PHYSICAL REVIEW E VOLUME 56, NUMBER 4 OCTOBER 1997

Triple point of Yukawa systems

S. Hamaguchi
IBM Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598

R. T. Farouki
Department of Mechanical Engineering and Applied Mechanics, University of Michigan, Ann Arbor, Michigan 48109

D. H. E. Dubin
Department of Physics, University of California at San Diego, La Jolla, California 92093
(Received 2 May 1997

The molecular dynamics simulations of Yukawz., screened-Coulomisystems that were applied to the
regime of weak screening in an earlier sty@y Hamaguchi, R. T. Farouki, and D. H. E. Dubin, J. Chem. Phys.
105, 7641(1996] are extended to the strong screening regime. Transition temperatures at the fluid-solid phase
boundary and the solid-solid phase boundary are obtained as functions of the screening pararaétey
(i.e., the ratio of the Wigner-Seitz radiasto the Debye length ). The resulting phase diagram also covers
the triple point—the intersection of the fluid-solid and solid-solid phase boundaries=4t28 andl’=5.6
X 10°, whereT is the ratio of the Coulomb potential energy to the kinetic energy per patice I’
=Q?/4meqakT, whereQ is the charge of each Yukawa particle afids the system temperatyreYukawa
systems serve as models for plasmas and colloidal suspensions of charged particulates.
[S1063-651X97)11310-1

PACS numbdis): 52.25.Vy, 64.60-i, 82.70.Dd, 98.38.Cp

I. INTRODUCTION L inWJr e’n, | Y2
D SokTi SOkTe '

Small charged “dust” grains are observed in a wide va-
netylof plasma em_nronments, ranging from _the mterstell_ar ., 7., andT, being the charge, mean density, and tempera-
medium to gas discharges used in materials processing, o of plasma ions, ané-e, n,, and T, the corresponding

Small particles immersed in a plasma typically acquire negag antities for plasma electrons. The thermodynamics of the

tive charges, due to the high mobility of plasma electronsy,awa system can be characterized by two dimensionless
The Coulomb interactions between such particles are mOdbarameters:

fied by their Debye sheaths, and the interparticle potential

may be approximated by a Yukawa-tygscreened Cou- a Q2

lomb) pair potentia[1-3] as given in Eq(1) below. K= and I'= TreakT 2
Laboratory experiments have recently demonstrated that, D 0

when the interparticle potential energy exceeds the ki”eti%herea=(3/47rn)l’3 is the Wigner-Seitz radius andis the

energy, particulates in plasmas may form crystalline strucparticie number density. The Wigner-Seitz radius represents

tures(Coulomb crystals[4—10). Similar crystals have been ho mean interparticle distance, alids roughly the ratio of

observed in colloidal suspensions of charged partitld$. e (unscreenedCoulomb potential energy to the kinetic en-

As in our earlier reporfl], we shall employ Yukawa sys- ergy per particle.

tems as a model for plasm@r colloida) suspensions of In our earlier study1] we focused on the regime of weak

charged particles. In the present study, however, we extenflgpye screening, including the limit—0, i.e., the classical

our molecular dynamicéMD) simulations to the regime of one-component plasm@CP system[12—18. In our MD

strong screening of the Yukawa potential, and determine thgjmjation method, long-range particle interactions are accu-

conditions under which dust particles in a plasma will form rately accounted for over the entire rangesgfwithout in-

Coulomb crystals. o _ troducing a cutoff radius for the pair potential. In this paper,
We consider a system Qf identical 'partlcles of. massnd we apply this MD method to more strongly screened

charge—Q=—Ze(Z>1), immersed in a neutralizing back- vy kawa systems, up te=5, and compare the results with

ground plasma. The inter-particle potential is assumed to bg,se of earlier MD and Monte Carl®1C) simulationg 19—

of the Yukawa type, 23] of Yukawa systems. These earlier simulations employed
Q? potential cutoffs, and are therefore applicable only to the
- _ regimex>1.
é(r) Areor exp(—kpr), )

L . Il. EXCESS ENERGY AND FREE ENERGY
wherer denotes the radial distance between two particles.

The Debye Iength7\D=k|5l of the background plasma is In MD simulations, one can calculate the potential or
defined by “excess” energyU of the model system in the simulation
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TABLE I. Madelung energies for bcec and fcc Yukawa lattices Here the last term represents the ideal-gas contribution to the

(for k<1.0, see Table Il of Ref.3]). total free energy, i.e.,
2\ 3/2
K Ebee Etec fidea(l“)=|n (27Th ) nl—1
1.2 —1.039 292 —1.039 302 mkT
1.4 —1.088 350 —1.088 374 3 3\/;
1.6 —1.143352 —1.143389 =3InC+ 5 In(kTgy=1+In ——,  (5)
1.8 —1.203 757 —1.203 803
2.0 —1.269 026 —1.269079 where KT)g, denoteskT measured in Rydberg units,
2.2 —1.338637 —1.338694 %(Q2/47re0ﬁ)%m, for the particles[1]. Although fycy de-
2.4 —1.412096 —1.412154 pends on KT)g, as well asl’, we do not explicitly express
2.6 —1.488941 —1.488 998 the dependence on the former for the sake of simplicity.
2.8 —1.568 750 —1.568 804 For the solid phase, we u$8]
3.0 —1.651 144 —1.651 194
3.2 —1.735781 —1.735 826 r 3\ dI'’
3.4 —1.822 360 —1.822 400 fsond(K,F)=L uth(KaFI)_E) T Ffhanfx 1), (6)
3.6 —1.910618 —1.910 653
3.8 —2.000 326 —2.000 356 whereuy,— £ is the anharmonic component of the potential
4.0 —2.091 283 —2.091 309 energy in units okT. The free energy of the harmonic lat-
4.2 —2.183319 —2.183341 tice vibrations for a given lattice may be written as
4.4 —2.276 286 —2.276 304
46 —2.370 058 ~2.370 072 fhaml ©,T) =E(x)T +2 (k) +3InC + FIN(KT)gy+ 3In3,
4.8 —2.464 525 —2.464 537 @)
>0 2.559 59 2.559 606 whereX(x) denotes the harmonic entropy constant, i.e.,
3N-3
volume, under appropriate boundary conditions, for a given S (k)= lim = E In Wk %)
system temperaturé. The method of calculatingy from Noow N 1 wp’

