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Parametric decays of a linearly polarized electromagnetic wave in an electron-positron plasma
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We study the parametric decays of a large amplitude, linearly polarized electromagnetic wave in an electron-
positron plasma. We include harmonic generation, the ponderomotive force, and weakly relativistic effects. It
is shown that whenvs /c,c/vp ~vs is the electroacoustic velocity,c is the speed of light, andvp is the phase
velocity of the electromagnetic wave!, there are two instabilities. One is an ordinary decay instability, in which
the pump wave decays into a sideband wave, propagating backward relative to the pump wave, and an
electroacoustic mode propagating forward. The other is an essentially electromagnetic nonresonant modula-
tional instability~which is due to higher order effects of the pump wave amplitude!, in which the pump wave
decays into two sideband waves. Whenvs /c>c/vp , there is a modulational nonresonant instability, and an
ordinary modulational instability, in which the pump wave decays into a sideband wave and a forward propa-
gating electroacoustic mode.@S1063-651X~97!03709-4#

PACS number~s!: 82.40.Ra, 51.60.1a
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I. INTRODUCTION

Electron-positron plasmas are different from electron-
plasmas in many aspects, because, in the absence of
electron mass difference, there are no high and low
quency scales@1#.

The nonlinear decays of linearly and circularly polariz
large amplitude electromagnetic waves in an electr
positron plasma have been thoroughly investigated~see@2#
and references therein and@3#!. In the case of linear polar
ization, the problem is more complicated because of h
monic generation and density perturbations due to the p
deromotive force of the electromagnetic wave. This probl
has been addressed by a number of authors@4–9# in connec-
tion with the observed variability of spectral characterist
of active galactic nuclei and pulsars@10–14#. In order to
account for the observations, Chian and Kennel@4# conjec-
tured that the electromagnetic pulse could experience non
ear modulation. Unfortunately, their results were proved
be wrong, because they omitted harmonic generation
ponderomotive effects@15#. A full treatment was then pro
vided by Kates and Kaup@7,8#, who showed that in a colli-
sionless electron-proton plasma, within a narrow freque
interval nearvp , the self-modulational instability is possibl
@8#.

The subject of electron-positron plasmas is not only i
portant in plasma astrophysics, but is also relevant in la
ratory experiments@16,17#.

Thus, we study the parametric decay of a large amplit
linearly polarized electromagnetic wave. Our treatment
similar to Ref.@9#, but as we shall see, their treatment, in o
opinion, is wrong in several aspects. They neglected
pressure gradient term in the longitudinal component of
force equation, but included it in their nonlinear treatme
This term introduces changes both in the expression of
dispersion relation of the electromagnetic wave and in
nonlinear dispersion relation that gives the coupling to si
band waves and electroacoustic modes.

Thus, this paper is organized as follows. In Sec. II,
561063-651X/97/56~4!/4581~10!/$10.00
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model equations are analyzed, and the nonlinear disper
relation is derived. In Sec. III, the nonlinear couplings of t
pump wave to electroacoustic modes and to sideband w
are studied. In Sec. IV, the results are summarized and
cussed.

II. THE MODEL

We assume that the electron-positron plasma is descr
by the following set of equations:

]nj

]t
52¹W •~njvW j !, ~1!

S ]

]t
1vW j•¹W D ~G jvW j !5

qj

m S EW 1
1

c
vW j3BW D2

gKT

mn0
¹W nj ,

~2!

¹W •EW 54pr, ~3!

¹W 3EW 52
1

c

]BW

]t
, ~4!

¹W 3BW 5
4p

c
JW1

1

c

]EW

]t
, ~5!

JW5(
j

qjnjvW j , ~6!

r5(
j

qjnj , ~7!

G j5S 12
vW j

2

c2D 21/2

, ~8!
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wherenj is the density, andvW j is the bulk velocity of each

fluid ~j 5e for electrons andj 5p for positrons!, EW andBW are
the electric and magnetic fields, respectively,K is the

Boltzmann constant,JW is the total current,g is the adiabatic
coefficient,T is the common temperature,m is the particle
mass, andc is the speed of light.

Assuming that a linearly polarized electromagnetic wa
propagates along thez axis, in absence of relativistic effect
linearizing Eqs.~1!–~8! we find the solution

EW 05E0cos~k0z2v0t !x̂, ~9!

BW 05B0cos~k0z2v0t !ŷ, ~10!

