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Corresponding-states principle for two-dimensional hard models of molecular fluids
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This paper develops a theoretically based corresponding-states principle for the equation of state of athermal
two-dimensional fluids consisting of rigid molecules. It is shown that the excess compressibility factor, reduced
by means of a parameter which can be determined from the geometry of the molecules, is very nearly a
common function of the excess compressibility factor of the hard-disk fluid. Existing simulation data show
very good agreement with the corresponding-states principle, except for some molecules with very large bond
length.[S1063-651X97)04407-3

PACS numbsgs): 61.20.Gy, 64.30tt

I. INTRODUCTION The acentric factor depends on the shape of nonspherical

It is well known that the princiole of correspondin Statesmolecules and the dipole moment of polar molecules so that,

X P P b 9 in principle, it can deal with complicated molecular fluids

(CSB, as was introduced more than a century ago by van der . h di dditional
Waals, establishes that the equation of state of all fluids havsvIt out needing additional parameters. : ;

' Although the acentric factor has been widely used, its

2 d?ﬂ:gg%“ﬂ;?{/gri;vgg; e_}(prtzs:c?\(; ngtr?ss t%fetggu;s;:]cegmpirical character prevents a clear anq direct relatiqn to the
of state can be expresséd riﬁ the f(r)r.m ' shapes of the molecule_s. Since the different contnbufuons
(molecular shape, polarity, efcto the departure of a fluid
f(p, T, V,)=0 1) from the CSP behavior are not explicit in the acentric factor,
T ' it is difficult to introduce improvements to the performance
f being a common function for all fluids. In the original of this formulation of the CSP. Functichitself is often of

formulation, the reducing quantities were the critical param-mPpirical character, the derivation of a simple analytical ex-
eters p., T., and V. of each fluid, so thatp,=p/p. pression forf from theoretical arguments remaining as an

T,=T/T,, andV,=V/V,, but more generally the reducing °PeN question. _ _
quantities can be taken ag/k)/a°, e/k, and o°, respec- In order to attempt to derive a theoretically based CSP for

tively, where e is a characteristic energy parameterjs a fluids, it is desirable to_ start by dealing yvith hard r_npdels of
characteristic distance parameter, dnds the Boltzmann nonpolar molecular fluids, so that complications arising from
constant. the intermolecular forces vanish. This makes the search for
Experimental evidence shows that many substances ob%ﬁ analytical expression fdreasier. Moreover, in these flu-
the corresponding-states principle not only for the equatioridS the shape of the molecules is well defined, which simpli-
of state, but also for other thermodynamic properties. How 1€S the task of relating the shape-dependent parameter in the
ever, there are many other substances which depart more G>F (0 molecular shape. Additionally, for this kind of fluids
less from this principle. Sometimes this departure is due tghere exists a considerable amount of simulation data_ allow-
quantum effects and more often to the polarity of the mol-"9 the performance of the CSP to be tested exhaustively.

ecules, but in most cases the reason is the nonsphericity of 11US, in several previous papei5,6] we developed a
the molecules. theoretically based CSP for three-dimensional hard models

In order to extend the applicability of the CSP to non- of hard body(HB) molecular fluids expressed in the form
spherical nonpolar molecular fluids it is necessary to intro-

duce an additional parameter which depends on the molecu- ZHB_ 1
lar shape, as stated by Kamerling Onnes inghrisciple of =f(Yer), (4)
mechanical equivalence-or chain molecules this can be e

done[1,2] by introducing a parametear accounting for the

3c external degrees of freedom which are volume dependent, . _ PVINKT is the compressibility factoge=pv ' is

For more complicated molecules, such as those having p he effective packing fraction for a fluid at number density

larity, new parameters are needed in order to express a CSP. o ) :
Alternatively, the CSP can be extended to molecular flu# COnsisting of molecules having an effective volum,
ids by introducing theacentric factorw defined ag3,4] afis the correspondmg effective nonspherlcny'p.a.rameter or
shape factor, andl(y.) is the excess compressibility factor

w=—log;op,— 1, (2)  of the hard-sphere fluid.
The effective volume accounts for the fact that for non-
Wherepr is now the reduced pressure'rat: 0.7. When this convex molecules the volume that the molecule excludes to

