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Wake-field generation by the ponderomotive memory effect

U. Wolf and H. Schamel
Physikalisches Institut, Universita¨t Bayreuth, D-95440 Bayreuth, Germany
~Received 13 January 1997; revised manuscript received 31 March 1997!

An analytical and numerical investigation of the plasma response to an imposed high frequency wave packet
with a slow explicit time-dependent envelope is presented. An underlying picture of ponderomotive effects is
developed, which shows that the explicit time dependence forces us to treat the problem kinetically, and
furthermore, that a wake field is generated by the ponderomotive memory effect. The latter supplements the
well-known ponderomotive force and fake heating effect. Several perturbation schemes are compared showing
that the influence of resonant particles, treated by the method of characteristics, has to be taken into account for
Langmuir wave packets withkld>0.2, wherek is the wave number andld the Debye length. A self-
consistent Vlasov simulation shows the disappearance of the density depression in the case of immobile ions,
whereas the wake-field pattern survives self-consistency.@S1063-651X~97!05010-1#

PACS number~s!: 52.25.2b, 52.35.Mw, 52.40.Nk
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I. INTRODUCTION

The concept of wake-field acceleration of charged p
ticles in plasmas relies on the idea that some external ag
such as a laser or an electron beam, induces an inte
plasma oscillation in which test particles are accelera
@1–15#. This way one hopes to overcome the limitations
conventional particle accelerators which are limited in
obtainable acceleration gradients by the breakdown of e
tric fields through ionization. A plasma is already an ioniz
material, and can stand electric fields which would otherw
destroy the materials used in conventional accelerators
the laser wake-field acceleration scheme, a laser pulse
eling through the plasma induces an electric wake field
the ponderomotive force accelerating charged particles.

In the present paper, we explore the generation of w
fields caused by an explicit time dependence of the h
frequency wave envelope which, for simplicity, is chosen
be an electrostatic Langmuir wave packet. We show t
besides the ponderomotive force, there is an additional p
deromotive effect, the so-called ponderomotive memory
fect, which is caused by an explicit time dependence of
ponderomotive potentialuEu2, whereE is the wave envelope
Whereas the former is given by the gradient ofuEu2, ]xuEu2,
the latter results mathematically from an integration of] tuEu2

along the unperturbed characteristics, and is hence pu
kinetic ~@16,17#!. Indications that such a process can work
reality are provided by experiments@18#, where bunches o
accelerated ions with velocities up to 7cs were detected,cs
being the ion acoustic velocity. In these experiments, a h
field intensity localized in space and time was generated
the peak of a converging cone by microwave emission fr
a ring antenna@18#. SinceTi /Te is in the 0.04–0.2 range,
thermal ion withv thi[0.220.4cs typically experienced an
increase of its velocity by a factor of 20.

In the present paper, we pay attention to the first par
this acceleration process, the production of wake fields. T
paper is organized as follows. In Sec. II we present the p
sive response of electrons on the slow time scale under
assumption that resonant particle effects are negligible
weak, and develop the underlying picture of ponderomot
561063-651X/97/56~4!/4656~9!/$10.00
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effects. We shall see that, even if the perturbation is w
(uEu2!1) and the unperturbed plasma is assumed to be t
mal, the explicit time dependence ofE places the problem in
the kinetic regime. That is,] tuEu2 acts as a source and excite
almost spontaneously an infinite number of hydrodynam
moments for short pulses. The main effect of] tuEu2, the
generation of wakes~or ponderomotive streamers!, can
therefore not be studied in a macroscopic description of p
deromotive effects.

In Sec. III resonant particle effects are fully taken in
account, and comparisons are made with the results obta
in Sec. II. In Sec. IV a Vlasov simulation is applied to che
the validity and limits of the theoretical analysis. In Sec.
these results are summarized.