B05
ck0

v0
E0 , ~11!

which satisfies the dispersion relation

v0
25c2k0

212vp
2. ~12!

This wave induces a particle velocity given by

vW 52
qE0

mv0
sin~k0z2v0t !x̂. ~13!

When relativistic effects are considered, the componen
Eq. ~2! perpendicular to the direction of propagation of t
plane electromagnetic wave can be written in terms of
vector potential as follows:

d

dt
~GvW !52

q

mc

dAW

dt
. ~14!

Assuming that the longitudinal component of the velocity
much less than the perpendicular velocity, integration of t
equation yields

vW 52
qAW

mc F11S qA

mc2D 2G21/2

. ~15!

Clearly, dealing with weak relativistic effects mea
qA/mc2!1, so that expanding the square root, the transve
velocity is then given by

v0x52
qE0

mv0
sin~k0z2v0t !F12

a2

2
sin2~k0z2v0t !G ,

~16!

a5
eA

mc2 5
eE0

mcv0
. ~17!

The transverse velocity induces a longitudinal veloci

dvz , through the termvW 3BW in the Lorentz force, and, con
sequently, a density perturbation,dn. We shall calculate this
effect by using Eqs.~1!–~3! as a perturbation on a stead
state in which the density is a constant,n0 , and the longitu-
dinal velocity isv0z50. Thus, for each fluid, we have
e

of

e

is

se

,

]

]t
dn52n0

]

]z
dvz , ~18!

]

]z
dEz54pe~dnp2dne!, ~19!

]

]t
dvz5

q

m S dEz1
1

c
v0xB0yD2

gKT

mn0

]

]z
dn. ~20!

We have neglected the factorG in the left side of Eq.~20!.
In fact, since the longitudinal velocity is much less than t
transverse velocity, andv0x!c, G.(12v0x

2 /c2)21/2.1
1v0x

2 /(2c2), then in the left side of Eq.~20! there would be
terms of orderdvz and E0

2dvz . This last term can be ne
glected as compared to the first one. For the same reason
will neglect the relativistic correction tov0x in Eq. ~20!,
since it contributes a term of ordera4, which is negligible as
compared toa2, the order of the leading term. Moreover, a
we shall see,dvz is of the same order as the first ord
relativistic corrections,a2. Since we shall keep only the
leading corrections, we can neglect terms of the fo
dvzv0x

2 /c2 and the relativistic correction tov0xB0y .
Writing Eqs. ~18!–~20! for each species, and combinin

them, yields

S ]2

]t22vs
2 ]2

]z2D dnp1vp
2~dnp2dne!

5S eE0

mv0
D 2

n0k0
2cos@2~k0z2v0t !#, ~21!

S ]2

]t22vs
2 ]2

]z2D dne2vp
2~dnp2dne!

5S eE0

mv0
D 2

n0k0
2cos@2~k0z2v0t !#, ~22!

wherevs5(gKT/m)1/2 andvp5(4pe2n0 /m)1/2 is the elec-
tron ~positron! plasma frequency. It is easy to see that the
equations admit an oscillatory solution induced by the el
tromagnetic wave given by

dnp5dne52n0a2q̃ cos@2~k0z2v0t !#, ~23!

and the corresponding longitudinal velocity@derived from
the continuity equation~1!#,

dvpz5dvez52a2
v0

k0
q̃ cos@2~k0z2v0t !#, ~24!

where

q̃5
1

4

c2k0
2

v0
22vs

2k0
2 . ~25!

The term vW 3BW in the force equation~2! implies that an
electromagnetic wave of frequencyv0 induces a longitudinal
oscillation of frequency 2v0 . This is a nonlinear effect~har-
monic generation!, of ordera2, which couples the transvers
and longitudinal motion of the particles.
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Equations~23! and~25! are different from the correspond
ing expressions given in Ref.@9#, namely,

dnp5dne52n0a2q̃ cos@2~k0z2v0t !#,

q̃5
v0

22vp
2

4v0
22vp

2 .

The differences arise because their expressions correspo
density perturbations due to harmonic generation in a c
ion-electron plasma. Indeed, following a similar procedure
the one followed here, it is easy to show that their expr
sions are valid for an ion-electron plasma where ion mot
can be neglected andv0

25c2k0
21vp

2.
Combining Eqs.~4!–~6! we find a wave equation for th

electric field of the waveE0x . Using Eqs.~23! and ~24!, to
lowest order ina, we obtain

S ]2

]z22
1

c2

]2

]t2DE0522
vp

2

v0c2 E0

]

]t H sin~k0z2v0t !