MD is briefly discussed in the following section. In this sec-

tion we shall derive the Helmholtz free enel‘@yn the simu- Here the sum is taken over th&3- 3 normal-mode frequen-
lation volume from a knowledge df as a function of the cjesw, for the oscillation of arN-particle lattice. Note that
temperaturd. We denote the internal energy and Helmholtzthe values ofE(x) and 3(x) depend on the chosen lattice
free energy per particle in units &fT by structure. The eigenfrequencieg of an N-particle Yukawa
lattice may be computed by standard technid2ds, and the
_ L f— i 3) quantity%(«) can then be estimated for varioksvalues by
NkT’ NKkT’ letting N—. Table Il gives the values () for bcc and
fcc Yukawa lattices, i.e3.,.{ k) andX (), obtained from
whereN is the number of particles in the simulation volume. lattice-dynamics calculations. Note that fer4.76 the bce
The thermal component of the potential energy is defined bytycture is unstable against shear in the0) direction[20].

uth(KIF):u(K1F)_UOC(K)1

u

lll. MD SIMULATION METHOD

whereu..( k) represents the Madelung enerdgr an appro-

: . S , . MC and MD simulations can handle only a finite number
priate latticg per particle in units okT. We also define

of particles in the direct pairwise summation of interparticle
u(x,T) potential energies. In order to emulate a system with an in-
E(x)= lim iy finite number of particles, one may apply periodic boundary
P 1 conditions to the simulation volume. For a cubical simulation
box of side length_, the effective pair potentidl3] under
i.e., the Madelung energy per particle in units@¥/4meqa, periodic boundary conditions becomes
so thatu.(«x)=E(«)I'. Evidently u(x,»)=u,(«) in the
limit of zero temperaturéi.e.,I"— ). The values for the bcc
and fcc Madelung energieE,.{ x) and Eq(k), are listed ‘1’“):¢(|r|)+n§O ¢(|r+nL). ©)
in Table I. Note that the bcc Madelung energy is smaller than

the fcc Madelung energfl] [Epcd«)<Erc(x)] for «  |n the above equatiodh(r) represents the interaction energy

<1.066. _ _ of particlei with particlej (at separation=r;—r;) and with
Since 9f/oI'=u(«,I')/T’, the dimensionless Helmholtz gj| periodic images of the latter. The infinite sum @fover
free energy for the fluid phase may be defifidtiby integer vectorsi= (I,m,n) represents the periodic images. In
. dr’ our MD simulgtions, this periodic image potgntial is approxi-
ffluid(KaF):f u(k,T'") FJrfidea(F)- (4) _mated nqmerlcally by a tensor-product spllne functias)
0 interpolating an array of 4040x40 discrete values,



56 TRIPLE POINT OF YUKAWA SYSTEMS 4673

TABLE II. Harmonic entropy constants for bcc and fcc Yukawa conditions, and the system is allowed to equilibrate to the
lattices. Fork=1.0, see Table | of Ref1]. Note that for«>4.76  desiredI" for typically 100 time units before averaging its
the bce structure becomes unstable against shear il tedirec-  properties over 108 7<300. Here the time unit is defined to
tion [20]. be \/§w,§1, where w,= JQ?n/eym is the plasma frequency
for the particles, so that= w,t/v3. For some largé’ values,

K Spec Sfee we allowed the the system to equilibrate initially for 300

1.2 ~3.1773 ~3.1236 time units. Cases that melted to a fluid state did so well

1.4 —3.3950 —3.3366 before r=100.

16 —36350 —35714 The excess energy per particle in unitsQ/4mreqa (i.e.,

18 —3.8953 —3.8259 u/I") obtained from the MD simulations is listed for various

20 —4.1740 —4.0985 I" and« values in Tables Il1-V. For each of the runs in these

22 — 4.4697 —4.3876 tables, the_|n|t|al state is e|th9r a be {=_686) or afcc

2.4 —4.7805 —4.6916 =50Q) Ia_lttlce, and therefore in the sqhd state the structure

26 51054 50095 remains in thg form of the chosen lattice. _

o8 _5.4430 _ 513398 For the fluid phase, we assume that the potential energy
' ' ' depends od" as

3.0 —5.7922 —5.6817

3.2 - 6.1522 —6.0341 u(r, D) =a(k)C+b(k)IS+c(x)+d(x)T 7S, (1D

34 —6.5220 —6.3962

3.6 —6.9008 —6.7673 with s=1/3, forI'=1. The coefficients, b, c, andd, which

3.8 —7.2878 —7.1466 are functions ok, are determined by fitting measured poten-

4.0 —7.6826 —7.5334 tial energies given in Table 1l to the above expression. The

4.2 —8.0847 —7.9273 functional form of Eq.(11) has been applied to internal en-

4.4 —8.4936 —8.3275 ergy fitting of various OCP simulationgl6]. The well-

4.6 —8.9095 —8.7337 defined dependence of on I" given in Eq.(11) makes it

4.8 —9.1455 easier to evaluate the integral in Hg). Since Eq.(11) di-

5.0 —9.5625 verges as'—0, we evaluate the integral in E¢4) by a

direct numerical quadrature fér<1:

!

summed to high accuracy. The approximation can be effi- r ,.dr
.  lations, fruae0)= [ U(T7) o+ 00+ D), (12

ciently evaluated in the simulations, and has a fractional de-
viation from the exact value of no more than10 ‘. Full
details of the approximation scheme may be found in Refwith

[26].
The total potential energgor “excess energy) U in the _ , '
simulation box with periodic boundary conditions is then fa(x)= 0 u(x,I )?' (13

given by the expressiofi]

