PHYSICAL REVIEW E VOLUME 56, NUMBER 4 OCTOBER 1997

Wake-field generation by the ponderomotive memory effect
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(Received 13 January 1997; revised manuscript received 31 March 1997

An analytical and numerical investigation of the plasma response to an imposed high frequency wave packet
with a slow explicit time-dependent envelope is presented. An underlying picture of ponderomotive effects is
developed, which shows that the explicit time dependence forces us to treat the problem kinetically, and
furthermore, that a wake field is generated by the ponderomotive memory effect. The latter supplements the
well-known ponderomotive force and fake heating effect. Several perturbation schemes are compared showing
that the influence of resonant particles, treated by the method of characteristics, has to be taken into account for
Langmuir wave packets witlkh 4=0.2, wherek is the wave number antly the Debye length. A self-
consistent Vlasov simulation shows the disappearance of the density depression in the case of immobile ions,
whereas the wake-field pattern survives self-consistdi834063-651X%97)05010-1

PACS numbgs): 52.25-b, 52.35.Mw, 52.40.Nk

[. INTRODUCTION effeczzts. We shall see that, even if the perturbation is weak
, . E|“<1) and the unperturbed plasma is assumed to be ther-
. The concept of vyake-ﬁeld gcceleratmn of charged par-(| al, the)explicit timeF()jependenEe Bfplaces the problem in
ticles in plasmas relies on the idea that some externa! agehe kinetic regime. That is}| E|2 acts as a source and excites
such as a [asgr or-an glectron beam, induces an INteMaf st spontaneously an infinite number of hydrodynamic
plasma oscillation in which test particles are accelerated,,onts for short pulses. The main effect HfE|?, the
[1-15. This way one hopes to overcome the limitations Ofgeneration of wakesor ponderomotive streamegyscan
conventional particle accelerators which are limited in theherefore not be studied in a macroscopic description of pon-
obtainable acceleration gradients by the breakdown of eleGieromotive effects.
tric fields through ionization. A plasma is already an ionized |n Sec. IIl resonant particle effects are fully taken into
material, and can stand electric fields which would OtherWiS%Ccount, and comparisons are made with the results obtained
destroy the materials used in conventional accelerators. Iim Sec. Il. In Sec. IV a Vlasov simulation is applied to check
the laser wake-field acceleration scheme, a laser pulse trathe validity and limits of the theoretical analysis. In Sec. V,
eling through the plasma induces an electric wake field byhese results are summarized.
the ponderomotive force accelerating charged particles.

In the present paper, we explore the generation of wake
fields caused by an explicit time dependence of the high Il. ANALYTICAL TREATMENT OF THE PASSIVE
frequency wave envelope which, for simplicity, is chosen to PROBLEM WITH THE NEUMANN SERIES
be an electrostatic Langmuir wave packet. We show that, o .
besides the ponderomotive force, there is an additional pon- We study a plasma on the electronic time scale, assuming

deromotive effect, the so-called ponderomotive memory ef:[hat the ions are immobile and constitute a neutral back-

fect, which is caused by an explicit time dependence of th(?rounq. First, we igngre self-cons_istency. An external elec-
ponderomotive potentidE|2, whereE is the wave envelope. rostatic hf wave having a weak time- and space-dependent

Whereas the former is given by the gradientB, 4,|E|?, envelope is applied to the plasma. Therefore, we can use the

the latter results mathematically from an integratio@¢E|2 ~ AnSAZE(X0)~E (x—vgt)exdi(kx—wt)], E being the am-
along the unperturbed characteristics, and is hence pureRjitude of the electric field and, the group velocity of the
kinetic ([16,17)). Indications that such a process can work inWave packet. First we assume that the group velocity is
reality are provided by experimenf&8], where bunches of Small, so _tha_t we are allowed to neglect it in the amplltgde of
accelerated ions with velocities up teJwere detectedg,  the electric field, i.e., we s&=0=v4 and use a normalized
being the ion acoustic velocity. In these experiments, a highcarrier frequency»=1.
field intensity localized in space and time was generated in
the peak of a converging cone by microwave emission from
a ring antenng18]. SinceT; /T, is in the 0.04-0.2 range, a
thermal ion withvy,=0.2—0.4c, typically experienced an
increase of its velocity by a factor of 20. We describe the plasma by the Vlasov equation
In the present paper, we pay attention to the first part of
this acceleration process, the production of wake fields. This
paper is organized as follows. In Sec. Il we present the pas-
sive response of electrons on the slow time scale under the
assumption that resonant particle effects are negligible or
weak, and develop the underlying picture of ponderomotivevherelL is the unperturbedfree-streamingVlasov operator

