56!

In Figs. 5 and 6, we show that, when there is no HT ins
bility ( x050), the approximation for the decoherence rate
confirmed by simulations of a bunched beam traversing
impedance in a storage ring@cf. Appendix B#.

FIG. 4. Multiparticle simulation results showing the motion
bunch centroid of a Gaussian beam, whenx150, Y50.22, ~a!
x0510.2, and~b! x0520.2. The solid lines are where, accordin
to Eq. ~53!, ^y&@ turn#50.1 exp@ns(turn)/ts

(0)#. See Eqs.~6! and~7!
for definitions ofx0 , x1 , andY.
a

d
re
d-
e
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A. Approximate stability criterion

With the knowledge of the incoherent tune spread a
coherent tune shift, which cause damping and instability,
spectively, we can estimate a stability condition. The sta
ity criterion can be estimated by requiring that the incoher
tune spread exceeds the absolute value of the coherent
shift, that is,

sn.uDn~ l !u. ~57!

From Eqs.~55! and~46!, a general expression for the stab
ity condition is

x1.
8

p S 2

3D 1/2S Nl

gs
DYuZ̃eff

~ l !~x0!u, ~58!

where the factorJ0
2(x1/4) is neglected. From Eqs.~46!, ~47!,

and ~49!, and Fig. 2, one can see that, without taking in
account Landau damping,x1 does not significantly reduce
the coherent tune shift, unlessx1@1. Expressed in terms o
the accelerator parameters, the approximate stability crite
is

j1.cl

eI0uZ1
'~ l !~j0!ueff

E S R

sz
D 2S hR

nsnb0
2 D , ~59!

wherecl5A2/3G( l 11/2)/p l !2 l 11, and the average curren
is I 05Nec/C. When 0,x0,1, thel 51 mode is usually the
dominant unstable mode, andc150.058. In contrast, when

FIG. 5. Multiparticle simulation results showing decoherence
the centroid motion of a Gaussian beam, whenY50.11, x050, ~a!
x150.2, and~b! x150.5. The solid lines are where, according
Eq. ~56!, ^y&@ turn#50.1 exp@2(turn)/tdec#. See Eqs.~6! and~7! for
definitions ofx0 , x1 , andY.
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21,x0,0, the l 50 mode is the dominant unstable mod
andc050.23. Note that, as the dimensionality ofZ1

' is V/m,
both sides of Eq.~59! are dimensionless.

As an example, consider a Gaussian beam distribution
impedance functionZ̃51/vq2 ipd(vq), and x050.2, the
stability criterion@cf. Eq.~58!# predicts that thel 50 mode is
stabilized if x1.Y, and the l 51 mode is stabilized if
x1.0.058Y. In Figs. 7 and 8, we show the growth of th
bunch centroid, rms size, and rms emittance due to the
instability, and its stabilization by various amounts ofx1 .
The value ofx1 needed to stabilize the bunch centroid m
tion is approximately consistent with the estimated criter
of Eq. ~58!. In Fig. 8, the bunch centroid motion is initiall
dominated by thel 50 mode, which is a damping mod
when x0.0 @cf. Figs. 3 and 4#; the higher-order unstabl
modes cause the growth of averaged bunch center afte
initial damping. The varying chromaticity, nonetheless, La
dau damps all the higher-order unstable modes whenx1 is
larger than the threshold estimated in Eq.~58!. Note that the
emittance growth is much slower than the initial centro
damping~cf. Fig. 8!. This is a result of the growth rates o
the unstable higher-order modes (l>1) being much smaller
than the damping rate of the (l 50) mode, e.g.,
ts

21( l 50)'24ts
21( l 51), whenx0!1 ~cf. Table I!.

Equation ~58! is usually sufficient for estimating th
threshold for bunch centroid motions. An improved stabil
criterion, useful for estimating the threshold for a growth
the emittance, can be derived by incorporating the incohe
tune spread in the Vlasov analysis. In doing so, one need

FIG. 6. Multiparticle simulation results showing the decoh
ence of the centroid motion of a Gaussian beam, whenY50.328,
x050, ~a! x150.2, and~b! x150.5. The solid lines are where
according to Eq.~56!, ^y&@ turn#50.1 exp@2(turn)/tdec#. See Eqs.
~6! and ~7! for definitions ofx0 , x1 , andY.
,

an
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-
n

he
-

f
nt
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include the damping mode by the method of singular eig
function expansion, and solve the dispersion relation@15#.
The basic derivations are formulated in Sec. III B.