1N where Eq.(11) is used to evaluate the first integral in Eq.
E E <i>(§k—§- _ 3 _k (12), andf(k) is evaluated through a Simpson-rule quadra-
=1 k3] y 2 ture of theu/T" values given in Table VI. Note that/T'—
— k/2 asI'—0 [27]. The numerical values df;(«) are listed
Ll e «[n|A) (1 N Table Vil
2 =0 In|A ' For the solid phase, the following form for the thermal
potential energy is assumed:
where A =L/a=(4mwN/3)*3 is the size of the cubical simu-
lation volume in units of the Wigner-Seitz radiug=r; /a is 3 Al(K) Ax(k)
the dimensionless location of particlei, and Uen(#,17) = r + rz
d=47msqad/Q2.
As in the earlier study1], we employ MD simulations where? is the harmonic component, and the power series in
with the effective pair potentiad(r) given by Eq.(9) to I’ ! represents the anharmonic terms.
evaluate the potential energyfor given values of the ther- To determine the fitting parameteas b, c, d, A;, and
modynamic variablex andT'. The equations of motion A, for eachk value, we fit the potential energy functional
forms, Eqgs.(11) and (14), to the simulation data given in
d2rI ) Tables 1lI-V, using least-squares fitting. The resulting coef-
a2 ng) Vo(ri—r) fori=1,...N ficient values are given in Tables VIII and IX for=1.2.
Figure 1 presents examples of least-squares fitting to the
are integrated, and the velocities of all particles are renorfluid and solid phases at=3.0. The dotted lines represent
malized periodically to bring the system kinetic energy intothe ranges of fitting uncertainties, which will be discussed in
agreement with the targ€tvalue. The number of particléé  the next section.
used for the simulations reported here Bre 686 for a bcc For k<1, we assume a polynomial dependence of the
andN =500 for a fcc lattice. These lattices are used as initiahormalized potential energy on « (i.e., a Taylor series ex-

U
NkT

Z||—\

(14)

N



4674 S. HAMAGUCHI, R. T. FAROUKI, AND D. H. E. DUBIN

TABLE Ill. Excess energy per particley/I", obtained from MD simulations. The numbers after
indicate fluctuation levels. The number of simulation particldd4s686 for xk=4.0 and 5.0, an&il =500 for
all other k values. Fork<1.0, see Table Il of Ref3].

r k=12 k=14 k=2.0
1 —0.797 097 0.010 904 —0.869 746-0.011 675 —1.110 066-0.009 674
2 —0.85543%-0.009 179 —0.920 097-0.008 272
5 —0.921 138-0.004 200 —0.978 642-0.004 510 —1.184 378-0.003 545
10 —0.958 561 0.002 799 —1.012 022-0.002 587 —1.208 846-0.002 178
20 —0.985 481 0.001 533 —1.037 095-0.001 467 —1.227 788-0.001 343
40 —1.004 536-0.000 893 —1.055 146-0.000 911 —1.241 424-0.000 743
60 —1.012 768-0.000 683 —1.062 75%0.000 616 —1.247 832-0.000 638
80 —1.017 387 0.000 559 —1.067 144-0.000 495 —1.251 216-0.000 509
100 —1.020 683-0.000 433 —1.070 322-0.000 426 —1.253 666-0.000 469
120 —1.022 726-0.000 427 —1.072 513-0.000 409
140 —1.024 535-0.000 353 —1.074 088-0.000 329
160 —1.025919-0.000 310 —1.075 469 0.000 253
180 —1.027 188-0.000 249 —1.076 467-0.000 301
200 —1.028 005-0.000 250 —1.077 485-0.000 250 —1.259 467-0.000 268
240 —1.078 874-0.000 204
r k=2.6 xk=3.0 k=3.6
1 —1.377 115-0.008 032 —1.563 017 0.006 990 —1.847 809-0.005 863
5 —1.427 355-0.003 300 —1.602 063-0.002 709 —1.875 608-0.002 235
10 —1.444 503-0.002 193 —1.615 664+ 0.001 819 —1.885249-0.001 503
20 —1.457 552-0.001 221 —1.625 862-0.001 042 —1.892 620-0.000 969
40 —1.467 763-0.000 669 —1.633 625-0.000 660 —1.898 153-0.000 550
60 —1.472 134-0.000 512 —1.637 184-0.000 492 —1.900 557 0.000 408
80 —1.474 74%-0.000 426 —1.639 302-0.000 357 —1.902 094~ 0.000 293
100 —1.476 616-0.000 361 —1.640 850-0.000 293 —1.903 025-0.000 299
200 —1.480988-0.000 187 —1.644 38%-0.000 195 —1.905 567 0.000 166
400 —1.484 027 0.000 116 —1.646 847 0.000 115 —1.907 295-0.000 101
700 —1.485 724-0.000 076 —1.648 282-0.000 079 —1.908 312-0.000 057
1000 —1.908 807 0.000 051
2000 —1.909 541 0.000 025
r k=4.0 k=4.6 k=5.0
1 —2.040 283-0.004 831 —2.332 756-0.004 502 —2.528 765-0.003 806
5 —2.0633130.001 730 —2.350 043-0.001 769 —2.542 942-0.001 500
10 —2.070 905-0.001 221 —2.355 369 0.001 234 —2.547 653-0.000 874
20 —2.077 051 0.000 695 —2.359 643-0.000 679 —2.551 214-0.000 552
40 —2.081 242-0.000 456 —2.362 851-0.000 449 —2.553 848-0.000 315
60 —2.083 236-0.000 332 —2.364 342-0.000 337 —2.554 926-0.000 240
80 —2.084 381-0.000 227 —2.365 221-0.000 239 —2.555 673-0.000 196
100 —2.085 288-0.000 209 —2.365 722-0.000 205 —2.556 105-0.000 173
200 —2.087 226-0.000 135 —2.367 119-0.000 122 —2.557 248-0.000 086
400 —2.088 586-0.000 082 —2.368 103:-0.000 075 —2.558 051 0.000 052
700 —2.089 387-0.000 049 —2.368 670-0.000 049 —2.558 476-0.000 036
1000 —2.089 779-0.000 040 —2.368 941 0.000 035 —2.558 705-0.000 023
2000 —2.090 338-0.000 019 —2.369 329-0.000 018 —2.559 011 0.000 017
3000 —2.369513-0.000 015 —2.559 144-0.000 012
4000 —2.369 609-0.000 014 —2.559223-0.000 009
5000 —2.369 679-0.000 011 —2.559 275-0.000 009
6 000 —2.369 727 0.000 010 —2.559 31@-0.000 006
8 000 —2.559 366-0.000 007

