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Parametric decays of a linearly polarized electromagnetic wave in an electron-positron plasma
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We study the parametric decays of a large amplitude, linearly polarized electromagnetic wave in an electron-
positron plasma. We include harmonic generation, the ponderomotive force, and weakly relativistic effects. It
is shown that whems/c<c/v, (v, is the electroacoustic velocitg, is the speed of light, and,, is the phase
velocity of the electromagnetic wayehere are two instabilities. One is an ordinary decay instability, in which
the pump wave decays into a sideband wave, propagating backward relative to the pump wave, and an
electroacoustic mode propagating forward. The other is an essentially electromagnetic nonresonant modula-
tional instability (which is due to higher order effects of the pump wave amplituidewhich the pump wave
decays into two sideband waves. Wheyic=c/v,, there is a modulational nonresonant instability, and an
ordinary modulational instability, in which the pump wave decays into a sideband wave and a forward propa-
gating electroacoustic modg51063-651X97)03709-4

PACS numbds): 82.40.Ra, 51.66:a

I. INTRODUCTION model equations are analyzed, and the nonlinear dispersion
relation is derived. In Sec. lll, the nonlinear couplings of the
Electron-positron plasmas are different from electron-ionpump wave to electroacoustic modes and to sideband waves
plasmas in many aspects, because, in the absence of iodte studied. In Sec. IV, the results are summarized and dis-
electron mass difference, there are no high and low frecussed.
guency scalefl].

The nonlinear decays of linearly and circularly polarized Il. THE MODEL
large amplitude electromagnetic waves in an electron- _ _ _
positron plasma have been thoroughly investigatsk[2] We assume that the electron-positron plasma is described

and references therein af@]). In the case of linear polar- by the following set of equations:

ization, the problem is more complicated because of har-

monic generation and density perturbations due to the pon- an; - -

deromotive force of the electromagnetic wave. This problem T V- (njpj), @

has been addressed by a number of auth®+9)] in connec-

tion with the observed variability of spectral characteristics P
. - . - - qi (- 1 - =

of active galactic nuclei and pulsaf40-14. In order to —+v--V)(F-v-)= hl (E+ Z 0. XB

account for the observations, Chian and Kerdglconjec- gt ! P m c !

tured that the electromagnetic pulse could experience nonlin- @)

ear modulation. Unfortunately, their results were proved to

be wrong, because they omitted harmonic generation and V.-E=4mp, 3)

ponderomotive effectgl5]. A full treatment was then pro-

vided by Kates and Kauf7,8], who showed that in a colli-

sionless electron-proton plasma, within a narrow frequency VxE=__-2

interval near,, the self-modulational instability is possible cat’

[8].

The subject of electron-positron plasmas is not only im-
portant in plasma astrophysics, but is also relevant in labo- VXB= —
ratory experiment§16,17. c
Thus, we study the parametric decay of a large amplitude

linearly polarized electromagnetic wave. Our treatment is - -

similar to Ref[9], but as we shall see, their treatment, in our J=2 anjv;, (6)

opinion, is wrong in several aspects. They neglected the '

pressure gradient term in the longitudinal component of the

force equation, but included it in their nonlinear treatment. =S qin @)

This term introduces changes both in the expression of the P qn;

dispersion relation of the electromagnetic wave and in the

KT -
KT
mny

4

: ®

nonlinear dispersion relation that gives the coupling to side- -5\ —1/2
band waves and electroacoustic modes. r=|1- vi ®
Thus, this paper is organized as follows. In Sec. Il, the J c? '
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wheren; is the density, ana;j is the bulk velocity of each d

J
N - — on=—ng — vy, 18
fluid (j = e for electrons and= p for positrong, E andB are at 09z "2 18
the electric and magnetic fields, respectively, is the

Boltzmann constant] is the total currenty is the adiabatic 9 8E,=4mre(6n,— ony), (19)
coefficient, T is the common temperatura) is the particle 0z
mass, ana is the speed of light.