B. Singular eigenfunction expansion

In this section, we use the method of singular eigenfu
tion expansion@15# to include the Landau damping in th
Sacherer equation. We first rederive the betatron phase
vance, whenj5j01j1 sinfz,

Fb5E ds

c
vb~d!5

vb0

c
s1

vb0

c E ds jd5fb1F,

~60!

wherefb5fy1S1fzr ,

-

FIG. 7. Multiparticle simulation results showing stabilization
the HT motions of~a! the centroid,~b! the rms size, and~c! the rms
emittance of a Gaussian beam byx1 , when x0520.2 and
Y50.22. The estimated stability threshold for thel 50 mode, ac-
cording to Eq.~58!, is x1>0.22. See Eqs.~6! and~7! for definitions
of x0 , x1 , andY.



e
te

of

d-
t

ed-
t

56 4703VARYING CHROMATICITY: A DAMPING MECHANIS M . . .
F52
vj0

c
r cosfz2

vj1

4c
r sin~2fz!, ~61!

r z→r , andS15vj1/2c. The in-phase oscillation between th
chromaticity modulation and the energy oscillation genera
a tune spread proportional toS1r . We now rewrite Eq.~33!
as

Rl~r !5
W~r !

n l2S1r E
0

`

dr8r 8Rl~r 8!Kl~r ,r 8!, ~62!

where n l5(V ( l )2vb0)/vs2 l 5Dn ( l )/ns , vb0→vb0

FIG. 8. Multiparticle simulation results showing stabilization
the HT motions of~a! the centroid,~b! the rms size, and~c! the rms
emittance of a Gaussian beam byx1 , whenx050.2 andY50.22.
The estimated stability threshold for thel 51 mode, according to
Eq. ~58!, is x1>0.0127. See Eqs.~6! and~7! for definitions ofx0 ,
x1 , andY.
s

1S1vsr , and n l→n l2S1r . According to the orthogonality
condition defined in Eq.~36!, the kernelKl(r ,r 8) can be
expanded as

Kl~r ,r 8!5(
j , j 8

M j j 8
~ l ! ej

~ l !~r !ej 8
~ l !

~r 8!, ~63!

where

M j j 8
~ l !

5E
0

`

dr rW~r !ej
~ l !~r !E

0

`

dr8r 8W~r 8!ej 8
~ l !

~r 8!Kl~r ,r 8!.

~64!

As in Sec. II, we now apply*dr rej
( l )(r ) on both sides of

Eq. ~62!. The eigenvalue system becomes

d j j 82(
k

a jk
~ l !M k j8

~ l !
50, ~65!

where

a jk
~ l !5E drr

ej
~ l !~r !ek

~ l !~r !W~r !

n l2S1r
5F jk~n l !1 iG jk~n l !,

~66!

FIG. 9. Stability diagram of a Gaussian beam with the impe
ance function given by Eq.~29!, for the l 50 mode. Parameters tha
label the ellipses are: (2x0 ,Y)5 ~a! ~0.2, 0.22!, ~b! ~0.5, 0.28!, ~c!
~0.7, 0.36!, and~d! ~0.85, 0.45!. The outer curve is wherex150.7.
See Eqs.~6! and ~7! for definitions ofx0 , x1 , andY.

FIG. 10. Stability diagram of a Gaussian beam with the imp
ance function shown in Eq.~29!, for thel 51 mode. Parameters tha
label the ellipses are (x0 ,Y)5 ~a! ~0.05, 0.83! and ~b! ~0.2, 0.22!.
The outer curve is wherex150.026. See Eqs.~6! and ~7! for defi-
nitions of x0 , x1 , andY.
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F jk~ r̂ !52
1

S1
PE drr

ej
~ l !~r !ek

~ l !~r !W~r !

r 2 r̂
,

Gjk~ r̂ !52
p

S1
r̂ej

~ l !~ r̂ !ek
~ l !~ r̂ !W~ r̂ !, ~67!