10 000 —2.559 416-0.000 005
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TABLE IV. Equilibrium potential energy per particleyT", for bcc solids(with N=686). The numbers
after = indicate fluctuation levels. The energy value with an astefigkvas not used for fitting since this
value clearly deviates from either fitting curve, indicating that the system is in a mixed fluid-solid state. For
k<1.0, see Table Il of Ref3].

r k=12 k=1.4 k=2.0
240 —1.03252% +0.000 184
300 —1.034 044-0.000 117 —1.083 042:-0.000 134
400 —1.035414-0.000 103 —1.084 449-0.000 099
500 —1.036 214-0.000 072 —1.085 260-0.000 088
600 —1.036 742-0.000 064 —1.085 788-0.000 054
700 —1.266 822-0.000 063
800 —1.037 388-0.000 045 —1.086 444-0.000 042
1000 —1.037 774:0.000 044 —1.086 828-0.000 038 —1.267 497 0.000 040
2000 —1.268 2706:0.000 022
o0 —1.039 292 —1.088 350 —1.269 026
r k=26 xk=3.0 xk=3.6
1000 —1.487 386-0.000 041
2000 —1.650 38@-0.000 021
3000 —1.488 437-0.000 017 —1.650 640-0.000 016
4000 —1.488 563-0.000 014 —1.650 767-0.000 016 —1.9102406-0.000 011
5000 —1.488 639%-0.000 012 —1.650 843-0.000 014 —1.910 3172 0.000 010
6000 —1.650 893-0.000 012 —1.910 368:-0.000 010
8000 —1.650 956-0.000 009 —1.910 431 0.000 009
o0 —1.488 941 —1.651 144 —1.910 618
r k=4.0
5000 —2.090 982-0.000 009
6 000 —2.091 033:-0.000 007
8 000 —2.091 097 0.000 006
10 000 —2.091 134-0.000 004
13 000 —2.091 169 0.000 003
16 000 —2.091 196-0.000 003
o —2.091 283

pansion abouk=0) and fit the function over the dual inde- may usep=n"*3instead of the Wigner-Seitz radiasas the

pendent variableg andI" (see Ref[1] for details. length unit, and defineK=p/Ap. Note then that
K=(4m/3)"3k~1.611 9%. Kremer, Robbins, and Grest
IV. SIMULATION RESULTS AND PHASE DIAGRAM [19] normalized the temperatur by the typical phonon

energy of the fcc Yukawa lattice according to
The I values for the fluid-solid phase transitidne.,

melting or freezing which we denote by, are those at kT
which the fluid free energy.iq equals the solid free energy T= 77 (15
WP

fsong for the givenk. We take the smaller of,.. andfs; as
fsoig for the givenk andT'. Similarly, thel” values for the ) ) )
bce-fce phase transition, which we denotelty;, are those at  Wherewe is the Einstein frequency for the fcc Yukawa lat-
which the bec and fcc free energies intersect. The solid an#ice, defined by

fluid free energies are calculated from E(®). and(12), as

discussed in the preceding section. Such calculations show

that, along the fluid-solid phase transition boundary, the free .E p(|ri—

energy of the bcc phase is lower than that of the fcc phase for

=<4.3, so we use the bcc phase as the solid phase for . : . : . .
K b b with all particles situated at fcc lattice sites. It is easy to

=4.3 and the fcc phase far=4.3 to obtain thd" values for
the phase transitign. Tables X and XI summarize the phas‘éonf'crjr{l[l] that the dimensionless temperatdrs related to
andI as

boundariedi.e.,I',,, andT'y), as functions ofk.

Some earlier studiegl9-23 have used normalizations o 3 .
different from Eq.(2) to represent the particulate temperature T= i (i) BF KPE (1) + "_+1 (16)
T and the Debye screening lengkh,. For example, one r\4 3 fec '
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TABLE V. Equilibrium potential energy per particley/T", for fcc solids(with N=500. The numbers
after = indicate fluctuation levels. The energy value with an astefigkvas not used for fitting since this
value clearly deviates from either fitting curve, indicating that the system is in a mixed fluid-solid state. Note
thatu/T"— Es (k) asl'— .

r k=12 k=14 k=2.0
240 —1.032 173 +0.000 228
300 —1.034 003-0.000 150 —1.082 998 0.000 165
400 —1.035392-0.000 110 —1.084 437-0.000 114
500 —1.036 209-0.000 085 —1.085 274~ 0.000 091
600 —1.036 735-0.000 071 —1.085 804+ 0.000 082
700 —1.266 858-0.000 068
800 —1.037 390- 0.000 058 —1.086 460-0.000 057
1000 —1.037 778-0.000 046 —1.086 84%9-0.000 049 —1.267 541-0.000 051
2000 —1.268 323-0.000 031
0 —1.039 302 —1.088 374 —-1.269 079
r k=2.6 k=3.0 k=3.6
1000 —1.487 424-0.000 061
2000 —1.650 422-0.000 029
3000 —1.488 490-0.000 021 —1.650 685-0.000 016
4000 —1.488 618-0.000 017 —1.650 813-0.000 010 —1.910 27G-0.000 013
5000 —1.488 695-0.000 015 —1.650 890-0.000 011 —1.910 349-0.000 014
6000 —1.650 941-0.000 010 —1.910 400-0.000 013
8000 —1.910 464~ 0.000 010
0 —1.488 998 —1.651 194 —1.910 653
r k=4.0 k=4.6 k=5.0
5000 —2.091 00@-0.000 010
6 000 —2.091 054-0.000 011
8 000 —2.091 119-0.000 006
10 000 —2.091 158-0.000 004 —2.369 920- 0.000 006
13 000 —2.091 193-0.000 004 —2.369 956- 0.000 004
16 000 —2.091 214+ 0.000 004 —2.369 979 0.000 003
20 000 —2.369 997 0.000 003 —2.559 53@ 0.000 003
25000 —2.559 546-0.000 002
30 000 —2.370 022-0.000 002 —2.559 556- 0.000 002
40 000 —2.370 034-0.000 002 —2.559 568-0.000 003
50 000 —2.559 576-0.000 002
0 —2.091 309 —2.370072 —2.559 606