empirical parameter is introduced, the CSP becomes any point of another molecule is greater than the molecular
volume v,,. Obviously, for convex moleculesfﬁzvm,
f(p; . Tr Vi, 0)=0. (3)  Yer=Y, andae=a, where
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RS and thus
a=z-— )
Um ZHCB_1  (S+27R)o®g?(0)
is the nonsphericity parameter for convex molecules with Z"P—1 " 27(s™)2g"P(0) -
volumev,,, and surfaces, R being the (1/4r) multiple of
the mean curvature integral. All these quantities can be defhen, introducing the shape factor
termined from the geometry of the moleculgqd. By con- )
trast, for nonconvex rigid linear molecules consisting of a=S27Ay, (11
fused hard spheres of diameterthe radius of the curvature ) S ] .
is not well defined, so we used an alternative definif@in whereA,, is the molecular area, and considering disks with
the form areaA,,= ;m(0"P)? equal to that of the HCB molecule, we

have

(10

1 (dv ﬁqf/(?a')(ﬁzvﬁf/ﬁaz)

aefzﬁ Uef , (6) ZHCB_l B E E+ 7TR2 O'_HD a_avgaV(O) (12)
" Z™—1 212" A, 2R oc™g™P(0)
which can be obtained from the analytical expression derived )
[8] for v¢'. The existing simulation data for a great variety of ~ In & previous wor9], we showed that
hard molecular fluids showefb,6] very good agreement avay,
with the CSP expressed in for@), together with Eqs(5) or a™9™(0) ~1 (13)
HD~HD ’
(6). a"PgHb(0)
In the present paper we will derive a two-dimensional
counterpart of the CSP previously developed for threeand
dimensional hard-body fluids. The interest in the study of o HD
two-dimensional fluids is due to the fact that they constitute, e, ﬂ)U_N }( 144 (14
at least as a first approximation, simple models of molecules 212 AL /2R 2 2)

adsorbed on surfaces as well as of thin films. From a theo-

retical viewpoint, apart from its intrinsic interest, the deriva- Moreover, it was shown that the small error introduced by
tion of a CSP of form(4) for two-dimensional fluids is in- approximation(13) was largely canceled out by the small
teresting because it is easier to determine the geometricalror introduced by approximatiofl4), which acts in the
parameters involved for the case of complex molecules thanpposite direction. With these approximations expression

in their three-dimensional counterparts. (12) becomes
ZHeB—1 1 a
Il. CORRESPONDING-STATES PRINCIPLE ~ 14 & (15)
FOR TWO-DIMENSIONAL HARD-BODY FLUIDS zb—-1 "2 2/

_ The expression of the compressibility factor for a two-\ich allows us to obtain the equation of state of a two-
dimensional hard convex bodKCB) fluid which occupies @  yimensional fluid consisting of hard convex molecules from
surfaceA at number density=N/A, can be expressed in the e compressibility factor of a fluid of hard disks having the
form same surface area as the convex molecule, and the nonsphe-

ricity parameter of the latter.

ZHCB:ﬂ =1+ 1pS,. 09 0), 7) For the equation of_ state of the hard-disk fluid we can use
NkT the Henderson equatidi0]
whereS, , , is the perimeter of the body formed by the center 1+y?/8
of molecule 2 moving around molecule 1, while both mol- ZHD=ﬁ, (16)
ecules remain in contaci®(0) is the contact value of the (1=y)

pair correlation function, averaged over all possible orienta- _ . . .
! . av . wherey=pA,, is the packing fraction.

tions of the two molecules; and®' is the mean distance The equation of statél5) can easily be extended to two-
between the centers of the wo molecules being in contack; o qjonay fluids consisting of rigid fused hard-disk mol-
projected onto the direction normal to the perimeter at the

contact point. Introducing the mean radius of the moleculeeClJIeS by simply replacing the packing fractignby the

; ; ; — ef ef ; _
R=S/27r, and taking into account the fact that for equal ?ffeCt'V? pafkmg fracﬂoryg— pAf&’ ;/_vhedreAmt|hs the eff(;,-c
moleculesS, , ,= 2S= S+ 2R, we obtain ive molecular aregsee Fig. ], defined as the area from

which any point of a molecule is excluded due to the pres-
®) ence of another molecule. Correspondingly, the nonspheric-
ity parametere must be replaced by the effective nonsphe-
For a hard-disk fluid with diametew™®, we have 'ICIl parametera. This can be obtained from the two-
o= g"0 g2(0)=g"°(0), andS=mo", so that, for the dimensional equivalent of E¢6), namely,

same density, the preceding expression reduces to

ZHCB=1+ 1p(S+27R) g 0).