r̂ 5n l /S1 , and P is the Cauchy principal value. In Eq.~66!,
we have used the formula: 1/(r 2 r̂ )→P/(r 2 r̂ )1 ipd( r̂ ).
The dispersion relation of the dominant radial mode is

1

a00
~ l ! 5M00

~ l ! , ~68!

or, explicitly,

V1 iU 5
i

a00
~ l ! 5

i

F00~n l !1 iG00~n l !
5 iM00

~ l !
he

ti

o

-

n

e

b

5
8Y

2p
Nl$Re@ Z̃eff

~ l !#1 i Im@ Z̃eff
~ l !#%, ~69!

whereV(U) is the real~imaginary! part of thei /a00
( l ) , and

i /a00
( l ) is the so called ‘‘beam transfer function’’~BTF!. For a

Gaussian beam, we have

i

F00~n0!1 iG00~n0!

5
2 ix1

2/2

A2px122pn0e22n0
2/x1

2FErfi S&n0

x1
D2 i G , ~70!

and
i

F00~n1!1 iG00~n1!
5

2 ix1
4

A2p~x1
314x1n1

2!28pn1
3e22n1

2/x1
2FErfi S&n1

x1
D2 i G , ~71!

for the l 50 andl 51 modes. The real and imaginary parts of the effective impedance are given by@cf. Eqs.~52!, ~53!, and
~54!#

8YNl Re@ Z̃eff
~ l !#5H 4Y Erfi~x0!e2x0

2
J0

2S x1

4 D ~ l 50!

2ApYx0L1/2
~21/2!~x0

2!e2x0
2
J0

2S x1

4 D ~ l 51!,

~72!

8YNl Im@ Z̃eff
~ l !#52

4Y

l !2 l x0
2le2x0

2
J0

2S x1

4 D . ~73!
ed-
In Figs. 9 and 10, we show the stability diagrams in t
U-V space, whenl 50 andl 51. The curve of the BTF~the
outer limit on theU-V plane!, is determined byx1 . The
parameters related to the beam intensity and the effec
impedance, i.e.,Y and x0 @cf. Eqs. ~52!, ~53!, and ~54!#,
determine the curve of the inner elliptical circle on theU-V
plane. Note that, in drawing the figures, the contribution
J0

2(x1/4) in the beam spectrum@cf. Eq. ~49!# is moved to the
left-hand side of the dispersion relation@cf. Eq. ~69!#.

We find that, the stability limit for thel 50 mode is where
n050, i.e., Re(BTF)50. According to the dispersion rela
tion @cf. Eq. ~69!#, the stability condition isY( l 50)

<0.31x1ex0
2
. For thel 51 mode, the stability limit is usu-

ally given by whereF0050, i.e. Im(BTF)50. Unlike the
l 50 mode, one needs to solve the dispersion relation
merically to obtain the stability condition of thel 51 mode.
In short, it is the real~imaginary! part of the effective im-
pedance that gives rise to the stability limit, for th
l 51(l 50) mode.

Figures 11 and 12 show that the stability area can
ve

f

u-

e

FIG. 11. Stability diagram of a Gaussian beam with the imp
ance function shown in Eq.~29!, for the l 50 mode. The stability
boundaries are enlarged byx1 . See Eqs.~6! and~7! for definitions
of x0 , x1 , andY.
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enlarged by a largerx1 , for both thel 50 andl 51 modes.
Equations~70! and ~71! show that the left-hand side of th
dispersion relation is approximately proportional tox1 ; this
implies that the SHT threshold can be enlarged by increa
x1 .

The multiparticle simulations show that the rms emittan
of a Gaussian beam is stabilized when the the value ofx1
approaches the stability threshold of Eq.~69! @cf. Figs. 13
and 14#. Figure 15 shows that, the results of simulation of t
bunch centroid motion agree very well with the approxim
stability limits, and the results of emittance growth agr
with the exact stability criterion. Compared with the rigoro
criterion, to stabilize the bunch’s higher moments, such
the rms size and rms emittance,x1 usually needs to be large
than the estimate from the approximate criterion@cf. Eq.
~58!# by a factor of between 1 and 2. So far, we show
results of whenY50.22, for other values ofY, simulations
also agree with the theoretical stability criterion~for Y,0.2
such that the SHT effect is not prominent!.

