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Corresponding-states principle for two-dimensional hard models of molecular fluids

M. J. Maeso and J. R. Solana
Departamento de Fı´sica Aplicada, Universidad de Cantabria, 39005 Santander, Spain

~Received 21 February 1997!

This paper develops a theoretically based corresponding-states principle for the equation of state of athermal
two-dimensional fluids consisting of rigid molecules. It is shown that the excess compressibility factor, reduced
by means of a parameter which can be determined from the geometry of the molecules, is very nearly a
common function of the excess compressibility factor of the hard-disk fluid. Existing simulation data show
very good agreement with the corresponding-states principle, except for some molecules with very large bond
length.@S1063-651X~97!04407-3#

PACS number~s!: 61.20.Gy, 64.30.1t
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I. INTRODUCTION

It is well known that the principle of corresponding stat
~CSP!, as was introduced more than a century ago by van
Waals, establishes that the equation of state of all fluids
a common form when expressed in terms of the redu
adimensional variablespr , Tr , andVr . That is, the equation
of state can be expressed in the form

f ~pr ,Tr ,Vr !50, ~1!

f being a common function for all fluids. In the origina
formulation, the reducing quantities were the critical para
eters pc , Tc , and Vc of each fluid, so thatpr5p/pc ,
Tr5T/Tc , andVr5V/Vc , but more generally the reducin
quantities can be taken as (e/k)/s3, e/k, and s3, respec-
tively, wheree is a characteristic energy parameter,s is a
characteristic distance parameter, andk is the Boltzmann
constant.

Experimental evidence shows that many substances o
the corresponding-states principle not only for the equa
of state, but also for other thermodynamic properties. Ho
ever, there are many other substances which depart mo
less from this principle. Sometimes this departure is due
quantum effects and more often to the polarity of the m
ecules, but in most cases the reason is the nonspherici
the molecules.

In order to extend the applicability of the CSP to no
spherical nonpolar molecular fluids it is necessary to int
duce an additional parameter which depends on the mol
lar shape, as stated by Kamerling Onnes in hisprinciple of
mechanical equivalence. For chain molecules this can b
done@1,2# by introducing a parameterc accounting for the
3c external degrees of freedom which are volume depend
For more complicated molecules, such as those having
larity, new parameters are needed in order to express a C

Alternatively, the CSP can be extended to molecular
ids by introducing theacentric factorv defined as@3,4#

v52 log10pr21, ~2!

wherepr is now the reduced pressure atTr50.7. When this
empirical parameter is introduced, the CSP becomes

f ~pr ,Tr ,Vr ,v!50. ~3!
561063-651X/97/56~1!/466~6!/$10.00
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The acentric factor depends on the shape of nonsphe
molecules and the dipole moment of polar molecules so t
in principle, it can deal with complicated molecular fluid
without needing additional parameters.

Although the acentric factor has been widely used,
empirical character prevents a clear and direct relation to
shapes of the molecules. Since the different contributi
~molecular shape, polarity, etc.! to the departure of a fluid
from the CSP behavior are not explicit in the acentric fact
it is difficult to introduce improvements to the performan
of this formulation of the CSP. Functionf itself is often of
empirical character, the derivation of a simple analytical e
pression forf from theoretical arguments remaining as
open question.

In order to attempt to derive a theoretically based CSP
fluids, it is desirable to start by dealing with hard models
nonpolar molecular fluids, so that complications arising fro
the intermolecular forces vanish. This makes the search
an analytical expression forf easier. Moreover, in these flu
ids the shape of the molecules is well defined, which sim
fies the task of relating the shape-dependent parameter in
CSP to molecular shape. Additionally, for this kind of fluid
there exists a considerable amount of simulation data all
ing the performance of the CSP to be tested exhaustivel

Thus, in several previous papers@5,6,# we developed a
theoretically based CSP for three-dimensional hard mod
of hard body~HB! molecular fluids expressed in the form

ZHB21

aef
5 f ~yef!, ~4!

whereZ5pV/NkT is the compressibility factor,yef5rvm
ef is

the effective packing fraction for a fluid at number dens
r consisting of molecules having an effective volumevm

ef ,
aef is the corresponding effective nonsphericity paramete
shape factor, andf (yef) is the excess compressibility facto
of the hard-sphere fluid.