A. Calculation of the distribution function neglecting
the group velocity

L—[E(x,H)et+E"(x,t)e 1] % f(x,0,t)=0, (1)
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(2) 1 + * 1
Lf?P=E o TE (7)
AN o . ) . '
We recognize that the first Fourier mode of the first-order
perturbation is driven by the electric field
-2:40% df
i+ (1): M .
(i+L)F3 E_dv (8

Assumption (2) guarantees the existence of the operator
[1+(L/i)]"Y, and its expression by a geometric series to
solve Eq.(8) for F{V:

FIG. 1. The density perturbation as a function of space and time,
as obtained by the Neumann series. Here0.157, 0,=10.0, dfy

o,=25.0, anck=0.0. oL By
Fi'=2 | =)\ — ©)
n=0 \ —I |
L J J
L'_Eﬂ)&' 2 Therefore, inO(e?) the following differential equation is

found:

and where we make the following assumptiaids.When the — . —
electric field vanishes, the plasma is in a thermal equilibrium Lf=4d,(E LE+c.c)d,f. (10

state having the Maxwell distribution functioty(v): his | P . .

_ 022 e ) . This is a diffusion equation in phase space with a slowly
=(1/y2m)e ; In this sense the amplitude of the electric 4rying space- and time-dependent diffusion coefficié6t.
fleldl_c%Tst|tutes "’t‘ s;’nallness tparatm?(éb- Th(‘frt‘a Isd(')rt”ybat' Integrating along the characteristics of the unperturbed prob-
negligible amount of resonant particles, and the distributio : - .

function obeys the inequalityLf(x,v,t)|<|f(x,v,t)|. (3) 'lem we obtain the solution fof

We consider Langmuir waves with a negligible wave num- v2
exr{

ber. Because of the small time dependence of the electric ey
wave amplitude we can make tiasatz[19] Pl 2(1+2¢) (1+M)
V27 (1+24)
f(x,v,0)=f(x,0,0)+ > [Fa(x,v,t)eM+cc], (3 ~ful1+(*=2)y+M], (11)
n=1

L whereM is defined by
f being the slowly varying part of the distribution function

which we want to calculate. For the first two Fourier modes _ jt o _
. . M= —(X,t) d=r1. 12
we obtain the equations e gt =x+v(r—1)
e
Lf= E+E*‘9_F1 4) Here ¢:=|E|? is the ponderomotive potential appearing
v v in the exponential and giving rise to a density depression
n=e Y~1—¢. ¢ also appears in the denominator of
and the argument of the exponential in E¢L1), and in the
normalization factor. It represents an increase of the effec-
0 . OF, tive temperature by & called “fake heating” [20]. The
(i+L)F,= %+E e (5) third term M is an integral where the time derivative of

¢ is summed up along the characteristics at earlier times,

. 7<t. Hence, this term represents a memory of the system
Introducing the smallness parametet O(E), we make use [16,21.

of assumption(1) and expand the Fourier modes in a series: Defining the macroscopic quantities as usual, from Eq.
(11) we obtain the densitp, the mean velocity, the pres-
surep, and the heat fluxv:

[

f=fy+ > €™ and F,= > e"F™. (6)
m=1 m=1

n(x,t)=1— (X)) +Ag(X1),
The first-order equation for the slowly varying distribution

readsL f(Y=0. Since we assume a Maxwellian plasma in the u(x,t) =Aq(x,t),

absence of an electric field, we piff)=0. For that reason,

the long time-scale distribution function is given by p(X,t) =1+ h(X,t) +Ax(X,t),
f=fy+e2f@+0(€). Therefore, we have to calculate

(). The second-order perturbation is given by the equation w(x,t)=—3A;(x,t)+Az(x,t), (13

where the quantityy, is given by
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obtained by the Neumann series. Heee=0.157, o,=10.0,

0¢=25.0, andk
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FIG. 12. The pressure perturbation as a function of space and
time, as obtained by the characteristic method. Here0.157,

FIG. 10. Same as Fig. 8, except that 0.2.

=0.0.

10.0, 0, =25.0, andk

Oy=

and

It can be questioned

nancew — kv =0 is satisfied. For these resonant particles, the

finite wave vectoik, there are particles for which the reso-
Neumann series clearly diverges.