As mentioned in previous sections, the varying chrom
ticity cannot only stabilize the HT effect, but also increa
the SHT threshold. Figure 16 shows the simulation res
for the stabilization of the SHT instability by a large enou
x1 , when Y51.65 andx050. Note that the SHT stability

FIG. 12. Stability diagram of a Gaussian beam with the imp
ance function shown in Eq.~29!, for the l 51 mode. The stability
boundaries are enlarged byx1 . See Eqs.~6! and~7! for definitions
of x0 , x1 , andY.

FIG. 13. Multiparticle simulation result showing stabilization
the HT motions of the rms emittance of a Gaussian beam w
x1→0.7—the theoretical stability threshold of thel 50 mode@cf.
Eq. ~69!#. Herex0520.2, Y50.22. See Eqs.~6! and ~7! for defi-
nitions of x0 , x1 , andY.
g

e

e
e

s

e

-

ts

threshold, without varying the chromaticity, isY.1 ~which
has been confirmed by simulations!. This implies that the
limitation of peak current in a storage ring can be increa
by varying the chromaticity. The stability criterion derived
this section are in good agreement with the simulation
sults, and the criterion provides a useful guidance for
implementation of the varying chromaticity scheme.

IV. CONCLUSION

In summary, the chromaticity, causing the head-tail ins
bility in a storage ring without threshold, usually needs to
controlled by sextupoles. We have shown that, by vary
the chromaticity, the head-tail instability is suppressed, an
stability threshold is developed. The varying chromatic
contributes to Landau damping without inducing instab
ties, one may use an ac amplitude as large as possible~within
the tolerance of dynamic aperture reduction! to increase the
SHT instability threshold, so as to achieve a higher bun
current in a storage ring. Multiparticle simulations confirm
the estimated decoherence rate, the mode analysis, an

-

n

FIG. 14. Multiparticle simulation result showing stabilization
the HT motions of the rms emittance of a Gaussian beam w
x1→0.026—the theoretical stability threshold of thel 51 mode@cf.
Eq. ~69!#. Here x050.2 andY50.22. See Eqs.~6! and ~7! for
definitions ofx0 , x1 , andY.

FIG. 15. Stability limits of a Gaussian beam with the impedan
function of Eq.~29! for the l 51 mode, in the ac (x1) vs dc (x0)
space. HereY50.22, ^y& is the averaged centroid motion at th
8000th turn,D« rms5« rms(8000)/« rms(0), and theapproximate and
exact stable limits are plotted according to the criteria shown
Eqs. ~58! and ~69!, respectively. The region above the sol
~dashed! line is stable for the bunch’s rms-emittance~centroid! mo-
tion. Note that̂ y&(0)50.1 @cm#, « rms(0)50.01 @cm#, andD« rms is
rounded to the closest integer.
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4706 56CHENG, SESSLER, AND WURTELE
stability criterion. The physics of the underlying mechanis
is simple: Landau damping and rotation of the head-
phase~such that the ac part of the chromaticity does n
cause instabilities!. Studies of practical operation issue
such as the design of rapidly modulated sextupole magn
and theoretical issues, such as the reduction of dynamic
ertures, as well as exact calculations including the azimu
mode-coupling, are required. Also, the practical aspects
the varying chromaticity must be compared with the oth
schemes that also introduce an incoherent tune spread,
space charge, ion trapping, rf nonlinearity, and octop
magnets. Finally, this work suggests that temporal varia
of accelerator parameters might be useful in control of ot
instabilities.

FIG. 16. Multiparticle simulation results showing stabilizatio
of the SHT motions of~a! the centroid,~b! the rms size, and~c! the
rms emittance of a Gaussian beam byx1 , where the SHT stability
limit is Y,1 ~whenx150!. In these figures,x050 andY51.65.
See Eqs.~6! and ~7! for definitions ofx0 , x1 , andY.
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APPENDIX A: PERIODICITY
OF VARYING CHROMATICITY

In this appendix, by using a two-particle model, we sho
that the periodicity of the chromaticity modulationn must be
an odd number, such that the ac part of the chromaticity d
not cause additional HT instability. For a two-macropartic
system, the longitudinal motion of the two macroparticles
prescribed as

z1,256 ẑ sin fz , d1,252
z1,28

h
57

vsẑ

ch
cosfz ,

~A1!

whereẑ is the oscillation amplitude with respect to the bun
center, and the upper~lower! sign denotes for the first~sec-
ond! particle. The transverse motion in the first ha
synchrotron period, i.e., 0,s/c,Ts/2, can be described a
follows:

y191
vb

2~d1!

c2 y150, ~A2!

y291
vb

2~d2!

c2 y252
Nr0

2gC
W'y1 , ~A3!

where a constant short-range transverse wakeW' is as-
sumed. For the second half-period, i.e.,Ts/2,s/c,Ts ,
y1↔y2 .