Assuming that a linearly polarized electromagnetic wave ﬂ s _q
propagates along theaxis, in absence of relativistic effects, at 7 m

linearizing Egs.(1)—(8) we find the solution

1 YKT 4
5EZ+ E UOXBOy - m_no 5 (20)
We have neglected the factbrin the left side of Eq(20).

Eo=EoCogkoz— wol)X, (99  Infact, since the longitudinal velocity is much less than the

transverse velocity, andg<c, I'=(1-v3/c?) =1

- . +v2 /(2c?), then in the left side of Eq20) there would be
By=Bgcog koz— wot)y, 10 ox ' .
0= BocoskoZ ™~ wol)y 10 erms of orderév, and E36v,. This last term can be ne-
glected as compared to the first one. For the same reason, we
cko . I ; .
Bo=— Eo, (11  will neglect the relativistic correction tao, in Eq. (20),
@o since it contributes a term of ordef', which is negligible as

compared tax?, the order of the leading term. Moreover, as
we shall seedv, is of the same order as the first order
relativistic corrections,@?. Since we shall keep only the
leading corrections, we can neglect terms of the form
ov,w5,/c? and the relativistic correction 00,Boy -

Writing Egs. (18)—(20) for each species, and combining
them, yields

which satisfies the dispersion relation
w§= %K+ 2w?. (12)
This wave induces a particle velocity given by

;9% sin(Kez— wot)X (13)
U mwo 0 (O] . ( &2 &2

2 2
227 Us 52 onp+ wp(onp—6ne)

When relativistic effects are considered, the component of
Eq. (2) perpendicular to the direction of propagation of the eEy\?
. . . 2
plane electromagnetic wave can be written in terms of the o] Nokocog2(koz—wot)], (21)
vector potential as follows: 0

R >, P )
i (F5)= 9 d_A (14 (W vg (9—22) ONe— wp(6Np—dNne)
dt mc dt
eE\%
Assuming that the longitudinal component of the velocity is = (m_wo) NokoCog 2(koz— wot)], (22)
much less than the perpendicular velocity, integration of this
equation yields wherev = (yKT/m)*? and w,= (4me’ny/m)*?is the elec-
tron (positron plasma frequency. It is easy to see that these
- q,& qA 2] "2 equations admit an oscillatory solution induced by the elec-
v=—g| 1t W) } (15  tromagnetic wave given by

P~ _

Clearly, dealing with weak relativistic effects means ONp=ONe=~Noa"q Co$ 2(koz— wot) ], (23
qA/mc*<1, so that expanding the square root, the transversgn e corresponding longitudinal velocifglerived from
velocity is then given by the continuity equatiorl)],

2
vorm — TE Ginkoz— wot)| 1— % sir(koz— wt) Lo 2%
" mag oe %o 2 e @0t Ovp,= Ve~ —a K ¢ cog2(koz—wot)], (24
(16)
where
_eA ek 1 ,
T mZ mewy’ (17 azl c?kg (25
4 wg—vikg'

The transverse velocity induces a longitudinal velocity,

év,, through the term X B in the Lorentz force, and, con- The termuxB in the force equatior(2) implies that an
sequently, a density perturbatiofn. We shall calculate this electromagnetic wave of frequeney induces a longitudinal
effect by using Eqs(1)—(3) as a perturbation on a steady oscillation of frequency @&,. This is a nonlinear effedhar-
state in which the density is a constamg, and the longitu- monic generatiop of ordera?, which couples the transverse
dinal velocity isvg,=0. Thus, for each fluid, we have and longitudinal motion of the particles.
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Equationg23) and(25) are different from the correspond- 3 T ' v r
ing expressions given in Rdi9], namely, \
2 F . i
8Nnp=Nne=—nNoya’’q cog 2(koz— wot)],
2 2 T ]
q_4w02—wzp' - ol _

The differences arise because their expressions correspond t
density perturbations due to harmonic generation in a cold
ion-electron plasma. Indeed, following a similar procedure to

the one followed here, it is easy to show that their expres- -z / i
sions are valid for an ion-electron plasma where ion motion