II. ANALYTICAL TREATMENT OF THE PASSIVE
PROBLEM WITH THE NEUMANN SERIES

We study a plasma on the electronic time scale, assum
that the ions are immobile and constitute a neutral ba
ground. First, we ignore self-consistency. An external el
trostatic hf wave having a weak time- and space-depend
envelope is applied to the plasma. Therefore, we can use
AnsatzEtot(x,t);E*(x2vgt,t)exp@i(kx2vt)#, E being the am-
plitude of the electric field andvg the group velocity of the
wave packet. First we assume that the group velocity
small, so that we are allowed to neglect it in the amplitude
the electric field, i.e., we setk505vg and use a normalized
carrier frequencyv51.

A. Calculation of the distribution function neglecting
the group velocity

We describe the plasma by the Vlasov equation

H L2@E~x,t !eit1E* ~x,t !e2 i t #
]

]v J f ~x,v,t !50, ~1!

whereL is the unperturbed~free-streaming! Vlasov operator
4656 © 1997 The American Physical Society
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56 4657WAKE-FIELD GENERATION BY THE PONDEROMOTIVE . . .
L:5
]

]t
1v

]

]x
, ~2!

and where we make the following assumptions.~1! When the
electric field vanishes, the plasma is in a thermal equilibri
state having the Maxwell distribution functionf M(v):
5(1/A2p)e2(v2/2); in this sense the amplitude of the electr
field constitutes a smallness parameter.~2! There is only a
negligible amount of resonant particles, and the distribut
function obeys the inequalityuL f (x,v,t)u!u f (x,v,t)u. ~3!
We consider Langmuir waves with a negligible wave nu
ber. Because of the small time dependence of the ele
wave amplitude we can make theAnsatz@19#

f ~x,v,t !5 f̄ ~x,v,t !1 (
n51

`

@Fn~x,v,t !eint1c.c.#, ~3!

f̄ being the slowly varying part of the distribution functio
which we want to calculate. For the first two Fourier mod
we obtain the equations

L f̄ 5E
]F1

*

]v
1E* ]F1

]v
~4!

and

~ i 1L !F15E
] f̄

]v
1E* ]F2

]v
. ~5!

Introducing the smallness parametere5O(E), we make use
of assumption~1! and expand the Fourier modes in a seri

f̄ 5 f M1 (
m51

`

emf ~m! and Fn5 (
m51

`

emFn
~m! . ~6!

The first-order equation for the slowly varying distributio
readsL f (1)50. Since we assume a Maxwellian plasma in t
absence of an electric field, we putf (1)[0. For that reason
the long time-scale distribution function is given b
f̄ 5 f M1e2f (2)1O(e3). Therefore, we have to calculat
f (2). The second-order perturbation is given by the equa

FIG. 1. The density perturbation as a function of space and ti
as obtained by the Neumann series. Heree50.157, sx510.0,
s t525.0, andk50.0.
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L f ~2!5E
]F1

~1!*

]v
1E* ]F1

~1!

]v
. ~7!

We recognize that the first Fourier mode of the first-ord
perturbation is driven by the electric field

~ i 1L !F1
~1!5E

d fM

dv
. ~8!

Assumption ~2! guarantees the existence of the opera
@11(L/ i )#21, and its expression by a geometric series
solve Eq.~8! for F1

(1) :

F1
~1!5 (

n50

` S L

2 i D
nS E

d fM

dv
i

D . ~9!

Therefore, inO(e2) the following differential equation is
found:

L f̄ 5]v~E* LE1c.c.!]v f̄ . ~10!

This is a diffusion equation in phase space with a slow
varying space- and time-dependent diffusion coefficient@16#.
Integrating along the characteristics of the unperturbed pr
lem we obtain the solution forf̄ :

f̄ 5

expF2
v2

2~112c!
2c G

A2p~112c!
~11M !

' f M@11~v222!c1M #, ~11!

whereM is defined by

M5E
2`

t ]c

] t̃
~ x̃, t̃ !U

x̃5x1v~t2t !
t̃5t

d5t. ~12!