2a2q̃ sin~k0z2v0t !cos@2~k0z2v0t !#

2
1

2
a2sin3~k0z2v0t !J . ~26!

Assuming that the wave electric field is still of the for
~9! and, since

sin~f!cos~2f!5 1
2 @sin~3f!2sin~f!#,

sin3~f!52 1
4 @sin~3f!23 sin~f!#,

the resonant contributions to Eq.~26! give the dispersion
relation

v0
25c2k0

212vp
2~12 1

2 qa2!, ~27!

q5 3
4 2q̃. ~28!

This is the dispersion relation of linearly polarized elect
magnetic waves in an electron-positron plasma when
monic generation, weakly relativistic effects, and thermal
fects are taken into account.

Equation~27! differs from the results in Ref.@9#, not only
in the aforementioned incorrect expression forq̃, but also in
the factor 1

2 beforeq, which, according to them, should b
1
4 .

In Fig. 1 we show the dispersion relation of the pum
wave, y5ck0 /vp versus x5v0 /vp , for a50.01, vs /c
50.1. The straight lines correspond to the electroacou
modes, and the parabolas to the electromagnetic mode
Fig. 2, the same dispersion relation is shown, but fora
50.5. We see that starting atv050 andk050, there is an
electrostatic instability. However, since the small parame
is a, from Eq. ~17! it follows that the dispersion relation i
not valid for v0 values close to the origin.

We now perturb the system assuming that it consists
electrons, positrons, and a linearly polarized electromagn
wave satisfying Eq.~27!—the pump wave. The zeroth orde
solution is
to
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EW 05E0cos~k0z2v0t !x̂, ~29!

BW 05B0cos~k0z2v0t !ŷ, ~30!

B05
ck0

v0
E0 , ~31!

v j 0x52
qjE0

mv0
sin~k0z2v0t !F12

a2

2
sin2~k0z2v0t !G ,

~32!

v j 0z52a2
v0

k0
q̃ cos@2~k0z2v0t !#, ~33!

nj 05n01njh5n0$12a2q̃ cos@2~k0z2v0t !#%. ~34!

Longitudinal and transverse perturbations are of the form

dCz5Re@C̃ei ~kz2vt !#, ~35!

and

FIG. 1. Dispersion relation of the pump wave, Eq.~27!. Nor-
malized frequency,x5v0 /vp , vs normalized wave number,y
5ck0 /vp , for vs /c50.1, anda50.01.

FIG. 2. Same as Fig. 1, buta50.5.
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dC'5Re@c1ei ~k1z2v1t !1c2ei ~k2z2v2t !#, ~36!

respectively, withk65k06k, v65v06v.
To lowest order,

G0.11
1

2

v0x
2

c2 ,

and

d~Gv i !5dGv0i1G0dv i , i 5x,z,

so that

d~Gvx!5S 11
3

2

v0x
2

c2 D dvx ,
d~Gvz!5S 11
1

2

v0x
2

c2 D dvz .

Defining

dV5dvpx2dvex ,

dU5dvpz1dvez,

dN5dnp1dne ,

the perturbed equations~1!–~8! are
s,
]

]t F S 11
3

2

vp0x
2

c2 D dVG1vp0z

]

]z
dV1dU

]

]z F S 11
1

2

vp0x
2

c2 D vp0xG5
e

m F2dEx2
1

c
~dUB0y12vp0zdBy!G , ~37!

]

]t F S 11
1

2

vp0x
2

c2 D dUG1
]

]z
~vp0zdU !5

e

mc
~dVB0y12vp0xdBy!2

vs
2

n0

]

]z
dN, ~38!

]

]t
dN52

]

]z
@~n01nph!dU1dNvp0z#, ~39!

]

]z
dEx52

1

c

]

]t
dBy , ~40!

2
]

]z
dBy5

4pe

c
@~n01nph!dV1dNvp0x#1

1

c

]

]t
dEx . ~41!

Combining these equations, we obtain the following set of fundamental equations:

]

]t F S 11
3

2

vp0x
2

c2 D dVG1vp0z

]

]z
dV1dU

]

]z F S 11
1

2

vp0x
2

c2 D vp0xG5
e

m F2dEx2
1

c
~dUB0y12vp0zdBy!G , ~42!