2_ 21,2 2 . . . A ‘ ‘
can be neglected andg=ckg+ wp,. 35 = - - : > 3

Combining Egs(4)—(6) we find a wave equation for the
electric field of the waveey, . Using Eqs.(23) and (24), to
lowest order ina, we obtain FIG. 1. Dispersion relation of the pump wave, Eg7). Nor-

malized frequencyx=wgy/w,, vs normalized wave numbey,

2 1 & '23 P =cky/wy, for vg/c=0.1, anda=0.01.
(EZ_EZEZ)EOZ_ZW Eoﬁ{SII”I(kOZ—th) i

Eo=Eocogkgz— wpt)X, 29
— &%q sin(kgz— wgt)cod 2(Kez— wot) ] 0= EoCostkoz™ wot) @9

1 Bo=Bocog koz— wot)y, (30)
-5 azsins(koz—wot)]. (26) o momERReT o
Assuming that the wave electric field is still of the form BO:w_O Eo, 3D
(9) and, since

. . . giEo . a?
sin( ) cog 2¢p) = 3 sin(3¢p) —sin( )1, D10 g SNKoZ = wol)| 1= 7 sirf(koz—wot) |,
. : . (32
sin’(¢)=—3[sin(3¢) — 3 sin ¢)],

the resonant contributions to E6) give the dispersion Vjo,=— @’ %a cog 2(koz— wot)], (33
relation 0

w=Cc?kg+2w5(1-3qa?), 27 Njo=No+Njn=No{1—a’q cog2(kez— wet)}. (34)

-5 (28) Longitudinal and transverse perturbations are of the form

Hlw

q:
This is the dispersion relation of linearly polarized electro- 6C,=Re Ce'k*™ V], (35
magnetic waves in an electron-positron plasma when har-
monic generation, weakly relativistic effects, and thermal ef-2nd
fects are taken into account.
Equation(27) differs from the results in Ref9], not only ? ' ‘ ' ’
in the aforementioned incorrect expressiondorut also in \/

the factor3 beforeq, which, according to them, should be r ]
1

4

In Fig. 1 we show the dispersion relation of the pump 1t .
wave, y=cky/w, versus x=wq/w,, for a=0.01, vs/c
=0.1. The straight lines correspond to the electroacoustic .. ;| : _
modes, and the parabolas to the electromagnetic modes. In
Fig. 2, the same dispersion relation is shown, but dor
=0.5. We see that starting at;=0 andk,=0, there is an
electrostatic instability. However, since the small parameter
is a, from Eq.(17) it follows that the dispersion relation is -2r ]
not valid for wg values close to the origin. /\

We now perturb the system assuming that it consists of -3 . . <
electrons, positrons, and a linearly polarized electromagnetic
wave satisfying Eq(27)—the pump wave. The zeroth order
solution is FIG. 2. Same as Fig. 1, but=0.5.
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8C, =Rgc etz ey c_glk-zm0-0] (36 v
. ! 8(Tv,)= 1+§€OTX Sv,.
respectively, withk. =kg* Kk, w+=wy* .
To lowest order,
Defining
1 v%x
Fozl-i- 5—2,
c oV= 5pr_ (5Uexa
and
S(Tvy) = Tvg+Tdvi, i=x2, OU=0vpt Suez,
so that SN=8ny+ one,
5
X
= + — .
dlvy)=|1+7 ?_) SV the perturbed equatior(¢)—(8) are
|
3 voox a a 1 vy e 1
1157 |V | +vpo; o OVH+OU — || 1+ 5 =5 |vpox| = | 20Ex— < (8UBoy+2050,0By) |, (37)
i 1+1U‘2)°X5U+07 SU)= —— (8VBoy+ 20 0,08 vg&éN 38
at 2 2 9z (Vpoz0U) = mc( oyt 20 poxSBy) No 9z ) (38
J Jd
=t ON=——[(ng+npp) 8U+ ONv ., (39
7 oe-—27 o8 40
a2 5= By 40
d 47re 190
- E 5By:T [(ng+ nph)5V+ 5va0x]+ E E OE, . (41
Combining these equations, we obtain the following set of fundamental equations:
2 2
J 3 vaX Jd Jd 1 UpOX e 1
E 1+§7_C SV +Up0255\/+5u 5 l+§? U pox :E 26EX_E(5UBOy+zvaZéBy) , (42
9 Loge| , & J
W +§—2 —Ug P 5U=H:E(5VBOV+ZUDOX5BV), 43
16 & Ame 9
237 572 By =5 55 [(No+ Npn) 8V + SNvo,]. (44)