According to Eqs.~1!, ~3!, and~A1!, the betatron frequen
cies of the head and tail split as

vb1,2~s!5vb07vs(
n50

xn cosfz cos~nfz1un!.

~A4!

The approximate solution of Eqs.~A3! can be found by
assuming

y1,2~s!5Y1,2~s!exp@2 iF1,2~s!#, ~A5!

where bothY(s) and F(s) vary slowly compared with the
betatron oscillation,

F1,2~s!5E
0

s

ds8
vb1,2~s8!

c
5vb0

s

c
7

1

2 (
n50

xngn ,

~A6!

and
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gn~nÞ1!5cosunFsin~n11!fz

n11
1

sin~n21!fz

n21 G
1sin unFcos~n11!fz21

n11
1

cos~n21!fz21

n21 G ,
~A7!

g15cosu1~ 1
2 sin 2fz1fz!1 1

2 sin u1~cos 2fz21!.
~A8!

Substituting Eq.~A5! into Eq. ~A3! and neglecting the sma
parts, where

~ uY29/Y2u,uF29u!!uF28Y28/Y2u.vb0Y28/cY2 ~A9!

andvs!vb0 , leads to

Y28~s!. i2
vs

cp
YY1~0!expS i (

n50
xngnD . ~A10!

Integration of Eq.~A10! leads to

Y2~cTs/2!.Y2~0!1 i2YSIY1~0!, ~A11!

where

SI5
1

p E
0

p

dfz expS i (
n50

xngnD . ~A12!

Similarly, for the second half-synchrotron period, w
have

Y1~cTs!.Y1~cTs/2!1 i2YSII Y2~cTs/2!, ~A13!

where

SII 5
1

p E
p

2p

dfz expS 2 i (
n50

xnhnD , ~A14!

and

hn~nÞ1!5cosunFsin~n11!fz

n11
1

sin~n21!fz

n21 G
1sin unFcos~n11!fz2~21!n11

n11

1
cos~n21!fz2~21!n21

n21 G , ~A15!

h15cosu1~ 1
2 sin 2fz1fz2p!1 1

2 sin u1~cos 2fz21!.
~A16!

The amplitudes of the two-particle system after a co
plete synchrotron period can therefore be written as

V~s/c5Ts!5MII MIV~s/c50!5MV~0!, ~A17!

whereV5(Y1 ,Y2)T, and the transfer map is

M5F1 i2YSII

0 1 GF 1 0

i2YSI 1G5F124Y2SISII i2YSII

i2YSI 1 G .
~A18!
-

The eigenvalues ofM are

l5122Y2S6A4Y2S~Y2S21!, ~A19!

whereS5SISII . Note that when the chromaticity is constan
and the head-tail phase is small, i.e.,n50 and x0!1, we
have SI5SII .114ix0 /p @9#. When the chromaticity is
zero, i.e.,x050, andY,1, the modulus of the eigenvalue
1 and the system is stable. The valueY51 corresponds to
the threshold of the SHT instability.

To investigate the stability of the two-particle system, w
first discuss the situation when the head-tail phase is sm
i.e., xn!1. The functionsSI and SII can then be approxi-
mated as

SI'11 i (
n50

xnGn , ~A20!

SII '12 i (
n50

xnHn , ~A21!

where

Gn~nÞ1!5E
0

p

dfzgn~fz!

5
1

p
cosunF11~21!n

~n11!2 1
11~21!n

~n21!2 G
2sin unS 1

n11
1

1

n21D , ~A22!

Hn~nÞ1!5E
p

2p

dfzhn~fz!

52
1

p
cosunF11~21!n

~n11!2 1
11~21!n

~n21!2 G
1sin unF ~21!n

n11
1

~21!n

n21 G , ~A23!

and

G15H15
p

2
cosu12 1

2 sin u1 . ~A24!