The phase-transition temperatures expressed,byenoted 77,=0.003 302 26-0.000 312 002.6— )

by 7,, and 7, are also listed in Tables X and XI. ) 3
Figure 2 shows the phase diagram of Yukawa systems in —0.000 023 362.6— x)“—0.000 027 642.6— «)

the (x,7) plane. Here, filled circles indicate the fluid-bcc

solid phase transition, filled squares identify the fluid-fcc

solid transition(from the last two rows of Table X and

filled triangles correspond to the bcc-fce transitifmom

Table XI). To smoothly fit the fluid-solid phase transition Equation(17) is the polynomial fit to simulation dat, for
data in Fig. 2, we have used the following functions: 0.0<x<1.4 obtained in the earlier studig], which we have
used as the fitting curve only for Gs0«<1.0 in Fig. 2.
Equation(19) is a linear least-squares fit of thg, values in
7»=0.002 246+ 0.000 18% +0.000 20%* Table X over 1.2 «=<5.0, which we have used for 26«
=<5.0in Fig. 2. As a guide to the eye, these two functions are
smoothly connected by the cubic polynomial given in Eg.
for 0.0=s«=<1.0, a7 (18) for 1.0 k<2.6.

for 1.0sk<2.6, (18

Tn=0.002 491+ 0.000 31% for 2.6<«<5.0. (19
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TABLE VI. Excess energy per particle/T", at smalll” values N=500). Fork<1.0, see Table IV of
Ref.[3]. Note thatu/T'— — «/2 asI'—0.

r k=1.0 k=12 k=14 k=2.0 k=2.6
0.00 —0.500 000 —0.600 000 —0.700 000 —1.000 000 —1.300 000
0.10 —0.557 792 —0.648 425 —0.740 415 —1.025 685 —-1.319 127
0.20 —0.596 414 —0.680 595 —-0.770 037 —1.042716 —1.331495
0.40 —0.648 070 —0.724 539 —0.806 296 —1.067 750 —1.348 344
0.60 —0.684 570 —0.757 346 —0.831 754 —1.085 879 —1.360 226
0.80 —0.713 870 —0.782 004 —0.852 470 —1.099 115 —1.369 705
1.00 —0.734 226 —0.797 097 —0.869 746 —1.110 066 —-1.377 115

r k=3.0 k=3.6 k=4.0 k=4.6 k=5.0
0.00 —1.500 000 —1.800 000 —2.000 000 —2.300 000 —2.500 000
0.10 —1.517 696 —1.815104 —2.009731 —2.309 720 —2.509 010
0.20 —1.527 809 —1.821 103 —2.018 270 —2.315 081 —2.512 796
0.40 —1.540 813 —-1.831725 —2.027 327 —2.321 292 —2.520 736
0.60 —1.549 763 —1.838 610 —2.033013 —2.327 181 —2.523 305
0.80 —1.558 136 —1.843731 —2.037 149 —2.329 887 —2.525 945
1.00 —1.563 017 —1.847 809 —2.040 283 —2.332 756 —2.528 765

The bcce-fcc phase transition curve is fitted by the follow-rate near=1.066 (whereE,.= Es), S0 we have used Eq.
ing functions: (20) as the fitting curve for 1.066 x<1.2. Equation22) is

_ _ < a quadratic least-squares fit to tfg values for 1.066 «
75=0.000 963 77x—1.066 for 1.066<x<1.2, (20 =<4.0 given in Table XI. Although data near= 1.066 were

used to obtain Eq(22), it does not reproduce thHg, values

7.=0.001 956 31 0.001 198 602.6— «) near k=1.066 very well. Therefore, in Fig. 2, we use Eq.
(22) as the fitting curve fo=2.6 only. The cubic polyno-
—0.000 395 992.6— k)*+0.000 228 502.6— «)* mial given in Eq.(21) is used to smoothly connect these two
functions over 1.Z2«<2.6. The point where the three
for 1.2<x<2.6, (21)  phases(fluid, bce, and fcc latticesmeet—i.e., the triple
) point—is the intersection of Eqg19) and (22), which is
75=0.001 352« ~1.066 —0.000 050« 1.066 given ask=4.28 (K=6.90) and7=0.0038.

It is not easy to accurately estimate the magnitude of the
errors in the phase-transition boundary curves. There may be
several possible sources of uncertainties. In the case of large
I, for example, the potential energyis very close to the
Madelung energy., and the numerical value for the differ-
TABLE VII. Values of f;(x) = fauq(k,1)— fiuea( 1), defined by ~ €NCEUx=U—U,., Which is used to determine the phase dia-

for 2.6<k=<4.2755. (22)

Equation (20) is a linear fit based on the quasiharmonic
theory[20]. The quasiharmonic theory is known to be accu-

Eq. (13). gram, has fewer meaningful digits. Furthermorexiand I’
are large(and therefore the interparticle interaction is weak
K f1(x) and the system has a low thermal engrdfytakes longefin
terms of the time uni%wgl) for the system to attain ther-
0.00 —0.436 765
0.20 —0.449 484
0.40 —0.480 913 TABLE VIII. Fluid fitting parametersa, b, ¢, andd defined by
0.60 0528 365 Eq. (11). For k<1.0, see Ref[3].
0.80 —0.586 650
K a b c d
1.00 —0.654 089
1.20 —0.730 380 1.2 —1.041 816 0.522 733 —0.305649 0.026 740
1.40 —0.810 280 1.4 —1.090 801 0.514 325 —0.344 195 0.049 258
2.00 —1.070 980 2.0 —1.270571 0.442 193 —0.382900 0.100 506
2.60 —1.350 351 2.6 —1.489 806 0.366 308 —0.411 566 0.159 826
3.00 —1.542 363 3.0 —1.651703 0.312503 —0.394913 0.173 963
3.60 —1.832 581 3.6 —1.910871 0.239 251 —-0.362 000 0.195 448
4.00 —2.027 406 4.0 —2.091 363 0.182517 —0.257 154 0.131 096
4.60 —2.322 260 4.6 —2.370 109 0.139276 —0.232476 0.142 315