F ]2

]t2 S 11
1

2

vp0x
2

c2 D 2vs
2 ]2

]z2GdU5
e

mc

]

]t
~dVB0y12vp0xdBy!, ~43!

S 1

c2

]2

]t22
]2

]z2D dBy5
4pe

c

]

]z
@~n01nph!dV1dNvp0x#. ~44!

Replacing in Eqs.~42!–~44! the assumed space and time dependence@Eqs.~35! and~36!#, and selecting the resonant term
yields

7 iv6S 11
3

4
a2DV66 i

a2

2 S 3

4
v61

v0

k0
q̃k7DV75

e

m S 2e61
1

c
a2

v0

k0
q̃b7D , ~45!

Fv2S 11
a2

4 D2vs
2k2GŨ5

e

mc
ivFB

2
~V11V2!2 i S eE0

mv0
D S 12

3

8
a2D ~b12b2!G , ~46!

~2v6
2 1c2k6

2 !
b6

c2k6
56 i

4pe

c Fn0S V62
1

2
a2q̃V7D6 i

Ñ

2 S eE0

mv0
D S 12

3

8
a2D G . ~47!

From the continuity equation and Faraday’s law,~1!, ~4!,
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Ñ5n0

kŨ

v
, ~48!

e65
v6

ck6
b6 . ~49!

Thus from Eq.~45!,

V656
ie

mc F2
b6

k6
2

3

2
a2S b6

k6
1

1

2

b7

k7
D G . ~50!

Replacing Eqs.~48!–~50! in Eqs.~46!–~47!, yields

Fc2k6
2 2v6

2 12vp
2S 12

1

2
qa2D2vp

2a2S 3

4
1q̃D G b6

k6
2vp

2a2q
b7

k7
52vp

2 E0c

v0

1

2

Ñ

n0
S 12

3

8
a2D , ~51!

Fv2S 11
1

4
a2D2vs

2k2G Ñ

n0
5

e

m
k2

eE0

mcv0
S 12

3

8
a2D S b1

k1
1

b2

k2
D . ~52!
a-

d
t

th

on

e

e

d

we
ten-
e,
he

f
ns.
Upon elimination of all quantities (Ñ,b6), from Eqs.~51!
and ~52!, we obtain the following nonlinear dispersion rel
tion:

05S@D1D22vp
2a2~ 3

4 1q̃!~D11D2!#

1 1
2 vp

2a2c2k2@~12 3
4 a2!~D11D2!24vp

2a2q̃#,

~53!

where

D65c2k6
2 2v6

2 12vp
2~12 1

2 qa2!, ~54!

S5v2~11 1
4 a2!2vs

2k2. ~55!

Clearly, whena50, D650 andS50, which correspond
to the electromagnetic waves and the electroacoustic mo
There are two electroacoustic modes, one propagating in
direction of the electromagnetic wave, and the other in
opposite direction. They are denoted byS1 andS2 , respec-
tively. WhenaÞ0, the modes are coupled. A necessary c
dition for wave coupling is thatnv05v11v2 , with n
50,1,2,3, . . . , wherev1 and v2 are the frequencies of th
daughter waves.

The dispersion relation~53! differs from the result given
in Ref. @9#. In order to compare their results with ours, w
now write Eqs.~25!, ~26!, and ~38! in Ref. @9#, which, as-

suming~without loss of generality! AW 0 real, can be expresse
as

~D12 1
2 vp

2qa2!dÃ2 1
2 vp

2qa2dÃ* 52vp
2dÑA~12 1

4 qa2!,
~56!

~D22 1
2 vp

2qa2!dÃ* 2 1
2 vp

2qa2dÃ52vp
2dÑA~12 1

4 qa2!,
~57!

~v22vs
2k2!dÑ5S e

mcD
2

Ak2~dÃ1dÃ* !. ~58!
es.
he
e

-

In order to compare these equations with our results,
have repeated our calculations in terms of the vector po
tial, using their notation, and following their procedur
properly including relativistic effects. Then one obtains t
zeroth order dispersion relation~27!, and Eqs.~56!–~58! are
replaced by

@D12vp
2a2~ 3

4 1q̃!#dÃ2vp
2qa2dÃ* 52vp

2dÑA~12 3
8 a2!,

~59!

@D22vp
2a2~ 3

4 1q̃!#dÃ* 2vp
2qa2dÃ52vp

2dÑA~12 3
8 a2!,

~60!