Replacing in Eqs(42)—(44) the assumed space and time dependgBqgs.(35) and(36)], and selecting the resonant terms,
yields

o152 a2t 2 i Vo= 26+ L a2 P 45
+lw+ -I—Za i—l? Zwi+k—0q + :—m ei+Ea k_oq = (45
2
1. %) _ 225 &8 S P P
® 1+4 vek U—mCIwZ(V++V_) Imw0 1 g« (by—b_)|, (46)
b. 4me 1 N [ eE 3
_ 2 21,2 - i _ = 27\ _ N __ 2
(— w5 +c%ks) ke +i c no<v+ Zaqv+)t|2(mw0)(l sa) 47

From the continuity equation and Faraday’s lad), (4),
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- kU
N=ng —, (48
w
2= 49
et_; + . (49
Thus from Eq.(45),
V_+ie 2bi 3 ,[b. 1bs -
== Eme %k 2%k T2k ) 50
Replacing Eqs(48)—(50) in Egs.(46)—(47), yields
1 3 b b- Eoc1 N 3
2,2 2 2la_ =2 ,2 22 =22 2 ¥ 2202V, 2 2
c°ks w++2wp<l an) wp (4+q k. mpaqkI wp wOZHO(l 801), (51
1 N e . eE 3 b, b_
2 o2 22— 2 [ N S
1) 1+4a) vek g mk ma()(l 8a>(k++k)' (52
T
Upon elimination of all quantitiesﬁ,bi), from Eqgs.(51) In order to compare the_se equations with our results, we
and(52), we obtain the following nonlinear dispersion rela- have repeated our calculations in terms of the vector poten-
tion: tial, using their notation, and following their procedure,
properly including relativistic effects. Then one obtains the
0=9[D,D_—w2e?3+G)(D,+D_)] zeroth order dispersion relatid@7), and Eqs(56)—(58) are
P replaced by

+3wia?c?k (1-3a?)(D, +D_) - 40)e?q], _ - -
53 [Ds- wia?(5+0)]0A— wi0a?SA* = — wi SNA(1-§a?),

(59
where
2 2/3 NI SAK 24 2SN 2 oN) _3 2
D.=c%k2— w2 +203(1-1qa? (54 [D-mwpe G+ QIOAT = epfatoA= — opdNALL 8?’63
* + * p 2 !
S=w?(1+1a?) —v2K2 (55)

[(1+}a)w?—v2k?]oN=}

e 2
H:) K2A(1—$a?)
Clearly, whena=0, D.=0 andS=0, which correspond

to the electromagnetic waves and the electroacoustic modes. X (5Z+ 5’,&*)_ (61)
There are two electroacoustic modes, one propagating in the

direction of the electromagnetic wave, and the other in the We note that our quantities are related to those in [2af.
opposite direction. They are denoted By andS_, respec-  through
tively. Whena # 0, the modes are coupled. A necessary con-

dition for wave coupling is thahwy=w;+ w5, with n
=0,1,2,3..., wherew, and w, are the frequencies of the
daughter waves. i A (62)

The dispersion relatio(63) differs from the result given *

in Ref. [9]. In order to compare their results with ours, we
now write Egs.(25), (26), and (38) in Ref. [9], which, as-

suming(without loss of generaliw&o real, can be expressed — 5K*, (63
as

(D — t02qa?) SA- S w2qa?6A* = — w2SNA(1- tqa?), L
(56) S — N, (64)
(D_— %w%qaz) SA* — %wgqazﬁxz — wgéﬁA(l— 1ga?),
(57) consistent withV X A=B and the respective definitions of
; Fourier transform of the potential and density perturbations.
_ e o . . e )
2212 = 2 * Taking these identifications into account, E¢s9)—(61)
(0" ~vsk) N (mc) AKZ(OAT SA7). (58) are exactly equivalent to our equatiof®&l) and (52), and,
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FIG. 3. (a Nonlinear dispersion relation, E¢53). Normalized frequencyx=w/wp, vs normalized wave numbey,=ck/w,, for
vs/c=0.1, wg/wp=1.5, anda=0. (b) Same aga) for «=0.01.(c) Enlargement of the origin ofa) for «=0. (d) Same agc), but for
a=0.03.