2n
w2

p_

19
n dx

(X—vg4t,t) —

1 9y

w? X

Therefore, in this section we compute the distribution func-
tion directly by using the method of characteristics instead of

whether the distribution function is still correctly computed.

(X—vgt,t)

A
w” | Jt
[um//(x—vgt,t)]]

X (X—vg4t,t)

24
+—

the Neumann series and compare both results. Again, we
start with the Vlasov equatiof17) and neglectb(x). Using

n dx
6k?
w0

the same procedure as in Sec. I, we arrive at the system

(X,v,t)

Jv

1
oF Y

+ E(X—vgt,t)

1
oF Y
Jov

E"(x—uvgt,t)

Lf®

(21)

P(X—vgt,)®@’,

(22

wheren, u, andp denote the particle density, particle veloc-
ity, and pressure moment, respectively. is the force aris-

d

ing from the ambipolar electric field. As a second force we@n
recognize the well-known ponderomotive force @3 (ay/

dfy
dv

(23

(v).

(1)_

1

[—i(kv—w)+L]F

dx). The third part of the sum is the pressure. We recognize
that the pressure acting on a fluid element is reduced by the
radiation pressure. A similar pressure reduction can be foun
in the energy law17]. In fact Egs.(20) and (21) reduce to

Egs.(229 and(22b) of that paper in the limik—0, v4—0.

E(x—vgt,t)

e solve Eq(23) by integrating along the characteristics of

the unperturbed system:

—
~
SN— U
=|O
y—
©
=
—~~
3 =
| &=
2 w©
—
= AWA\
_ w
_.nﬂ —
X -
o |
8 =
- | -
— X
I
—
A
=
X
~
Z
LL

PROBLEM USING CHARACTERISTICS
In Sec. Il we computed the first-order distribution func-

tion by using the Neumann serigggs. (5) and (18)]. This

Ill. ANALYTICAL TREATMENT OF THE PASSIVE

treatment was justified by assuming that the effect of thevhere

resonant particles can be neglected. Since we allowed for a

(24)

X—vt+(v—vg)T.

(1=

X

|

8:10°°

VT
.... hy
:o
....
¢

?ﬁ..&. Ty
e

)

i

)

(v

i

0
.....
A0

-200

FIG. 11. The pressure perturbation as a function of space and

time, as obtained by the Neumann series. Herd®.157,0,=10.0,

0¢=25.0, andk

FIG. 13. Same as Fig. 11, except ttkat 0.1.

=0.0.
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FIG. 14. Same as Fig. 12, except that 0.1.
FIG. 16. Same as Fig. 2, except that 1.57.
We set this result into Eq22). Then we must solve

where Re denotes the real part. Next we want to compare
both methods. With this in mind we introduce the following

17 to
(2) — _ _ i(kv—w)(7—t) ) .
LEZ 000 ) =E(x—ugt ) ) [ f_me model for the ponderomotive potential:

* dfM
XE (x—vt+(v—vg)7,7) E(v) +c.cC.

€
YD p e,

X

—exi| — X202 —t?2¢7], (27)
t
(25

Once more, we integrate along the characteristics and end ({f’€r€ox and g are the mean deviations inandt, which
with the following result for the second-order perturbation of M€asure how the potential is centered around the origin in

the distribution function space and time. Now we can calculdf®, with the result
that
0
fP(x,v,1)=2fy(v)R J' E(x+vr—vg(T+t),7+1) c o |12
—o (2 - —
9 (x,v,t) ZWUXUth(v)(p(U)) {G1(v) +Ga(v)}.
o % 28
X [vz—l]J’ [T E" (x—vt+ (v —vg) @8
X (7' +741), 7 + -+ t)]d 7 Here, we use the following notation
fo i(ko—0)7'| 11 B ia(v) 1
—v 7' T HKE (X—vt+(v—vg) alv
—e G1(v)=Rel — —=1 B(v)| 5 G(—=V2uq(v),5(v))
Vap(v) 2
X (7' +7+1) T’+T+t)+£(x— t+( |\ V2 1
' ax o oW —i(—) erfov2uo(v)) |+ —[ y(v)
8 V2
—vg)(7' +7+0), 7 +7+t)|d7" rd7), (20 .
—B(v)8(v)i]F(=V2uoe(v),8(v))( ), (293
1105 [
F 4104 [
AN © T
b %‘."Iz”“‘\\\\‘ﬂm‘\\“\‘{
um%«"&\“f‘m\"‘}ss AN
1108 i
e -
b i -4x10°4 [
-2-105F
81074 [
400 R
t 200 -
20 100 X U 800