@~11 1
4 a2!v22vs

2k2#dÑ5 1
2 S e

mcD
2

k2A~12 3
8 a2!

3~dÃ1dÃ* !. ~61!

We note that our quantities are related to those in Ref.@9#
through

b1

k1
→dÃ, ~62!

b2

k2
→dÃ* , ~63!

1

2

Ñ

n0
→dÑ, ~64!

consistent with¹3AW 5BW and the respective definitions o
Fourier transform of the potential and density perturbatio

Taking these identifications into account, Eqs.~59!–~61!
are exactly equivalent to our equations~51! and ~52!, and,
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FIG. 3. ~a! Nonlinear dispersion relation, Eq.~53!. Normalized frequency,x5v/vp , vs normalized wave number,y5ck/vp , for
vs /c50.1, v0 /vp51.5, anda50. ~b! Same as~a! for a50.01. ~c! Enlargement of the origin of~a! for a50. ~d! Same as~c!, but for
a50.03.
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therefore, give the same dispersion relation, Eq.~53!, we
obtained by using an independent method.

III. WAVE COUPLING

We now solve Eq.~53! graphically, using the method firs
derived by Longtin and Sonnerup@18# ~see also@19–22#!. To
this end, we plot the dispersion relation, Eq.~53!, in the
upper half of thev-k plane. The lower half plane can b
obtained by rotating the upper half plane through an angl
180° through the origin. There are four lines correspond
to D650 ~labeled on Fig. 3 asD6! and two straight lines
symmetric around the origin, corresponding to the electr
coustic modes, one propagating backwards relative to
pump wave (S2), and the other in the same direction as t
pump wave (S1). Notice that the dispersion relation is o
order six inv andk. In Fig. 3~a!, we illustrate Eq.~53! for
v0 /vp51.5 with a correspondingck0 /vp50.5, for a50.
The other parameters are indicated in the figure. There
some crossings between the lines. These are, from le
right, a crossing between (D2 ,S2), another at the origin
betweenD2 , D1 , and S1 , and one between (D2 ,S1).
of
g

-
e

re
to

Only the last two satisfy the conditions given above. In ord
to see whether they lead to coupling, we switch on the pu
wave. Thus, taking for the pump wave ana value of a
50.01, we obtain Fig. 3~b!. From Fig. 3~b!, it follows that
the crossing between (D2 ,S2) is an avoided crossing, a
expected, because it does not satisfy energy conserva
The next crossing, namely, the one between (D2 ,S1), leads
to a coupling. In fact, at this crossing there is now a g
which means that two roots of Eq.~53! have become com
plex conjugate. Therefore, at this crossing there is an in
bility that corresponds to an ordinary decay instability whe
the pump wave decays into a sideband wave correspon
to a solution ofD250 and an electroacoustic mode,S1 .

Next, in Fig. 3~c! we investigate the crossing at the orig
of Fig. 3~a!, for a50. In Fig. 3~d! the pump wave amplitude
has been raised toa50.03. We see from the figure that at th
crossing between (D1 ,D2) there is now a gap. This gap is
modulational instability corresponding to a nonresonant
cay of the pump wave into two sideband waves, of frequ
ciesv1 andv2 . This decay is essentially electromagnet
but is mediated by plasma oscillations that are not norm
modes of the system@23# and it is of higher order,O(a4).
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FIG. 4. ~a! Nonlinear dispersion relation, Eq.~53!. Normalized frequency,x5v/vp , vs normalized wave number,y5ck/vp , for
vs /c50.5, v0 /vp51.5, anda50. ~b! Same as~a!, but for a50.08. ~c! Enlargement of the origin of~a!. ~d! Same as~c!, but for a
50.01. ~e! Same as~d!, but for a50.05.
d
n