5.00 —2.519 954 5.0 —2.559633 0.115580 —0.215437 0.149102
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TABLE IX. Solid fitting parameters\; andA, for bcc and fcc

Yukawa lattices defined by Eql4). For k<1.0, see Ref{3].
K At;cc Atz)cc Aflcc Afzcc
1.2 15.42 2 042.56 21.13 1712.24
1.4 16.12 3398.78 17.87 4735.20
2.0 23.53 4526.98 37.68 414.70
2.6 30.16 24 377.67 67.44 5735.30
3.0 5.34 99 742.33 77.82 16 822.48
3.6 —45.39 392 246.46 91.35 151 465.97
4.0 —175.68 1067 933.16 25.63 904 495.83
4.6 —114.88 2828 867.93
0 - L - . . 5.0 —1069.10 27 561 540.63
0 200 400 600 800 1000 1200
(a) r
T a=—1.651 703-0.000 037[see Fig. 18)].
16p 2000 4000 25002000 1500 1000 If we choose the most probable values ayb,c,d at
=30 x=3.0, as given in Table VIII, and vark,; andA, as indi-
160k o cated above, the range of uncertainties for the melting point
becomes 3.46810 3<7,,<3.529x 10" 2 at k=3.0. On the
sl w fec | other hand, if we use the most probable valégs-5.344
' e bec and A,=99 742.3 and varya in the range—1.651 703

+0.000 037, the uncertainty in the melting pointsat 3.0
becomes 3.27410 3<7,,<3.719<10 3. The error bar on
the melting curve in Fig. 2 represents the latter range of
uncertainty—the larger of the two.

Similarly, for the solid phases at=3.0, we obtainA;
. =5.344+3.462, A,=99 742.3-8643.8 for the bcc lattice
andA,;=77.822t6.653,A,=16 822.5- 16 374.6 for the fcc
15 sl ' . ' lattice [see Fig. 1b)]. If we choose the most probable values

0 0.2 04 0.6 08 1.0 of A; andA, given in Table IX for the bcc phase and vary

(b) 1T (10 A, andA, for the fcc phase, and vice versa, the rangdof
at k=3.0 is found to be 2.32210 3<7,<2.901x 10 3.

FIG. 1. (@) The thermal potential energy in the fluid phase, -, -
defined byug=u—EgJI’, at x=3.0. The filled circles are data The error bar_on the bcc-fcc phase transition curve in Fig. 2
represents this range.

obtained from Table IIl. The solid line is the least-squares fit to the' : . .
data; the dotted lines represent the range of uncertainties due to the Figure 3 shows the same data as Fig. 2, plotted in the
coefficienta= — 1.651 703-0.000 037. (b) The thermal potential  (x,I') plane. The phase boundariEg andI's are also con-
energies ak=3.0, defined byuy,=u— Ey.Jd" for the bee lattice and  verted from7 to T', using Eq.(16) and the fitting curves
Up=u—Eg " for the fcc lattice. The filled circles are bcc data employed in Fig. 2. The errors at=3.0 in Fig. 2 are also
obtained from Table IV, and the filled squares are fcc data obtained

from Table V. The solid lines are the least-squares fits to these data. TABLE X. The fluid-solid phase-transition valu€sand7. Note

The dotted lines represent the ranges of uncertainties due to thgat the solid phase at the phase boundary is bce$o#.0 and fcc
coefficientsA, =5.344 3.462, A, =99 742.3- 8643.8 for the bce  for «=>4.6 in this table. The normalized temperat@fis defined by
lattice, andA,=77.8226.653, A,=16 822.5- 16 374.6 for the g, (15).

—_
ur
B
T
L

Thermal Potential Energy uy,
&
D

fcc lattice.

K | R Tm
mal equilibrium. Consequently, the measured energy dataare 0.0 171.8 2.24810°3
prone to errors due to numerical averaging over finite time 0.2 173.5 2.26%10°°3
intervals. 0.4 178.6 2.33210°3

Therefore we take a pragmatic approach to estimating the 8'2 ig;-é g-ggg 1872
uncertainties associated with the phase boundaries. Assum- 10 2174 5 64% 103
ing the measured energy values have uniform errors givenby 1 5 2433 2738103
the square root of the sample variance, one can estimate the 1.4 268.8 2.90% 1073
uncertainties of the fitting parametdr3,28. For example, 2.0 440.1 3.09510° 3
for the bcc solid phase at=3.0, we obtainA;=5.344 2.6 758.9 3.426010°°
+3.462 andA,=99 742.3-8643.8, the numbers aftet 3.0 1185 3.498 10:2
representing the range of the uncertainties. In the fluid phase, 2'8 gg;g g'ggi 18,3
it foII.o.ws from Eq (11) that the energy value is most 4.6 8609 3.88% 102
sensitive to variation in the coefficierat(«) for large I'. 5.0 1.506< 10° 3.888< 103

Its uncertainty under the same assumption is
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boundary. The normalized temperatdrés defined by Eq(15). 200000 i 2 3 4 5 6 7 8
K Ts T 10000 } .
1.066 o 0.000 5000 | solid (fec) 1
1.2 5070 1.31%10°4
8 3000 | 1
1.4 2325 3.36x10 ¢
2000 | k
2.0 1228 1.10810°4
2.6 1273 2.04810°4 1000} solid (bec) .
3.0 1634 2.53%10°* 500
3.6 2884 3.03510°* o fluid-bec
4.0 4185 3.53% 10 * 300 = fluid—fec 1
200 | fluid 4 bee-fee i
o . 100 . . . . .
plotted in Fig. 3; these errors are less prominent due to the 0.0 1.0 2.0 3.0 4.0 5.0
logarithmic scale fod". The triple point is given by'=5.6 k=a/lp

X 10° at k=4.28(K =6.90). Both the fluid-solid and bcc-fce

phase transitions are of first order,20,29. FIG. 3. Phase diagram of Yukawa systems in tkd’) plane.

The filled circles and solid lines are the same as those used in Fig.
2, converted td" from 7 through Eq.(16).
V. COMPARISON WITH EARLIER WORK

obtained by Stevens and Robbif#2]. These authors used
MD simulations and observed the time evolution of the state,
starting from fluid-solid coexistent initial conditiong@he-
nomenological melting tests-the number of particles used
in their simulations are 432 for bcc lattices and 500 for fcc
lattices.