Here c:5uEu2 is the ponderomotive potential appearin
in the exponential and giving rise to a density depress
n5e2c'12c. c also appears in the denominator
the argument of the exponential in Eq.~11!, and in the
normalization factor. It represents an increase of the eff
tive temperature by 2c called ‘‘fake heating’’ @20#. The
third term M is an integral where the time derivative o
c is summed up along the characteristics at earlier tim
t,t. Hence, this term represents a memory of the sys
@16,21#.

Defining the macroscopic quantities as usual, from E
~11! we obtain the densityn, the mean velocityu, the pres-
surep, and the heat fluxw:

n~x,t !512c~x,t !1A0~x,t !,

u~x,t !5A1~x,t !,

p~x,t !511c~x,t !1A2~x,t !,

w~x,t !523A1~x,t !1A3~x,t !, ~13!

e,
where the quantityAl is given by
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4658 56U. WOLF AND H. SCHAMEL
Al~x,t !5
1

A2p
E

2`

`

expS 2
v2

2 D v lM ~x,v,t !dv. ~14!

It can easily be verified that

]Al

]t
~x,t !1

]Al 11

]x
~x,t !5Rl

]c

]t
~x,t ! ~15!

holds.
Here

Rl[
1

A2p
E

2`

`

expS 2
v2

2 D v ldv5 H 0:
~ l 21!!!:

l odd
l even.

~16!

From Eq.~15!, it follows thatAl 11 plays the role of a curren
density with respect to the densityAl , and that this new type
of moment is generated by the source term] tc. Note that the
generation of odd moments, such as the mean velocity
the heat flux, is entirely due to the action of the ponderom
tive memory effect@17#. Equation~15! shows that a tempora
pulselike envelope excites rather instantaneously an infi
number of velocity moments; the generation is more eff
tive for the higher degrees momenta. Hence, even if the
perturbed plasma is Maxwellian, a time-dependent~macro-
scopic! electric field applied to a collisionless plasma, ca
the physics immediately into the kinetic regime. There
therefore, no chance of a hydrodynamic closure, i.e., o
representation of the system by a finite number of hydro
namic equations. Figure 1, whereDN[n21 is plotted as a

FIG. 2. The density perturbation as a function of space and ti
as obtained by the characteristic method. Heree50.157,sx510.0,
s t525.0, andk50.0.

FIG. 3. Same as Fig. 1, except thatk50.1.
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function of space and time for a Gaussian-shaped pond
motive potential@see Eq.~27!#, exhibits both the formation
of a density depression, represented by2c, and the genera-
tion of a wake field, represented byA0 . The latter emanates
from the origin,x50, t50, the location in space-time, wher
c is maximum.

B. Calculation of the distribution function in the case
of finite group velocity

Next we extend our theory by considering finitek and a
finite group velocity in the envelope of the wave. Moreov
we consider the effect of a time-independent ambipolar
tential which may arise due to charge separation. Again
start with the Vlasov equation~for clarity, we retain the sym-
bol v!:

H L2@E~x2vgt,t !e2 i ~kx2vt !1c.c.#
]

]v J f ~x,v,t !50,

where the operator

L:5
]

]t
1v

]

]x
2F8~x!

]

]v
. ~17!

Here 2F8 is the time-independent, ambipolar electrosta
field. We make the following assumptions.~1! The distribu-
tion of the electrons without an electric field is described
a solution of the free Vlasov operator,L f 050. Therefore,f 0

e, FIG. 4. Same as Fig. 2, except thatk50.1.

FIG. 5. Same as Fig. 1, except thatk50.2.
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can be any function of the constants of motion. We cho
f 0(x,v)5(1/A2p)exp@2(v2/2)1F(x)#. ~2! The slowly
varying amplitude of the electric field is small.~3! There are
only a few resonant particles.~4! The wave vector is small
With the Ansätze ~3! and ~6!, we again get the distribution
function f̄ 5 f 01e2f (2)1O(e3). Therefore, we have to solv
the system

L f ~2!5E!~x2vgt,t !
]F1

~1!

]v
1E~x2vgt,t !

]F1
~1!!

