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Modulational instability of a circularly polarized wave in a magnetized electron-positron plasma
with relativistic thermal energies
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A circularly polarized electromagnetic wave, propagating in the direction of an external magnetic field in an
electron-positron plasma, is known to be unstable for frequencies less than half the plasma frequency. This has
been shown by taking into account weakly relativistic effects on particle motion in the wave field, and
nonrelativistic temperatures. Here, we include fully relativistic effects on the thermal motion of the particles,
and show that in the ultrarelativistic limit the system is unstable for all frequencies satisfyingo. and
wp<(1])1/2wc, whereowy is the gyrofrequencyw, is the plasma frequency, anglis the ratio between the rest
energy density and the enthalpy of the system. In the limit of nonrelativistic thermal motions, the results
obtained previously are recoverd®&1063-651X97)03609-X

PACS numbdps): 82.40.Ra, 51.66:a

[. INTRODUCTION magnetic field. We neglect phonon damping. In the nonrela-
tivistic temperature limit, we recover the results [&f—

It seems to be well established that electromagnetic radiawhich also reduces t@8] for zero magnetic field—except for
tion originating in pulsar magnetospheres experiences amplin overall factor of two, which is clearly a misprint and does
tude modulatior{1—3]. Chian and Kenne]4,5] proposed a hot alter their conclusions. We show that in the ultrarelativ-
self-modulation mechanism to account for the observationgstic thermal limit, the plasma is modulationally unstable for
They derived a nonlinear Schiimger equation that, unfortu- 2l frequencies satisfying < nw, and forw,<(7)w;.
nately, was shown to be incorrd@,7] because they ignored  This paper is organized as follows. In Sec. I, the basic
two sources of nonlinearity. On one hand, they did not in-equations are d'SCUS_Sed- In Sec. lll, by using a mu_ltlscale
clude harmonic generation and, on the other hand, they digPace-time perturb_a_tlon approagtee, e.g.[ll_]), we de”"?
not consider the ponderomotive force. all required quantities necessary to obtain the nonlinear

Kates and Kaug8], by observing that ponderomotive Schralinger equation. In Sec. IV, we obtain the nonlinear

forces, relativistic corrections, and harmonic generation a"?,chrujmger equation. In Sec. V, the nonlinear Salinger

; ; ) . .~ equation is analyzed. In Sec. VI, the results are discussed.
contribute cubic terms in the amplitude, were able to derive aq Y

cubic nonlinear Schuinger equation. Assuming weakly

relativistic effects, they showed that in an unmagnetized cold Il. BASIC EQUATIONS

_electron-posit_ron pl_asma there is no amplitude modulation, \ya shall study an electromagnetic wave in an electron-
in contrast with Chian and Kenngd]. The result was then ,qitron plasma propagating along an external magnetic
generalized to include finite thermal effects. In this case, thgjg|q. We will include weakly relativistic effects on the par-
plasma was shown to be modulationally unstable in a narrowicle motion in the field of the electromagnetic wave, but

range just above the plasma frequency. _ fully relativistic effects in the particle thermal motions.
Later on, Kates and Kauf®] studied the propagation of The basic equations afeee[10])

an electromagnetic wave in the direction of an external mag-

netic field. They showed that for frequencies<w,/2, =
2/ 112 i P h R 1 v; dp -1 -

wherew,=(4mnye“/m)~<is the plasma frequency, the sys- —; T (noi))=——Vp—= v FTREAL E+—-uv;XB/,
tem is modulationally unstable. ¢ Y ¢ ¢ L

More recently, Grattoet al.[10], by extending the theory @)
in order to include ultrarelativistic effectgelativistic tem-
peraturesand phonon damping in an unmagnetized electron- Jyin; N IYINV | —0 |- @)
positron plasma, showed that relativistic thermal energies ot gz —&p

change the stability results found by Kates and Ka8p
Three cases were analyzed[t0]. First, when the damping |\ here
is O(el?) and O(e*)) (e is the perturbation paramejea
modulational instability is possible for all frequencies and 22\ —1/2
temperatures. When the phonon damping is very small, %:(1__'2) . l=ep 3
O(€?), the modulational instability occurs in a finite band c
near the reduced plasma frequency, for ultrarelativistic tem-
peratures. and Eq.(2) is the continuity equation.
Here we extend the work dflL0] to include an external Equation(1) is obtained from the space components of
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1
g T =2 1LF, (4)

upon using the time component

dy 1dp dp

a—;ﬁ—ya-l—qnﬁ-é. (5)
In Eq. (4),
T#"=£%u#u”—pgﬂh (6)
FAY= gAY — 9" AH, (7)
j“=aqnu. ®)

The electromagnetic potentiald*=(¢,A"), are related

to the electric and magnetic fields through

LA 9
T o, 9
B=VXA. (10)

The metric tensog,,, is defined byds’=g,,,dx“dx”,
where ¢,,=(1,-1,-1,-1), (u,»)=0,1,2,3, and dx*
=(cdt,dx) with [=1,2,3, andu= y(c,v").

In the energy momentum tensdr”, h=nmc+e+p is
the enthalpym is the proper mass of the particlasjs the
internal energy, ang is the pressure.