The bce-fcc phase boundary obtained from lattice-
8ynamics calculationgquasiharmonic theojyby Robbins,

In Fig. 4, we compare our MD simulation results with
those from earlier MD and MC simulations, based on differ-
ent method$19-23. These earlier MD and MC simulations
do not include the infinite sum for periodic boundary
conditions—i.e., the second term in E@)—and are thus
valid only in the largex regime(i.e., k=1). In Fig. 4, the
linear fit given by Eq.(19) is extrapolated tac=8.0. The
filled marks and solid lines are the same as those used in Fi
2. The crosses, together with the error bars, are the fluid-

solid phase boundary points obtained by Meijer and Frenkel

K

p/Ap

[21]. These values were obtained from a modified Frenkel- 0005 ot 8 7 8 AEMUANRE
Ladd lattice-coupling methofi30] and MC simulation for e w4 from Fig54 7
systems of 256 or fewer particles. The error bars show the
statistical errors. The open rectangles, triangles, and dia- 0.004 o e '
monds indicate stable fluid, bcc, and fcc states, respectively, fluid $ solid (fco)
00031 a fluid-solid: MF 1
— x rud-soha:
K=p/2p g o fluid: SR
o 1 2 3 4 5 6 7 8 A beeSR
0.005 T T T T T T T T 0.002 il o fCCZ'SR 1
solid (bec) S/ 7 v triple: DMRB
77 o fluid-bec: DMRB
0.004 | 0.001 | // + bee-fcc: DMRB 7
7 —-- quasi-harmonic
---- bee-fee: RKG
0003 L 0.0 . . . . . . .
00 10 20 30 40 50 60 70 80
g solid (fcc) K=a/kp
0.002 FIG. 4. Phase diagram of Yukawa systems in tkg) plane.
solid (bec) fluid-bee The filled symbols and solid lines are from Fig. 2. The crogses
fluid—fec with error bars are fluid-solid phase boundary points obtained by
0.001F bee-fec Meijer and Frenke[21]. The open rectangle&)), triangles(A),
and diamondg ¢ ) indicate fluid, bcc, and fcc states, respectively,
0.0 . X ) , obtained by Stevens and Robbif22]. The open circlgO), plus
0.0 1.0 20 3.0 40 5.0 (+), and open inverted trianglg/) are a fluid-bcc boundary point,
k=a/lp a bcce-fcc phase boundary point, and the triple point, respectively,

obtained by DuPorgt al.[23]. The dashed line is the bcc-fcc phase
boundary obtained by Robbins, Kremer, and Gfe§i, based on
the quasiharmonic theorjattice-dynamics calculationsThe dot-

FIG. 2. Phase diagram of Yukawa systems in tkg) plane.
The filled circles are fluid-bcc phase boundary pois<@.3), the
filled squares are fluid-fcc phase boundary poirts-@.3), and the ted line is also a bce-fcc phase boundary obtained by these authors
filled triangles are bcc-fcc phase boundary poiste Tables X and [20], based on MD simulations and the energy-distribution-function
Xl). The solid lines represent the curves fitted to these data pointsnethod[20,31].
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Kremer, and Greq20] is plotted as the dashed line in Fig. 4. the stable phase, Stevens and Robbins ran MD simulations
The dotted line is the bce-fcc phase boundary, also obtainestarting from a two-phase statequally divided fluid and
by Robbins, Kremer, and Greg20], based on MD simula- solid phasesand observed its time evolution. If the differ-
tions and the energy-distribution-function meth[®D,31.  ence between the free energies of the two phases is very
Using this bce-fce phase boundary, Stevens and Robbins esmall, which is the case near the transition point, the evolu-
timated the triple point—i.e., the boundary point of fluid, tion of the MD simulation may be sensitively dependent on
bee, and fce phases—as=2.85 and7=0.0032. This triple  the shape of the simulation box, number of particles, initial
point is located at much smallarthan that obtained in the perturbations, and the potential truncation radius.
present study. The two fluid-solid boundary points obtained by DuPont,

DuPont, Moulinasse, Ryckaert, and Bd28] used MC  Moulinasse, Ryckaert, and Ba{23] [denoted by the open
simulation and the Frenkel-Ladd lattice-coupling methodcircle and open inverted triangle in Fig. 4; the latter is also
[32] to evaluate solid free energies. Using the free energiege triple poini seem rather scattered if one believes that the
of the fluid phase obtained by Meijer and Frenk&l], Du-  melting temperatureZ,, increases linearly withx. In the
Pont et al. obtained a fluid-bcc boundary point, a bce-fcc |attice-coupling calculations by DuPoet al, the free en-
phase boundary point, and the triple point, denoted, respeergy is obtained by integrating the energy along an isotherm.
tively, by the open circle, plus, and open inverted triangle, inHence the actual temperatuter equivalentlyl’) is fixed,
Fig. 4. This triple point—atk=4.19 (K=6.75) and7  and« is computed for each phase boundary pwich is
=0.0034 (" =5.6x 10°)—is close to the one obtained in the opposite to our method: we fix values and determine cor-
present study, namelys=4.28 (K=6.90) and7=0.0038 responding phase-transition temperatui@sl’ values]. As
(I'=5.6x10°). discussed above, however, small errorskircan result in