The effective volume accounts for the fact that for no
convex molecules the volume that the molecule exclude
any point of another molecule is greater than the molecu
volume vm . Obviously, for convex moleculesvm

ef5vm ,
yef5y, andaef5a, where
466 © 1997 The American Physical Society
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a5
RS

3vm
~5!

is the nonsphericity parameter for convex molecules w
volumevm , and surfaceS, R being the (1/4p) multiple of
the mean curvature integral. All these quantities can be
termined from the geometry of the molecules@7#. By con-
trast, for nonconvex rigid linear molecules consisting
fused hard spheres of diameters, the radius of the curvature
is not well defined, so we used an alternative definition@8# in
the form

aef5
1

3p

~]vm
ef/]s!~]2vm

ef/]s2!

vm
ef , ~6!

which can be obtained from the analytical expression deri
@8# for vm

ef . The existing simulation data for a great variety
hard molecular fluids showed@5,6# very good agreemen
with the CSP expressed in form~4!, together with Eqs.~5! or
~6!.

In the present paper we will derive a two-dimension
counterpart of the CSP previously developed for thr
dimensional hard-body fluids. The interest in the study
two-dimensional fluids is due to the fact that they constitu
at least as a first approximation, simple models of molecu
adsorbed on surfaces as well as of thin films. From a th
retical viewpoint, apart from its intrinsic interest, the deriv
tion of a CSP of form~4! for two-dimensional fluids is in-
teresting because it is easier to determine the geomet
parameters involved for the case of complex molecules t
in their three-dimensional counterparts.

II. CORRESPONDING-STATES PRINCIPLE
FOR TWO-DIMENSIONAL HARD-BODY FLUIDS

The expression of the compressibility factor for a tw
dimensional hard convex body~HCB! fluid which occupies a
surfaceA at number densityr5N/A, can be expressed in th
form

ZHCB5
pA

NkT
511 1

4rS112s
avgav~0!, ~7!

whereS112 is the perimeter of the body formed by the cen
of molecule 2 moving around molecule 1, while both mo
ecules remain in contact;gav(0) is the contact value of the
pair correlation function, averaged over all possible orien
tions of the two molecules; andsav is the mean distance
between the centers of the two molecules being in con
projected onto the direction normal to the perimeter at
contact point. Introducing the mean radius of the molec
R5S/2p, and taking into account the fact that for equ
moleculesS11252S5S12pR, we obtain

ZHCB511 1
4r~S12pR!savgav~0!. ~8!

For a hard-disk fluid with diametersHD, we have
sav5sHD, gav(0)5gHD(0), andS5psHD, so that, for the
same density, the preceding expression reduces to

ZHD511 1
2pr~sHD!2gHD~0!, ~9!
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ZHCB21

ZHD21
5

~S12pR!savgav~0!

2p~sHD!2gHD~0!
. ~10!

Then, introducing the shape factor

a5S2/2pAm , ~11!

whereAm is the molecular area, and considering disks w
areaAm5 1

4p(s
HD)2 equal to that of the HCB molecule, w

have

ZHCB21

ZHD21
5
1

2S a

2
1

pR2

Am
DsHD

2R

savgav~0!

sHDgHD~0!
. ~12!

In a previous work@9#, we showed that

savgav~0!

sHDgHD~0!
.1, ~13!

and

1

2S a

2
1

pR2

Am
DsHD

2R
.
1

2S 11
a

2 D . ~14!

Moreover, it was shown that the small error introduced
approximation~13! was largely canceled out by the sma
error introduced by approximation~14!, which acts in the
opposite direction. With these approximations express
~12! becomes

ZHCB21

ZHD21
.
1

2S 11
a

2 D , ~15!

which allows us to obtain the equation of state of a tw
dimensional fluid consisting of hard convex molecules fro
the compressibility factor of a fluid of hard disks having t
same surface area as the convex molecule, and the nons
ricity parameter of the latter.

For the equation of state of the hard-disk fluid we can u
the Henderson equation@10#

ZHD5
11y2/8

~12y!2
, ~16!

wherey5rAm is the packing fraction.
The equation of state~15! can easily be extended to two

dimensional fluids consisting of rigid fused hard-disk mo
ecules by simply replacing the packing fractiony by the
effective packing fractionyef5rAm

ef , whereAm
ef is the effec-

tive molecular area~see Fig. 1!, defined as the area from
which any point of a molecule is excluded due to the pr
ence of another molecule. Correspondingly, the nonsphe
ity parametera must be replaced by the effective nonsph
ricity parameteraef . This can be obtained from the two
dimensional equivalent of Eq.~6!, namely,

aef5
2

p

~]Am
ef/]s!2

Am
ef , ~17!
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wheres is the diameter of one of the disks of the molecu
This expression gives the correct valueaef5a52 for hard
disks. Then Eq.~15! transforms into

ZFHD~yef!21

ZHD~yef!21
5
1

2S 11
aef

2 D , ~18!

which in fact applies to both convex and nonconvex mole
lar fluids provided that we take into account that for t
former yef5y and aef5a. Then, we can write, for two-
dimensional hard body~HB! fluids,

ZHB~yef!21

1

2
~11aef/2!