]v
~18a!

and

@2 i ~kv2v!1L#F1
~1!5E~x2vgt,t !

] f 0

]v
. ~18b!

As in the previous section, assumption~3! permits us to use
the Neuman series

F1
~1!~x,v,t !5 (

2n50

`

[L/ i ~kv2v!] n

3FE~x2vgt,t !
] f 0

]v
~x,v !

2 i ~kv2v!
G .

FIG. 6. Same as Fig. 2, except thatk50.2.

FIG. 7. The current density as a function of space and time
obtained by the Neumann series. Heree50.157, sx510.0,
s t525.0, andk50.0.
e

Truncating at the second order and settingF1
(1) into Eq.

~18a!, we end up with the following kinetic equation for th
slowly varying distribution function:

L f̄ 5
1

~kv2v!2

] f̄

]v
]c

]x
~x2vgt,t !1

]

]v F ] f̄

]v
1

~kv2v!2G

3Lc~x2vgt,t !22c~x2vgt,t !
]

]v
F ] f̄

]x

~kv2v!2
G

12c
]

]v
F ] f̄

]v
kv2v

F8
]

]v S 1

kv2v D G , ~19!

where againc:5uEu2. In the casek→0,v→1 and neglect-
ing the time dependence of the electric-field amplitude,
recover the kinetic equation of Aamodt and Vella@20#.

Next, we look at the hydrodynamic equations resulti
from the new kinetic equation:

]n

]t
1

]

]x
~nu!50 ~20!

s

FIG. 8. The current density as a function of space and time
obtained by the characteristic method. Heree50.157, sx510.0,
s t525.0, andk50.0.

FIG. 9. Same as Fig. 7, except thatk50.2.
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and

]u

]t
1u

]u

]x
5F82

1

v2

]c

]x
~x2vgt,t !2

1

n

]

]x Fp2
2n

v2

3c~x2vgt,t !G1
2k

v3 H ]c

]t
~x2vgt,t !

1
2

n

]

]x
@unc~x2vgt,t !#J

2
6k2

v4 c~x2vgt,t !F8, ~21!

wheren, u, andp denote the particle density, particle velo
ity, and pressure moment, respectively.F8 is the force aris-
ing from the ambipolar electric field. As a second force
recognize the well-known ponderomotive force (1/v2)~]c/
]x). The third part of the sum is the pressure. We recogn
that the pressure acting on a fluid element is reduced by
radiation pressure. A similar pressure reduction can be fo
in the energy law@17#. In fact Eqs.~20! and ~21! reduce to
Eqs.~22a! and~22b! of that paper in the limitk→0, vg→0.

III. ANALYTICAL TREATMENT OF THE PASSIVE
PROBLEM USING CHARACTERISTICS

In Sec. II we computed the first-order distribution fun
tion by using the Neumann series@Eqs. ~5! and ~18!#. This
treatment was justified by assuming that the effect of
resonant particles can be neglected. Since we allowed f

FIG. 10. Same as Fig. 8, except thatk50.2.

FIG. 11. The pressure perturbation as a function of space
time, as obtained by the Neumann series. Heree50.157,sx510.0,
s t525.0, andk50.0.
e
he
d

e
a

finite wave vectork, there are particles for which the reso
nancev2kv50 is satisfied. For these resonant particles,
Neumann series clearly diverges. It can be questio
whether the distribution function is still correctly compute
Therefore, in this section we compute the distribution fun
tion directly by using the method of characteristics instead
the Neumann series and compare both results. Again,
start with the Vlasov equation~17! and neglectF(x). Using
the same procedure as in Sec. II, we arrive at the system

L f ~2!5E* ~x2vgt,t !
]F1

~1!

]v
1E~x2vgt,t !

]F1
~1!*

]v
~x,v,t !

~22!

and

@2 i ~kv2v!1L#F1
~1!5E~x2vgt,t !

d fM

dv
~v !. ~23!

We solve Eq.~23! by integrating along the characteristics
the unperturbed system:

F1
~1!~x,v,t !5E

2`

t

exp@2 i ~kv2v!