therefore, give the same dispersion relation, Exg), we  Only the last two satisfy the conditions given above. In order

obtained by using an independent method. to see whether they lead to coupling, we switch on the pump
wave. Thus, taking for the pump wave anvalue of «
Il. WAVE COUPLING =0.01, we obtain Fig. ®). From Fig. 3b), it follows that

the crossing betweenD(_,S_) is an avoided crossing, as

We now solve Eq(53) graphically, using the method first expected, because it does not satisfy energy conservation.
derived by Longtin and Sonner(ip8] (see als¢19-22). To  The next crossing, namely, the one betwebn (S, ), leads
this end, we plot the dispersion relation, E§3), in the  to a coupling. In fact, at this crossing there is now a gap,
upper half of thew-k plane. The lower half plane can be which means that two roots of E¢63) have become com-
obtained by rotating the upper half plane through an angle oplex conjugate. Therefore, at this crossing there is an insta-
180° through the origin. There are four lines correspondingility that corresponds to an ordinary decay instability where
to D.=0 (labeled on Fig. 3 a®.) and two straight lines the pump wave decays into a sideband wave corresponding
symmetric around the origin, corresponding to the electroato a solution ofD _=0 and an electroacoustic mods, .
coustic modes, one propagating backwards relative to the Next, in Fig. 3c) we investigate the crossing at the origin
pump wave §_), and the other in the same direction as theof Fig. 3(a), for «=0. In Fig. 3d) the pump wave amplitude
pump wave §,). Notice that the dispersion relation is of has been raised #®=0.03. We see from the figure that at the
order six inw andk. In Fig. &), we illustrate Eq(53) for  crossing between, ,D_) there is now a gap. This gap is a
wol/w,=1.5 with a correspondingk,/w,=0.5, for «=0.  modulational instability corresponding to a nonresonant de-
The other parameters are indicated in the figure. There areay of the pump wave into two sideband waves, of frequen-
some crossings between the lines. These are, from left toiesw, andw_ . This decay is essentially electromagnetic,
right, a crossing betweenD(_,S_), another at the origin but is mediated by plasma oscillations that are not normal
betweenD_, D,, andS,, and one betweenD(_,S,). modes of the systefi23] and it is of higher orderQ(a?*).
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FIG. 4. (a Nonlinear dispersion relation, E¢53). Normalized frequencyx=w/wp, vs normalized wave numbey,=ck/w,, for
vs/c=0.5, wo/w,=1.5, anda=0. (b) Same aga), but for «=0.08. (c) Enlargement of the origin ofa). (d) Same agc), but for «
=0.01.(e) Same agd), but for «=0.05.

In the case when the plasma temperature is increased toc’k,/wy, S, will always crossD_, thus giving rise to a
vs/c=0.5 [Fig. 4@)], there are crossings between decay instability, and whew=c%ky/wy, S, will cross
(D_,S.), (D4,S;), and one at the origin. In Fig.(ld we D, an avoided crossing when the pump is switched on. In
have raised the pump wave amplitudente 0.08 in order to  Fig. 4(c), we have enlarged the origin far=0. In Fig. 4d),
show that the crossings betwedn (,S_) and O, ,S,) are  we have raised the amplitude of the pump wave ato
now avoided crossings. It is easy to see that for =0.01. One can see that there is a modulational instability
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FIG. 5. (@ Nonlinear dispersion relation, E¢53). Normalized frequencyx=w/w,, vs normalized wave numbey,=ck/w,, for
vs/c=0.1, 09/ w,=2, ande=0. (b) Same aga), but for «=0.05.(c) Enlargement of the origin af). (d) Same agc), but fora=0.1.(e)
Same agc), but forv,/c=0.8 anda=0.1.