2 (0A%90)? a7
L e
Z"P=1+ mp(aP)?gHP(0), 9 S A
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TABLE |. Parameters involved in the CSP express{af) for

the molecules considered. Lengths are in unitgrpfand areas in
units of o2.
Am Aﬁ: ef
@ ®) Model (a)
k=3 2.9142
° Model (b)
k=2 2.3805
k=4 3.7813
k=6 5.4009
Model (c)
° L=0.3 1.0808 1.0820 2.0668
L=0.5 1.2637 1.2695 2.1846
L=0.7 1.4230 1.4411 2.3737
L=0.924 1.5513 1.6049 2.7077
L=1 1.5708 1.6514 2.8636
Model (d)
w=60° 2.3562 2.5174 2.7587
w=75° 2.3562 2.6173 2.9675
w=90° 2.3562 2.6514 3.3325
(9) (h) w=105° 2.3562 2.6173 3.9479
w=120° 2.3562 2.5174 5.0248
FIG. 1. Molecular models considered in this paper. For nonconw=180° 2.3562 2.5174 3.8071
vex molecules, the shaded area represents the difference between
effective and real areas. Model (e)
Wh_erezr is th(_e dlar_neter of one of the disks of the molecule.L:o.5 16111 16198 21619
This expression gives the correct valag= «=2 for hard B
disks. Then Eq(15) transforms into L=1 2.3562 2.5174 2.7586
L= ﬁ 2.3562 3.1514 4.2204
ZM0(ye—1 1 Qef 18
ZM(yyp—1 27 2 (18) Model ()
which in fact applies to both convex and nonconvex molecuy _g 5 1.9920 2.0036 21538
ef— Qef— . ) ) - _
dimensional hard bodgHB) fluids, L=\2 3.1416 4.7854 4.1285
Z"B(ye)—1 Model (g)
T =f(er. (19
S(1+ aed2) L=05 2.4113 2.4258 2.1493
L=1 3.9270 4.6709 2.7081
wheref(ye) =Z"P(ye) — 1 is a universal function of;, SO  L=42 3.9270 6.7264 4.0864
that Eq. (19 is the mathematical expression of the two-
dimensional corresponding-states principle. Model (h)
IIl. DETERMINATION OF THE PARAMETERS L=05 2.8698 28873 2.1463
The molecular models considered are those of Fig. 1-=1 4.7124 5.9816 2.6980
where shaded areas represent the difference between effdc= 2 4.7124 8.9816 4.0627

tive and real molecular areas for nonconvex molecules. Ir
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FIG. 2. Reduced excess compressibility factor for hard dis- £ 4. Reduced excess compressibility factor for hard dumb-
corectanglemodel a) with a length to breadth ratia=3 as a o5 (modelc) with bond lengthL in units of o, the diameter of
function of the effective packing fractiog or, equivalently, the e of the disks, as a function of the effective packing fraction
packl_ng.fractlory.lfrjmnts: s_lmulgltjlon_ data from RefL1]. Continu- points: simulation data from Refe.3—15 for L=0.3 (circles,
ous line:f(ye) =Z"—1, with Z™ given by Eq.(16). L=0.5 (squares L=0.7 (triangles, L =0.924 (black circle$, and

L=1 (diamond$. Continuous line as in Fig. 2.
order to apply the CSP, we must determine the parameters
that appear in Eq(19). For nonconvex molecules we need 2
Am, A% and ag, sinceye=pAS=yAS/A.,. For convex E(X)If0 dt(1—xsirft)*2, (22)
molecules we only needq= «, sinceA%fz A . From geo-
metrical considerations, one obtains the following expresiq he complete elliptic function of the second kind.

sions for these parameters: Model (c)
Model (a) For values of the ratio of the center-to-center distance
L=<+/3, in units of the diametes of a disk, we have
[2(k—1)+ 7]?
&= (k= 1)+ /4]’ (20 o
ml(k—=1)+w/4] Am=—larcsin +L(1-L?)¥2+ m/2), 23
wherek is the length to breadth ratio, that is, the length in 2
units of o. AS'=—TL(4—L2)Y2y /2 24
Model (b) m=ll(4-L?) ] (24)
2 [L(1—L2/4)Y2+ 7/2]?
_ 8k 12\ 12 aef=—[ ( oF | . (25
a= ?[E(l 1k9)]%, (21 T AL
Model (d)
wherek is the semiaxis ratio, and
20 T T
30 T T
—_— 1 -
~ 25 . a ®
« 5
\.‘_ = n
o® 20 | - * 12
& i
w15 T 7 = 8 s
T 1o} . e,
g Ny i
N
5 | |
0 | | |
0 ' 0.4 0.5 0.6 0.7 0.8
0.0 0.3 0.6 0.9 Yei

yef
FIG. 5. As in Fig. 4 for nonlinear triatomicénodel d) with
FIG. 3. As in Fig. 2 for hard ellipsegnodelb), with a maxi-  bond lengthL=1 in units of . Points: simulation data from Ref.
mum length to maximum breadth ratio Points: simulation data [14] for ®«=60° (black circle$, w=75° (black squares o=90°
from Ref.[12] for k=2 (circles, k=4 (squarey and k=6 (tri- (black triangles, w=105° (open circley w=120° (open squargs
angles. and w=180° (open triangles Continuous line as in Fig. 2.
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FIG. 6. As in Fig. 4 for cyclic trimerdmodel €)]. Points:
simulation data from Ref.16] for L=0.5(circleg, L=1 (squarek
andL=+2 (triangles. Continuous line as in Fig. 2.