3~t2t !#E„x̂~t!,t…dt
d fM~v !

dv
,

where

x̂~t!5x2vt1~v2vg!t. ~24!

nd

FIG. 12. The pressure perturbation as a function of space
time, as obtained by the characteristic method. Heree50.157,
sx510.0, s t525.0, andk50.0.

FIG. 13. Same as Fig. 11, except thatk50.1.
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56 4661WAKE-FIELD GENERATION BY THE PONDEROMOTIVE . . .
We set this result into Eq.~22!. Then we must solve

L f ~2!~x,v,t !5E~x2vgt,t !
]

]v F E
2`

t

ei ~kv2v!~t2t !

3E*
„x2vt1~v2vg!t,t…

d fM

dv
~v !G1c.c.

~25!

Once more, we integrate along the characteristics and en
with the following result for the second-order perturbation
the distribution function

f ~2!~x,v,t !52 f M~v !ReK E
2`

0

E„x1vt2vg~t1t !,t1t…

3H @v221#E
2`

0

@ei ~kv2v!t8E*
„x2vt1~v2vg!

3~t81t1t !,t81t1t…#dt8

2vE
2`

0

t8ei ~kv2v!t8F ikE*
„x2vt1~v2vg!

3~t81t1t !,t81t1t…1
]E*

]x
„x2vt1~v

2vg!~t81t1t !,t81t1t…Gdt8J dtL , ~26!

FIG. 14. Same as Fig. 12, except thatk50.1.

FIG. 15. The density perturbation as a function of space
time obtained using the Vlasov code~parameter set as in Fig. 2!.
up
f

where Re denotes the real part. Next we want to comp
both methods. With this in mind we introduce the followin
model for the ponderomotive potential:

c~x,t !5
e

2psxs t
exp@2x2/2sx

22t2/2s t
2#, ~27!

wheresx ands t are the mean deviations inx and t, which
measure how the potential is centered around the origin
space and time. Now we can calculatef (2), with the result
that

f ~2!~x,v,t !5
e

2psxs t
f M~v !S p

p~v ! D
1/2

$G1~v !1G2~v !%.

~28!

Here, we use the following notation

G1~v !5ReK 2
ia~v !

App~v !
H b~v !F1

2
G„2&u0~v !,d~v !…

2 i S p

8 D 1/2

erfc„&u0~v !…G1
1

&
@g~v !

2b~v !d~v !i #F„2&u0~v !,d~v !…J L , ~29a!

d

FIG. 16. Same as Fig. 2, except thate51.57.

FIG. 17. Same as Fig. 15, except thate51.57.
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a~v !5expF2
~x2vt !2

8sx
2s t

2p~v !
G , ~29b!

b~v !5
v

8sx
2s t

2@p~v !#3/2$@2is t
2~kvg2v!2t#v1x

22i @ksx
21s t

2vg~kvg2v!#%, ~29c!

g~v !5v2211
v

4sx
2p~v ! H @v2vg#F12

~kv2v!2

2p~v ! G
12sx

2~kv2v!S k1 i
x2vt

8sx
2s t

2p~v ! D J , ~29d!

d~v !52
kv2v

2Ap~v !
, ~29e!

u0~v !52
~x2vt !~v2vg!14sx

2p~v !t

4sx
2Ap~v !

, ~29f!

p~v !5
sx

21~v2vg!2s t
2

4sx
2s t

2 , ~29g!

F~x,y!5E
2`

x

e2u2
ZS y2

i

&
uD du, ~29h!

FIG. 18. The fluid velocity as a function of space and tim
obtained analytically. Heree51.57, sx510.0, s t525.0, and
k50.0.

FIG. 19. The fluid velocity as a function of space and tim
obtained using the Vlasov code~parameter set as in Fig. 18!.
G~x,y!5e2x2
ZS y2

i

&
xD , ~29i!

Z~z!52ie2z2E
2`

i z

e2t2dt, ~29j!

and

G2~v !52
v~x2vt !