5 f ~yef!, ~19!

wheref (yef)5ZHD(yef)21 is a universal function ofyef , so
that Eq. ~19! is the mathematical expression of the tw
dimensional corresponding-states principle.

III. DETERMINATION OF THE PARAMETERS

The molecular models considered are those of Fig
where shaded areas represent the difference between e
tive and real molecular areas for nonconvex molecules

FIG. 1. Molecular models considered in this paper. For nonc
vex molecules, the shaded area represents the difference be
effective and real areas.
.
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TABLE I. Parameters involved in the CSP expression~19! for
the molecules considered. Lengths are in units ofs, and areas in
units ofs2.

Am Am
ef aef

Model ~a!

k53 2.9142

Model ~b!

k52 2.3805

k54 3.7813

k56 5.4009

Model ~c!

L50.3 1.0808 1.0820 2.0668

L50.5 1.2637 1.2695 2.1846

L50.7 1.4230 1.4411 2.3737

L50.924 1.5513 1.6049 2.7077

L51 1.5708 1.6514 2.8636

Model ~d!

v560° 2.3562 2.5174 2.7587

v575° 2.3562 2.6173 2.9675

v590° 2.3562 2.6514 3.3325

v5105° 2.3562 2.6173 3.9479

v5120° 2.3562 2.5174 5.0248

v5180° 2.3562 2.5174 3.8071

Model ~e!

L50.5 1.6111 1.6198 2.1619

L51 2.3562 2.5174 2.7586

L5A2 2.3562 3.1514 4.2204

Model ~f!

L50.5 1.9920 2.0036 2.1538

L51 3.1416 3.5174 2.7250

L5A2 3.1416 4.7854 4.1285

Model ~g!

L50.5 2.4113 2.4258 2.1493

L51 3.9270 4.6709 2.7081

L5A2 3.9270 6.7264 4.0864

Model ~h!

L50.5 2.8698 2.8873 2.1463

L51 4.7124 5.9816 2.6980

L5A2 4.7124 8.9816 4.0627
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order to apply the CSP, we must determine the parame
that appear in Eq.~19!. For nonconvex molecules we nee
Am , Am

ef , and aef , sinceyef5rAm
ef5yAm

ef/Am . For convex
molecules we only needaef5a, sinceAm

ef5Am . From geo-
metrical considerations, one obtains the following expr
sions for these parameters:

Model (a)

a5
@2~k21!1p#2

2p@~k21!1p/4#
, ~20!

wherek is the length to breadth ratio, that is, the length
units ofs.

Model (b)

a5
8k

p2@E~121/k2!#2, ~21!

wherek is the semiaxis ratio, and

FIG. 2. Reduced excess compressibility factor for hard d
corectangles~model a) with a length to breadth ratiok53 as a
function of the effective packing fractionyef or, equivalently, the
packing fractiony. Points: simulation data from Ref.@11#. Continu-
ous line: f (yef)5ZHD21, with ZHD given by Eq.~16!.

FIG. 3. As in Fig. 2 for hard ellipses~modelb), with a maxi-
mum length to maximum breadth ratiok. Points: simulation data
from Ref. @12# for k52 ~circles!, k54 ~squares!, and k56 ~tri-
angles!.
rs

-

E~x!5E
0

p/2

dt~12xsin2t !1/2, ~22!

is the complete elliptic function of the second kind.
Model (c)
For values of the ratio of the center-to-center distan

L<A3, in units of the diameters of a disk, we have

Am5
s2

2
@arcsinL1L~12L2!1/21p/2#, ~23!

Am
ef5

s2

2
@L~42L2!1/21p/2#, ~24!

aef5
2

p

@L~12L2/4!1/21p/2#2

Am
ef . ~25!