The product ofSI andSII in Eq. ~A19! is then

S5SISII 511 (
n,m50

xnxmGnHm1 i (
n50

xn~Gn2Hn!.

~A25!

Note that, in Eqs.~A20! and~A21!, the real part ofSI(SII ) is
the resonant term, and the imaginary part is the chrom
term, in the first~second! half of a synchrotron period. Ex
amining the form of the eigenvaluel, the stability condition
is, in general, when

SPRe, S.0 and Y2,1/S, ~A26!

where the modulus of eigenvalue of the transfer mapM
equals 1, i.e.ulu51. SinceGn2Hn50, when
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n,odd, ~A27!

or

n,even & un5tan21F 2~n211!

pn~n221!G , ~A28!

which makes the imaginary part ofS vanish, we conclude
that the stability conditions of the head-tail instability wi
the varying chromaticity whenxn!1, are Eqs.~A26!–~A28!.
Note that, in the case when the chromaticity is a constant,
when n50 only, we haveG02H058/p, Im(S)Þ0, and
uluÞ1, the two-particle system is inherently unstable.

In other words, for a small head-tail phasexn , using the
varying chromaticity with an odd function of synchrotro
oscillation period, one can build up a stability threshold
Y from zero to 1/AS. An odd function for the chromaticity
can be achieved, by either alternating the sign ofj or modu-
lating j by a sinusoidal function within a synchrotron perio

APPENDIX B: MULTIPARTICLE SIMULATION

A simulation code has been developed, which follows
motion of macroparticles that are initially loaded with a b
Gaussian distribution in both longitudinal and transve
phase spaces. The motion of each particle is determine
Eqs. ~4! and ~5!, which are transformed into a four
dimensional map for particle’s transverse and longitudi
motions.

Specifically, the code simulates a bunched beam trav
ing a ring with a transverse impedance. The momentumPy is
changed by the kick of the transverse wake force, wh
Py5(c/vb0)y8. The particle’s betatron oscillation is carrie
out by a rotation matrix, where Eqs.~1! and~2! are used for
the angular frequency. In most cases, a uniform transv
wake function is used. No longitudinal wake force is i
cluded. Results are numerically converged when the num
of macroparticles simulated is larger than 400.

The accelerator parameters used in the simulations
listed in Table II, which can be scaled according to the th
parameters:Y, x0 , and x1 . The curve of^y& presented in
this paper is the bunch centroid motion averaged over a
chrotron period. It is defined as
er
in

ea
v,
n
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re

se
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n-

^y&~tn!5F 1

2Ns11 (
i 5tn2Ns

tn1Ns

ȳ2~ i !G1/2

, ~B1!

yrms~tn!5F 1

2Ns11 (
i 5tn2Ns

tn1Ns

sy
2~ i !G1/2

, ~B2!

where

ȳ~ i !5
1

Nm
(

m51

Nm

ym~ i !,

~B3!

sy
2~ i !5

1

Nm
(

m51

Nm

@ym~ i !2 ȳ~ i !#2,

Nm is the number of macro-particles used in the simulatio
tn is the number of turn, andNs is the integer part of 1/ns .
The rms emittance is defined as

« rms~tn!5Asy
2~tn!sPy

2 ~tn!2sy2Py

2 ~tn!, ~B4!

where

sy2Py

2 ~tn!5
1

Nm
(

m51

Nm

@ym~tn!2 ȳ~tn!#@Pym~tn!2 P̄y~tn!#.

~B5!

TABLE II. Parameters used in the simulations.

Particle’s classical radiusr 0 ~cm! 1.534310216

Number of particles per bunchN 231011

EnergyE ~GeV! 40
CircumferenceC ~m! 6400
Slippage factorh 1023

Synchrotron tunens 0.0094
Betatron tunenb0 16.35
rms bunch lengthsz ~cm! 1
Shunt impedanceRs ~V! 3000
Pipe radiusb ~cm! 3.0
Chromaticityj0 0.1246
Initial beam transverse offsetDy ~cm! 0.1
Initial rms bunch sizesy ~cm! 0.1
Initial rms emittance« rms ~cm! 0.01

Head-tail phasex0 0.02
Intensity parameterY 0.22
rs,

-

-
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