It is interesting to note that the triple-poirtandl” values  |arge 7 errors. Indeed, DuPomt al. obtainl'=1.7x 10° and
obtained by DuPonét al. and in the present study are very 5.6x 10° at k=3.38 and 4.19 as fluid-solid boundary points.
close(within 2%, although theZ values differ by over 10%. Our « estimates on the fluid-solid bounddifyom Eg. (19
This is becaus€is a sensitive function ot whenk=1.0,as  converted tol'] for I'=1.7x 10° and 5.6< 10° are x=3.30

shown below. From Eq(16), one can write and 4.28, which are within 2.5% of thevalues estimated by
DuPontet al. This small difference irk incurs a discrepancy
a7_ d_l“+ « dTdx g  Of about 10% in7, at the triple point.
T T Tok k° @3 The bcc-fcc phase boundary point obtained by DuPont

et al.[23] [denoted by a plus in Fig.]4s in excellent agree-

It follows from Eq. (16) that the coefficient of the second ment with the bcc-fcc phase boundary curve estimated in this
term («/7)(9719x) above depends only or, and notI. study, while the bcc-fcc phase-transition temperatures ob-
The values of this coefficient are 2.02, 5.32, 8.88, and 12.5 dained by Robbins, Kremer, and Gr¢&0] are much higher
k=2.0, 4.0, 6.0, and 8.0, respectively. For examplexif (the dotted line in Fig. # Consequently, the triple point
=4.0, a 2% error in thec value results in more than 10% suggested by Stevens and Robhi@g] is located at much
error in the corresponding value for a giverl'. smaller k than that obtained in this study, as previously

The fluid-solid phase-transition temperatures obtained imoted. Robbins, Kremer, and Grest used the energy-
this study are systematically highésy about 5% in7) than  distribution-function method[20,31 to obtain the free-
those obtained by Meijer and Frenkel. With their modifiedenergy difference between fcc and bec phases for giwen
Frenkel-Ladd lattice-coupling meth¢@0], Meijer and Fren- andZ. To determine small differences between the free en-
kel obtained the Gibbs free energy by integrating a polyno€rgies near the bcc-fcc boundary, one needs accurate statis-
mial fit to the density-pressure data obtained from MC simudics for a sampling of the energy histogram in this method. It
lations. In addition to this different methodology, other is not clear from Ref[20] that the statistics were adequate
factors may have contributed to the systematic discrepancyor an accurate estimation of these values. One example
First, the MC simulations by Meijer and Frenkel employedgiven in Ref.[20] shows that the difference in the free ener-
relatively small numbers of particlesNE&256). Second, gies atk=3.05 (K=4.92) and7=2.24x10 % (I'=1.97
Meijer and Frenkel assumed that the solid phase at their dats 10°) is 0.0&gT. Our MD calculations show, however,
points of k=3.30 (K=5.33) andk=4.20 (K=6.77) is fcc.  that the difference is 0.0k4T at x=3.00 (note the slight
However, our simulations, as well as those by DuReiral.  difference ink) and7=2.24x 10", which is different by a
[23], indicate that this phase is actually bcc. factor of about 2. Since the measured potential energies for

The stable fluid phase data presented by Stevens and Rob=2000 give an excellent fit to the quadratic form in Eq.
bins, which are considered to give an upper bound of thé14), the error in our free-energy estimate due to the extrapo-
fluid-solid transition phase, lie more or less on or above outation of Eq.(14) at this position in the phase spa@e., «
fitted fluid-solid phase boundary, suggesting good agreement 3.00 and7=2.24x 10" 3) is expected to be very small.
with our data. Only two data points given by Stevens and Stevens and Robbiri22] showed that their MD simula-
Robbins—those atk=2.067 and 2.597(K=3.332 and tion starting from a mixed state of fluid and fcc phases
4.186—are slightly lower than our fitted phase-transition evolved to the fcc phase at=3.604 and7=3.429x 10 3,
curve. These two data are obtained from MD simulations ofwvhich is indicated as an open diamond in Fig. 4. However,
a system of 432 particles, with the potential truncated at dhey do not seem to claim that the bcc phase is actually more
radius equal to @ whereas we have used MD simulations of unstable than the fcc phase at this poiftt «=2.779 and
686-particle systems for bcc lattices and 500-particle system®=3.198< 10 3, the authors of Ref22] show that two runs
for fluid phases with no potential truncation. To determineconverge to different lattices, suggesting that both the bcc
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and fcc phases are stablé.is not clear from Ref[22] that K=p/hp
their phenomenological melting test can distinguish such PP N R RN N LR
small differences in the free energy near the phase boundary. 1000000 |
To summarize, we believe that the triple point obtained in
300000 |

this study—which is close to the one obtained by DuPont
et al—is more accurate than that suggested by Stevens and
Robbins. It may be of interest to compare the different meth-
ods mentioned above, using data from the same MD or MC
simulations. In this manner, one could ascertain whether the
discrepancy arises from differences in the methodologies of
evaluating free energies or from the intrinsic accuracy of the
simulation data. Figure 5 plots the same data as for Fig. 4, in
the (x,I') plane. The error bars are omitted in Fig. 5 for
simplicity. With this logarithmic scale fol, the differences
among the data of the various authors are hardly discernible.

100000 solid (fcc)

30000
I 10000

3000

1000

| solid (bee)
300

30 40 50 60 70
K=a/)\D

8.0
VI. CONCLUSION

We have obained the flidsold prase boundaryof th, £, Pt degrat of Yocaws simen o ) e
Yukawa system fok <5, including the weakly screened re- I thryough Eq.(16) 94
gime O k<1 (k is the ratio of the Wigner-Seitz radius to T
the Debye length This phase transition is of first order.
Unlike earlier MD or MC simulation§19-23, in which
interactions were computed by pairwise summation over pargrder. The transition temperatur@s obtained are in excel-
ticles within some cutoff radius, our MD simulations use |ent agreement with the results of quasiharmonic th¢pey
interparticle potentials summed over all particle pairs, in-nearx=1.066, the zero-temperature bcc-fce transition point.
cluding periodic images of particles residing in the cubicalThe bce-fcec phase-transition point for a largeobtained in
simulation box. Thus long-range particle interactions are acthe recent study by DuPont, Moulinasse, Ryckaert, and Baus

curately accounted for over the entire rangecofalues. For
strongly screened Yukawa systemg=1), the fluid-solid

[23] is also in excellent agreement with our present results.
The triple point(i.e., fluid-bcc-fcc phase boundaris esti-

phase-transition curve obtained here is in good agreememiated to be k=4.28 (K=6.90) and 7=0.0038 ([

with those of the earlier studies.

=5.6x10%), close to the one obtained by DuPettal.[23].

We have also estimated the bcc-fcc phase boundary bwe believe that the phase diagram presented here is the most
the MD simulation method. This phase transition is also firstaccurate one currently availadia3—35.
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