Model (d)

- FIG. 4. Reduced excess compressibility factor for hard dum
bells ~modelc) with bond lengthL in units of s, the diameter of
one of the disks, as a function of the effective packing fract
yef . Points: simulation data from Refs.@13–15# for L50.3 ~circles!,
L50.5 ~squares!, L50.7 ~triangles!, L50.924 ~black circles!, and
L51 ~diamonds!. Continuous line as in Fig. 2.

FIG. 5. As in Fig. 4 for nonlinear triatomics~model d) with
bond lengthL51 in units ofs. Points: simulation data from Ref
@14# for v560° ~black circles!, v575° ~black squares!, v590°
~black triangles!, v5105° ~open circles!, v5120° ~open squares!,
andv5180° ~open triangles!. Continuous line as in Fig. 2.
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For L51 we have

Am53ps2/4. ~26!

On the other hand, for 60°<v,120°,

Am
ef5s2S p

4
1A3

2
1sinv D , ~27!

aef5
2

p

S 2

A3
1

p

2
1tan

v

2 D 2
Am
ef , ~28!

and, forv>120°,

Am
ef5s2S p

4
1A3D , ~29!

aef5
2

p

S 4

A3
1

p

2 D 2
Am
ef . ~30!

Models (e)–(h)
For cyclic molecules consisting ofn hard disks with

L<A3, we have

FIG. 6. As in Fig. 4 for cyclic trimers@model (e)#. Points:
simulation data from Ref.@16# for L50.5 ~circles!, L51 ~squares!,
andL5A2 ~triangles!. Continuous line as in Fig. 2.

FIG. 7. As in Fig. 6 for cyclic tetramers@model (f )#.
Am
ef5n

s2

4 FL2cotS p

n D1L~42L2!1/21
p

n G , ~31!

aef5
2

p

F nL

~42L2!1/21
p

2
G 2

Am
ef . ~32!

On the other hand, forL<sin(p/n),

Am5n
s2

4 FarcsinL1L~12L2!1/21L2cotS p

n D1
p

n G ,
~33!

for sin(p/n)<L<1,

Am5n
s2

2
@arcsinL1L~12L2!1/2#, ~34!

and, forL>1,

Am5nps2/4. ~35!

Values of the parameters for the types of molecules con
ered in this paper are listed in Table I.

FIG. 8. As in Fig. 6 for cyclic pentamers@model (g)#.

FIG. 9. As in Fig. 6 for cyclic hexamers@model (h)#.
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IV. RESULTS AND DISCUSSION

Figures 2–9 compare the simulation data@11–16# with
the results obtained with the CSP expression~19!, using Eq.
~16! for the equation of state of the two-dimensional ha
disk fluid, together with the parameters listed in Table I.
can be seen, agreement is very good except for 5-mer
6-mer cyclic molecules withL5A2. However, it should be
noted that molecular models with values ofL considerably
greater than the diameter of one of the monomers, tha
L>1, are somewhat unrealistic.

Of course the corresponding-states principle develo
here is only approximate, as occurs with other formulatio
of this principle. In particular, the low-density limit of Eq
~19! requires that

B2
HB~yef!

1
2 ~11aef/2!

5B2
HS~yef!, ~36!

whereB2
HB(yef) is the second virial coefficient in the expa

sion of the compressibility factor in the power series
yef , and B2

HS(yef)52 the second virial coefficient of th
hard-disk fluid. This is certainly true for convex molecule
since for them the second virial coefficient is given exac
by B2

HCB(yef)511aef/2. However, for fused hard-disk mo
ecules the ratio of the left-hand side of Eq.~36! increasingly
ys

d

un
-

nd

is

d
s

f

,

underestimates the value of 2, corresponding to the rig
hand side, with increasing bond length. This partial failure
our formulation of the CSP at low densities is not surprisin
since generally the extensions of the CSP to nonsphe
molecules applies only to dense gases and liquids.

In summary, we have formulated a simple correspondi
states principle for two-dimensional molecular fluids cons
ing of rigid molecules which depends on two parameters,
effective molecular areaAm

ef and the effective nonsphericit
parameter or shape factoraef , which can be determined
from the geometry of the molecules. The principle states t
the reduced excess compressibility factor is a single func
of the effective packing fractionyef . Comparison with simu-
lation data for a great variety of two-dimensional fluid
shows that the performance of the CSP is very good,
moderate to high densities except for some fluids which h
molecules formed by fused hard-disks with extreme bond
distances. The principle could be extended to fluids with
termolecular potentials which include attractive interactio
by introducing a suitable energy parameter.
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