. In

ility
In the case when the plasma temperature is increase
vs /c50.5 @Fig. 4~a!#, there are crossings betwee
(D2 ,S2), (D1 ,S1), and one at the origin. In Fig. 4~b! we
have raised the pump wave amplitude toa50.08 in order to
show that the crossings between (D2 ,S2) and (D1 ,S1) are
now avoided crossings. It is easy to see that forvs
to,c2k0 /v0, S1 will always crossD2 , thus giving rise to a
decay instability, and whenvs>c2k0 /v0 , S1 will cross
D1 , an avoided crossing when the pump is switched on
Fig. 4~c!, we have enlarged the origin fora50. In Fig. 4~d!,
we have raised the amplitude of the pump wave toa
50.01. One can see that there is a modulational instab
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FIG. 5. ~a! Nonlinear dispersion relation, Eq.~53!. Normalized frequency,x5v/vp , vs normalized wave number,y5ck/vp , for
vs /c50.1,v0 /vp52, anda50. ~b! Same as~a!, but for a50.05.~c! Enlargement of the origin of~a!. ~d! Same as~c!, but for a50.1. ~e!
Same as~c!, but for vs /c50.8 anda50.1.
e
v
t

e

ide-

ays

or
between (D2 ,D1) that is mainly electromagnetic, in th
sense that the pump wave decays into two sideband wa
through nonresonant plasma oscillations. If we continue
increasea50.05, from Fig. 4~e! it follows that there is a
new modulational instability between (S1 ,D2). This last
one is an ordinary modulational instability in which th
es,
o

pump wave decays into an electroacoustic mode and a s
band wave. The latter instability is always present forvs
>c2k0 /v0 .

In order to study the dependence of the parametric dec
on the pump wave frequency, we setv0 /vp52 andvs /c
50.1. In Fig. 5~a! the structure of the crossings is shown f
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a50. They are the same as in the previous cases, excep
;the scale is now much larger. In Fig. 5~b!, the pump wave
amplitude has been raised toa50.05. As before, there is a
avoided crossing between (S2 ,D2), and a decay instability
between (S1 ,D2). In Fig. 5~c! we have enlarged the origin
As before, there is an essentially electromagnetic mod
tional instability between (D1 ,D2), shown in Fig. 5~d!. For
vs>c2k0 /v0 , there is a new modulational instability of th
decay type. This is illustrated in Fig. 5~e! for vs /c50.8, and
a50.1.

Finally, in Fig. 6~a! v0 /vp54, vs /c50.1, anda50.
From Figs. 6~b! and 6~c!, it follows that the decays are th
same as in the previous cases, except that the unstable
quency range is much larger. In other words, the system
much more modulationally unstable for larger pump wa
frequencies.

IV. SUMMARY

We have studied parametric decays of a linearly polari
electromagnetic wave in an electron-positron plasma. T
has been done taking into account all relevant effects suc
harmonic generation, the ponderomotive force, and relati
tic effects on the motion of the particles in the wave fie
However, relativistic temperature effects have been
glected@24#.

We have followed a procedure similar to Ref.@9#. How-
ever, their treatment has several mistakes, such as, for
ample, the neglect of finite temperature in the longitudi
component of the force equation@see Eqs.~2!, ~27!, and
~28!#, and we believe the nonlinear procedure followed
them is also wrong at various levels, as discussed in de
in Sec. II.

We have shown that forvs<c2k0 /v0 ~see Fig. 3!, there
are two instabilities: an ordinary decay instability, and
essentially electromagnetic modulational instability. The l
ter instability may be responsible for the observational va
ability of the radiation coming from pulsars and active g
lactic nuclei. It is important to note that, for small pum
wave frequencies, the modulational instability has a v
short frequency range@see Figs. 3~d! and 4~d!#. However, the
frequency range increases with increasing pump wave
quencies@see Figs. 5~d! and 6~c!#.

In the case whenvs>c2k0 /v0 ~see Fig. 4!, there are also
two instabilities. Both of them are of the modulational typ
As the pump wave amplitude increases, the first to appe
the nonresonant one between (D2 ,D1). As the pump wave
intensity continues to increase, a new instability develop
which the pump wave decays into a forward propagat
electroacoustic mode and a sideband wave@see Fig. 4~e!#.
However, since we have not included relativistic thermal
fects @24#, the sound speed must be much smaller than
speed of light. Therefore, our treatment is only valid f
vs/c!1.

Finally, we want to stress the fact that our treatmen
based on the fluid theory. Therefore, important kinetic
fects such as Landau damping, do not appear in the mo
Kinetic effects may lead to threshold effects, which m
change the present results. Consequently, an approach b
on kinetic theory is lacking.
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FIG. 6. ~a! Nonlinear dispersion relation, Eq.~53!. Normalized
frequency,x5v/vp , vs normalized wave number,y5ck/vp , for
vs /c50.1, v0 /vp54, and a50. ~b! Same as~a!, but for a
50.05. ~c! Enlargement of the origin of~a!, but for a50.1.
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