between D_,D,) that is mainly electromagnetic, in the pump wave decays into an electroacoustic mode and a side-
sense that the pump wave decays into two sideband wavesand wave. The latter instability is always present #qr
through nonresonant plasma oscillations. If we continue ta=c?ky/wg.

increasea=0.05, from Fig. 4e) it follows that there is a In order to study the dependence of the parametric decays
new modulational instability betweerS( ,D_). This last on the pump wave frequency, we s8§/w,=2 anduv/c

one is an ordinary modulational instability in which the =0.1. In Fig. %a) the structure of the crossings is shown for
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a=0. They are the same as in the previous cases, except th:
;the scale is now much larger. In Fig(b}, the pump wave

amplitude has been raised 46=0.05. As before, there is an or
avoided crossing betweets(,D _), and a decay instability 3+
between §, ,D_). In Fig. 5c) we have enlarged the origin.

As before, there is an essentially electromagnetic modula-
tional instability betweend . ,D _), shown in Fig. &d). For &
vs=c%Ky/wy, there is a new modulational instability of the > s}
decay type. This is illustrated in Fig(& for vs/c=0.8, and

a=0.1.
Finally, in Fig. 6@ wy/wp,=4, vs/c=0.1, anda=0. 3r
From Figs. b) and Gc), it follows that the decays are the s

same as in the previous cases, except that the unstable fre
quency range is much larger. In other words, the system is
much more modulationally unstable for larger pump wave 0
frequencies.

IV. SUMMARY

We have studied parametric decays of a linearly polarized
electromagnetic wave in an electron-positron plasma. This
has been done taking into account all relevant effects such a 6
harmonic generation, the ponderomotive force, and relativis-
tic effects on the motion of the particles in the wave field.
However, relativistic temperature effects have been ne-
glected[24]. 3t

We have followed a procedure similar to RES]. How-
ever, their treatment has several mistakes, such as, for ex
ample, the neglect of finite temperature in the longitudinal r
component of the force equatidsee Eqs.(2), (27), and
(28)], and we believe the nonlinear procedure followed by
them is also wrong at various levels, as discussed in details
in Sec. Il. 2.0 -+ ; . .

We have shown that for<c?k,/w, (see Fig. 3, there
are two instabilities: an ordinary decay instability, and an
essentially electromagnetic modulational instability. The lat-
ter instability may be responsible for the observational vari- 141 .
ability of the radiation coming from pulsars and active ga-
lactic nuclei. It is important to note that, for small pump
wave frequencies, the modulational instability has a very
short frequency randgeee Figs. &) and 4d)]. However, the 08F 4

frequency range increases with increasing pump wave fre-

0.6 1 R

guencieqsee Figs. &) and Gc)].
In the case when=c?k,/w, (see Fig. 4, there are also 04 r 1
two instabilities. Both of them are of the modulational type. 02k .

As the pump wave amplitude increases, the first to appear is
the nonresonant one betwedd (,D ). As the pump wave
intensity continues to increase, a new instability develops in

0.0
-1.0 ~08 06 ~-04 -02 00

L

L

X

0.2

0.4

0.6

Q.8

1.0

which the pump wave decays into a forward propagating . . _ ) .
electroacoustic mode and a sideband whsee Fig. 4e)]. FIG. 6. (&) Nonlinear dlsper_smn relation, E¢63). Normalized
However, since we have not included relativistic thermal ef-Téauencyx=w/w;, vs normalized wave numbey=ckiw,, for
fects[24], the sound speed must be much smaller than thl—ijlc:o'l’ wo/wp=4, and a=0. (b) Same aS(a)’_bUt for
speed of light. Therefore, our treatment is only valid for_o'OS'(C) Enlargement of the origin of), but for «=0.1.
v/c<l.

Finally, we want to stress the fact that our treatment is
based on the fluid theory. Therefore, important kinetic ef-
fects such as Landau damping, do not appear in the model.
Kinetic effects may lead to threshold effects, which may This work has been partially supported by FONDECYT,
change the present results. Consequently, an approach basggnt No. 1960874, and Proyecto Trinacional, Fundacio
on kinetic theory is lacking. Andes, No. C-12999/6.
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