ForL=1 we have

A,,=3mo?l4. (26)
On the other hand, for 662 w<120°,
ef_ 2| T \ﬁ ;
AL=0 4+ 2+smw>, (27
2 N ’7T+t w 2
—+ —+tanz
2\Vy3 2 2
Aef= Aﬁ.]f ) (28)
and, foro=120°,
ef_ 2 ™
Am—O' Z+\/§ , (29)
4 N T 2
2\y3 2
3 (30

Aef=— —————-
S A?n

Models (e}(h)
For cyclic molecules consisting afi hard disks with

L=<./3, we have

10 T T
< 8 -
©
$ 6 1
i
= 4 :
E.
N 5 _
0
0.0 0.2 0.4 0.6 0.8

FIG. 7. As in Fig. 6 for cyclic tetramersnodel (f)].
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FIG. 8. As in Fig. 6 for cyclic pentamefsnodel @)].

2
g a an
An=n— L2cot(H +LA-LA)P (3D
nL 2
a
gy 2y
5 (4—L%)"+ 5 -
At~ —
€ Aﬁqf
On the other hand, fac <sin(n/n),
A= arcsift + L(1-L2)¥2+ L2cof =] + T
m=n 7 arcsi ( ) co = ol
(33
for sin(w/n)<L<1,
0_2
Am=n7[arcsirt+|_(1—|_2)1’2], (34
and, forL=1,
An=nma?l4. (35

Values of the parameters for the types of molecules consid-

ered in this paper are listed in Table I.

10 T T

ef

Z®-1) (140 /2)

0.0 0.2 0.4 0.6 0.8

FIG. 9. As in Fig. 6 for cyclic hexamefsnodel ()].
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IV. RESULTS AND DISCUSSION underestimates the value of 2, corresponding to the right-
hand side, with increasing bond length. This partial failure of
our formulation of the CSP at low densities is not surprising,
since generally the extensions of the CSP to nonspherical

Figures 2—9 compare the simulation dafd—16 with
the results obtained with the CSP expresdit®), using Eq.
(16) for the equation of state of the two-dimensional hard- . -
disk fluid, together with the parameters listed in Table I. Asmolecules applies only to dense gases and liquids.

can be seen. agreement is verv qood excent for 5-mer an In summary, we have formulated a simple corresponding-
=N, ag . Y9 P SQates principle for two-dimensional molecular fluids consist-
6-mer cyclic molecules with. = 2. However, it should be

. : ing of rigid molecules which depends on two parameters, the
noted that molecular models with values lofconsiderably d g P P

effective molecular areA‘fnf and the effective nonsphericity

greater than the diameter of one of the monomers, that is . .
L=1 are somewhat unrealistic parameter or shape factar,;, which can be determined

Of course the correspondina-states princiole develo ef om the geometry of the molecules. The principle states that
. ) P 9 > P P OPChhe reduced excess compressibility factor is a single function
here is only approximate, as occurs with other formulations

. 7 . L of the effective packing fractiogles. Comparison with simu-
of this principle. In particular, the low-density limit of Eq. lation data forpa gregt varie?;f of tW(?-dimensionaI fluids
(19) requires that

shows that the performance of the CSP is very good, for

BYB(yer) moderate to high densities except for some fluids which have
1 = —BiS Vet (36) molecules formed by fused hard-disks with extreme bonding
3(1+ aed2) distances. The principle could be extended to fluids with in-

HB ) o S termolecular potentials which include attractive interactions
whereB;"(ye) is the second virial coefficient in the expan- py introducing a suitable energy parameter.
sion of the compressibility factor in the power series of
Yer» and BYS(ye)=2 the second virial coefficient of the
hard-disk fluid. This is certainly true for convex molecules,
since for them the second virial coefficient is given exactly Financial support by the Spanish DireatiGeneral de
by BHCB(ye) =1+ aef2. However, for fused hard-disk mol- Investigacim Cientfica y Tecnica (DGICYT) under Grant
ecules the ratio of the left-hand side of E86) increasingly No. PB93-0666 is acknowledged.
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