4sx
2&p~v !

F12
~v2vg!2

4sx
2p~v !G

3expH 2
~x2vt !2

8sx
2s t

2p~v !J
3erfcH 2

sx
2t1s t

2~x2vgt !~v2vg!

sx
2s t

2A8p~v !
J . ~29k!

Now, we can compare both methods by calculating the m
ments of the distribution function. Therefore, we define

Ml~x,t !5Rl1Bl~x,t !, ~30a!

whereRl is given by Eq.~16!, andBl by

FIG. 20. The pressure perturbation as a function of space
time obtained analytically~parameter set as in Fig. 12, except th
e51.57!.

FIG. 21. The pressure perturbation as a function of space
time obtained using the Vlasov code~parameter set as in Fig. 20!.
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FIG. 22. The unaveraged density perturbati
as a function of space and time obtained using
self-consistent Vlasov simulation. Her
e50.157,sx510.0, ands t550.0.
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Bl~x,t !5E
2`

`

v l f ~2!~x,v,t !dv. ~30b!

M0 is the particle density,M1 describes the electro
velocity, andM2 measures the electron temperature. The
fore, Bl describes the deviation of the moments from th
equilibrium value. As we want to investigate whether t
Neumann series is describing the first-order distribution w
we have to choose the parameters in the Gauss func
correctly to be able to neglect theL3 term. For that purpose
the following conditions have to be satisfied:O(] t)@O(]x

3)
and O(] t)@O(uEu2]x). We use sx510, s t525, and
e50.157, and find that the field amplitudeuEu251024. We
also have 1@0.045(1/s t);O(] t)@0.0015(1/sx

3);O(]x
3),

and 1!25!1095sx /max$uE(x,t)u2:(x,t)PR2%. Thus the re-
quired inequalities are satisfied. Figure 2 shows the den
excursion from its equilibrium value as obtained by t
method of characteristics. Sincek was chosen to be zero,
should coincide with the Neumann result in Fig. 1, as
indeed does. This validates both our analytical approach
well as the numerical evaluation of the integrals. Next,
setk50.1. Both methods~see Figs. 3 and 4! yield approxi-
mately the same result. However, by increasing the w
number the agreement degrades due to the different t
ment of the effect of resonant particles. By comparing b
density expressions fork50.2, as given in Figs. 5 and 6, w
recognize a difference, especially in the wake-field patt
propagating in the positivex direction. Next we study the
current density in the plasma. In the case ofk50, the system
is homogenous; therefore, the current density is an odd fu
tion. Both the Neumann series in Fig. 7 and the method
characteristics in Fig. 8 yield the same result. For a fin
wave numberk50.2 the phasev2kv appears in the de
nominator, and can be resonant. As the phase velocity o
wave is now closer to the thermal velocity of the plasm
there are enough resonant particles to cause the results
the Neumann method~Fig. 9! to differ from those obtained
by an integration along the unperturbed characteristics of
system ~Fig. 10!. Again, it is the positively propagating
wakefield that predominantly changes. Next, we look at
deviation of the pressure from equilibrium (Dp5p21). For
-
r

l,
on

ity
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a standing wave (k50) there is no preferred direction. Th
pressure moment is anevenfunction ~Figs. 11 and 12!. For
k50.1 this symmetry is broken~see Fig. 14!. The propaga-
tion direction of the applied wave packet defines a prefer
direction. Also, the results of the Neumann series~Fig. 13!
and of the method of characteristics~Fig. 14! differ from
each other because of the resonant particle effect.