""" 200

X

00 N

——"TT100

00
FIG. 15. The density perturbation as a function of space and
time obtained using the Vlasov cogiearameter set as in Fig).2 FIG. 17. Same as Fig. 15, except thkat 1.57.
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FIG. 18. The fluid velocity as a function of space and time

obtained analytically. Heree=1.57, ¢,=10.0, ¢,=25.0, and

FIG. 20. The pressure perturbation as a function of space and
k=0.0.

time obtained analyticallyparameter set as in Fig. 12, except that
e=1.57).

(x—vt)? 2 [ .
=exg — ———|, 29h G(x,y)=e *Z| y— —x/, (29))
) 8o3oip(v) (29D V2
B)= s {21 0P (kg — w) o+ 20 =2ie-¢ [ e at 20]
80_§O,t2[p(v)]3/2 t g (g)_ e _we y ( J)
—2i[kos+ ofvg(kvg— )]}, (299 4
(0)=v? =1+ [[ o1 B er ;
y(v)=v 4a'>2<p(v) v—Ug 2p(0) Gol0)= v(Xx—uvt) _(v;vg)}
t 402v2p(v) 4osp(v)
X—v
+202(kv — Hi————
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Ox 0t
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FIG. 19. The fluid velocity as a function of space and time

FIG. 21. The pressure perturbation as a function of space and
obtained using the Vlasov codparameter set as in Fig. 18

time obtained using the Vlasov cofiearameter set as in Fig. 20
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400 - ]
300 - . .
C 7 FIG. 22. The unaveraged density perturbation
t C ] as a function of space and time obtained using the
C ] self-consistent ~ Vlasov  simulation.  Here
C ] €=0.157, 0,=10.0, ando;=50.0.
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% a standing wavek=0) there is no preferred direction. The

BI(X’t):f v'f2(x,v,t)dv. (300 pressure moment is avenfunction (Figs. 11 and 1R For

o k=0.1 this symmetry is brokefsee Fig. 14 The propaga-

M, is the particle density,M, describes the electron tipn d?rection of the applied wave packet defines a preferred
velocity, and M, measures the electron temperature. Theredirection. Also, the results of the Neumann serieg. 13
fore, B, describes the deviation of the moments from theirdnd of the method of characteristi¢Big. 14 differ from
equilibrium value. As we want to investigate whether the®ach other because of the resonant particle effect.
Neumann series is describing the first-order distribution well,
we have to choose the parameters in the Gauss function
correctly to be able to neglect theé term. For that purpose,
the following conditions have to be satisfied(d;)>O(43) Here we want to compare our analytical results from Sec.
and O(d,)>O(|E|?3,). We use o,=10, o,=25, and Il with a numerical calculation using a Vlasov code. We
€=0.157, and find that the field amplitudE|>=10"%. We  prescribe periodic boundary conditions in the space variable
also have 1>0.04=(l/ot)~0(0t)>0.001=(1/o§)~0((9§), and homogenous boundary conditions in the velocity vari-
and 1<25<10°= o, /maxX|E(x,t)[%(xt) e R?}. Thus the re- able. To solve the Vlasov equation numerically, we use the
quired inequalities are satisfied. Figure 2 shows the densitgplitting scheme of Cheng and Knd22]. The Vlasov equa-
excursion from its equilibrium value as obtained by thetion is split up into the free-streaming pa#f+vd,f=0,
method of characteristics. Sinkewas chosen to be zero, it and into the acceleration pat,f —Ed,f=0. Both parts are
should coincide with the Neumann result in Fig. 1, as itsolved by integrating along the characteristics of the respec-
indeed does. This validates both our analytical approach, a#/e differential equation. Because of the periodic boundary
well as the numerical evaluation of the integrals. Next, weconditions inx space, we interpolate the distribution function
setk=0.1. Both method¢see Figs. 3 and)4yield approxi-  f(*,v,t) using Fourier polynomials. In the space, homog-
mately the same result. However, by increasing the wavenous boundary conditions are used, &0d*,t) is interpo-
number the agreement degrades due to the different treaated using splines. The appropiate electric field is computed
ment of the effect of resonant particles. By comparing bothby using the Nunerical Algorithms Group routine DO1GAF
density expressions fde= 0.2, as given in Figs. 5 and 6, we [23]. We test the theory by comparing the computed hydro-
recognize a difference, especially in the wake-field patterrdynamic moments with those calculated by the Vlasov code.
propagating in the positivee direction. Next we study the We use a Langmuir oscillation with the parameter set
current density in the plasma. In the caséef0, the system €=0.157, 0,=10, andoy=25 for which we have already
is homogenous; therefore, the current density is an odd funaalculatedAN (Fig. 2). Figure 15, on the other hand, shows
tion. Both the Neumann series in Fig. 7 and the method ofhe density perturbation in space-time as obtained by the
characteristics in Fig. 8 yield the same result. For a finiteVlasov code. In comparing both results, we find good agree-
wave numberk=0.2 the phases—kv appears in the de- ment. We now increase the amplitude of the wave=td.57.
nominator, and can be resonant. As the phase velocity of th€he theoretical result shown in Fig. 16 is qualitatively un-
wave is now closer to the thermal velocity of the plasma,changed. The numeric&/lasov result is shown in Fig. 17.
there are enough resonant particles to cause the results frdm both plots the width of the density depression is about
the Neumann metho(Fig. 9) to differ from those obtained Ax~40, followed by the streamers. Because of the influence
by an integration along the unperturbed characteristics of thef the O(E®) terms, which were neglected in the theoretical
system (Fig. 10. Again, it is the positively propagating analysis, there are some differences in the streamers. Next,
wakefield that predominantly changes. Next, we look at theve investigate the velocity moments. Figure 18 shows the
deviation of the pressure from equilibriumMp=p—1). For  analytical result, and Figure 19 shows the Vlasov result.

IV. VLASOV SIMULATIONS
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Clearly, in both plots the velocity is antisymmetric with re- passive response of electrons on the slow time scale under
spect to the center of the applied wave. We can understarttie assumption that resonant particle effects are negligible or
this fact by referring to macroscopic theory: On the slowweak, and developed the underlying picture of ponderomo-
time scale, we gef,u= —d,(E?/2), which is Newton’s first tive effects. We saw that even if the perturbation is weak
law. As the Gaussian profile is an even function in space, (|E|?><1) and the unperturbed plasma is assumed to be ther-
has an uneven symmetry. The result of a kinetic microscopimal, the explicit time dependency &f forces us to treat the
calculation differs from the macroscopic picture in the ap-problem kinetically:é,|E|? acts as a source and excites an
pearance of the wake field pattern. The influence of theénfinite number of hydrodynamic moments almost spontane-
streamers becomes clearer when we look at the pressure mausly in the case of a short pulse. The main effect,{|?,
ment (Figs. 20 and 21l The discrepancy between the ana-namely, the generation of wakes, can therefore not be found
lytical and the numerical calculations is more noticeable forand studied rigorously within a macroscopic description of
the pressure than for the density. To understand this fact, weonderomotive effects. In Sec. Ill, we investigated the prob-
refer to Sec. Ill, where we found a stronger impact of thelem in the absence of self-fields by using the method of
ponderomotive memory effect on the higher moments. Everharacteristics. This treatment includes resonant particle ef-
at k=0, the higher moments differ in their wake-field pat- fects. We then compared both methods by computing the
tern. Now, we turn to the self-consistent problem: in additionhydrodynamic moments. We found that for small wave num-
to the electric field of the applied wave, we consider thebers k=0.2), neglecting resonant particle effects is justi-
self-electric-field of the plasma due to charge separation. Wéed. In Sec. IV, we used a Vlasov simulation to check these
note in Fig. 22 that the region occupied by the wake fieldresults. Perturbating a Maxwellian plasma with an electric
extends over the course of time. Note that the fast oscillafield we found good agreement with our theoretical results in
tions have not yet averaged out. We also recognize that thethe non-self-consistent problem. However, in the self-
is no density depression inside the plasma. The ponderomeonsistent problem we obtained an unexpected result: the
tive force effect is thus shielded out by the internal highdisappearence of the density depression. We explained this
frequency wake field which establishes because of chardey the fact that, in the case of immobile ions, an internal high
separation. As known from Zakharov's modeH] the for-  frequency field is generated by charge separation, and bal-
mation of a density depression requires the mobility of theances the ponderomotive force action of the applied high
ions, which we have not taken into account. The wake fieldfrequency wave packet.
however, survives charge separation.
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