IV. VLASOV SIMULATIONS

Here we want to compare our analytical results from S
III with a numerical calculation using a Vlasov code. W
prescribe periodic boundary conditions in the space varia
and homogenous boundary conditions in the velocity va
able. To solve the Vlasov equation numerically, we use
splitting scheme of Cheng and Knorr@22#. The Vlasov equa-
tion is split up into the free-streaming part,] t f 1v]xf 50,
and into the acceleration part,] t f 2E]v f 50. Both parts are
solved by integrating along the characteristics of the resp
tive differential equation. Because of the periodic bound
conditions inx space, we interpolate the distribution functio
f (* ,v,t) using Fourier polynomials. In thev space, homog-
enous boundary conditions are used, andf (x,* ,t) is interpo-
lated using splines. The appropiate electric field is compu
by using the Nunerical Algorithms Group routine D01GA
@23#. We test the theory by comparing the computed hyd
dynamic moments with those calculated by the Vlasov co
We use a Langmuir oscillation with the parameter
e50.157, sx510, ands t525 for which we have already
calculatedDN ~Fig. 2!. Figure 15, on the other hand, show
the density perturbation in space-time as obtained by
Vlasov code. In comparing both results, we find good agr
ment. We now increase the amplitude of the wave toe51.57.
The theoretical result shown in Fig. 16 is qualitatively u
changed. The numerical~Vlasov! result is shown in Fig. 17.
In both plots the width of the density depression is ab
Dx;40, followed by the streamers. Because of the influe
of the O(E3) terms, which were neglected in the theoretic
analysis, there are some differences in the streamers. N
we investigate the velocity moments. Figure 18 shows
analytical result, and Figure 19 shows the Vlasov res
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Clearly, in both plots the velocity is antisymmetric with r
spect to the center of the applied wave. We can unders
this fact by referring to macroscopic theory: On the slo
time scale, we get] tu52]x(E

2/2), which is Newton’s first
law. As the Gaussian profile is an even function in spaceu
has an uneven symmetry. The result of a kinetic microsco
calculation differs from the macroscopic picture in the a
pearance of the wake field pattern. The influence of
streamers becomes clearer when we look at the pressure
ment ~Figs. 20 and 21!. The discrepancy between the an
lytical and the numerical calculations is more noticeable
the pressure than for the density. To understand this fact
refer to Sec. III, where we found a stronger impact of t
ponderomotive memory effect on the higher moments. E
at k50, the higher moments differ in their wake-field pa
tern. Now, we turn to the self-consistent problem: in addit
to the electric field of the applied wave, we consider t
self-electric-field of the plasma due to charge separation.
note in Fig. 22 that the region occupied by the wake fi
extends over the course of time. Note that the fast osc
tions have not yet averaged out. We also recognize that t
is no density depression inside the plasma. The pondero
tive force effect is thus shielded out by the internal hi
frequency wake field which establishes because of cha
separation. As known from Zakharov’s model@24# the for-
mation of a density depression requires the mobility of
ions, which we have not taken into account. The wake fie
however, survives charge separation.

V. SUMMARY

We have investigated the wake field generation by
ponderomotive memory effect. In Sec. II, we presented
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passive response of electrons on the slow time scale u
the assumption that resonant particle effects are negligibl
weak, and developed the underlying picture of ponderom
tive effects. We saw that even if the perturbation is we
(uEu2!1) and the unperturbed plasma is assumed to be t
mal, the explicit time dependency ofE forces us to treat the
problem kinetically:] tuEu2 acts as a source and excites
infinite number of hydrodynamic moments almost sponta
ously in the case of a short pulse. The main effect of] tuEu2,
namely, the generation of wakes, can therefore not be fo
and studied rigorously within a macroscopic description
ponderomotive effects. In Sec. III, we investigated the pro
lem in the absence of self-fields by using the method
characteristics. This treatment includes resonant particle
fects. We then compared both methods by computing
hydrodynamic moments. We found that for small wave nu
bers (k<0.2), neglecting resonant particle effects is jus
fied. In Sec. IV, we used a Vlasov simulation to check the
results. Perturbating a Maxwellian plasma with an elec
field we found good agreement with our theoretical results
the non-self-consistent problem. However, in the se
consistent problem we obtained an unexpected result:
disappearence of the density depression. We explained
by the fact that, in the case of immobile ions, an internal h
frequency field is generated by charge separation, and
ances the ponderomotive force action of the applied h
frequency wave packet.
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