We now assume that we have a finite amplitude circularly 7
polarized wave propagating along thelirection—the direc-

tion of the external magnetic field—so that

A=(Al(2,1),A/(z,1),0). (11)

4575
32 9\~ 4mg? v v
_ 2 — x.p Zx€
(Ez c W)AX m ( L,p r1L,e c )- (17)
&2:;') 47'rq2 Uzp Uze
Cotaz- m \Mp g TMeT) (18)

wheren, = yn, andA*=(gq/mc)A*.
Finally, the equation of motion can be written in the fol-
lowing form:

d h Uy ~ oL

dt | nme 7€+ULAX :?UyBOZu (19
d h vy ~ o
a W7?+0—LAy :_?UXBOZ: (20)

d( h vz) c ap I

dt inm@?¥¢)” ynme oz 7C oz

oA, A

+o. UXE‘FUya—Zy), (22

where

a

It is convenient to introduce the constafand 7 as

_ ngmc 23
- =h

r

ho

Fromu,d,T#’=0 we obtain the equation for adiabatic where 4/3<I'<<5/3 is a polytropic index such that/p,

motion,
de B h dn 12
a_ ﬁ a’ ( )
which is equivalent to
1dp d [h 13
ndtdt\n)’ (13

Using this equation, along with Eq$9) and (10), the
components of Eql) become

d/{h vy ¢ q
gt (H: YoTe Ax) = ¢ VyBoz, (14

d/h v, ¢ o}
a(n—c’y?‘FEAy)—_vaBOZ, (15)
d(h v, d¢ 1ap+q an+ aAy
di\nc?¢)” "z oz c\"az " az)
(16)

On the other hand, the potentials satisfy

=(n/ng)", h=Tp/(I'-1)+nmc&, ande=p/(y—1), with
the understanding that dS approaches the value 5/3 we
must setp<nmc (see[10]).

For low thermal energies,

n=1-%6, (25
6= ZU—§2<1. (26)
c°+(3/2vg
On the other hand, in the ultrarelativistic limit,
n<1, (27)
5=1%. (28)

ll. THE MULTISCALE PERTURBATION METHOD
We assume that all quantities can be written in the form
G=Go+eGY+ eGP+ 63+ | (29

Thus, to zeroth order i, the electromagnetic potential,
the density, and the enthalpy, are given by
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Ag=(—1yBy,1By.0), 30 and all other quantities are zero to order one. N
0=(~2YBo.2B0.0) 30 We shall now calculate the second order velocities.
no= const 31) From Egs.(36) and(37), to ordere, we obtain
2 — 9 d 2 7
ho=ngmc =+ pg+ €, 32 —= - —
0= No PoT €o (32 2 ( w - —+e€T] — a 2ewTy YTl (45)
whereBy is the external magnetic field. X ) )
The first order electromagnetic potenidf) is given by a “(k i+ 7 J okeZ (46)
typical Fourier component, 972 26 "t ga? L vans’
AL =a(x+iy)elikz-ion, (33)  where
We shall now solve the problem to ordet by using the da
multiscale perturbation approach, which assumes that the lem’ (47)
amplitude depends weakly on space and tjthH,
a Z,= o 48
—=€Ty(a,a*)+€’Ty(a,a* )+ Ta(a,a*)+- -, 16z, (48)

at
(34

oa

= €21 1(a,a*)+ €?Zy(a,a* )+ €3Z5(a,a* )+ -

(39

and the corresponding complex conjugate quantities.
Thus,

&t=—wz99+ E(Zlaa'f—zfaa*)—'—”'l (36)

=Kyt €(T1da+ T dgx )+ . 37

To first order ine, Egs.(19) and(20) yield

1d v =i J - .
_ Z AL A
(ﬂdt_IULwc) Cc O'LT]_ Ja (A _|Ay )
(38)
From the last equation it follows that
~(1) i9
] X+iy)e
Pe:_UL%iH.Q (39)
where
AD=3(X+iy)e’+c.c., (40)
-~ q
a= m a, (41)
Lo 42
ﬁi—;—;, (42

and w.=|q|Bgy/mc is the gyrofrequency.
From Egs.(17) and(39), to ordere, we obtain the disper-
sion relation,

1 1
w?=c?k?+ wg 77— + 77—) , (43
+ —
47g°n
aﬂ:& (44)

p m !

andt;=e€t, andz,=ez.

To ordere?, Egs.(19) and(20) yield
(2) 45.,(2) (1) 5,,(1)
g _ho vy | Lok Floy + o (AL =AW
dt |[ngmc® c 7 y
. vg( ilv(z)
=F oL wd (49
From Eq.(49) it follows that
=(2) z
p.e w, Jda i0
= — el
c wznﬁ,e e e'’+c.c (50

From Eq.(17), to ordere?, we obtain

d c’k J -
2 A 5 | AP 20| T+ — 7, | — ALY
@ ¢ aaz) @\ T4 53

iw;‘;wc

w2

1 1
———|. (B)
ny 7

SinceA(® can be taken to be zefsee[8,9)), it follows
that

T,+Z ek 1+ wgw"( L 1) _1—0 (52)
T R Tl P | B

On the other hand, from the dispersion relation, &g),
we obtain

_Czk N wgwc 1 1 53
v~ |1 207 |2 &3
From Egs.(52) and(59) it follows that
T, +v4Z,=0, (54)
which, in terms of the amplitude, is given by
B g2 o 55
at, 99z, (55)
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Upon elimination of secularities, one finds that neitb&?

2
o @ nor n{?) depends on theta. Therefore, adding up the continu-
' ity equation for electrons and positrons yields
161
(2) (2)
N +n
ar @2y ,2_  bp Le
14 VypTUse=Ug o (58)
12r il
-l | Using
o8t AV =ae’+c.c., (59)
06 . .
Al =iae’—ia*e’, (60)
0.4r b
02t ] 1) a o
Uxpe= 0L e'’+c.c., (61
o . TMp.e
0 05 25
a . a* )
1 — i0 —i0
v =—0 e'’— e , (62)
2 b y.p.e - Mp.e Mp,e
1.8 !
® da . oda*
16- B (2) _— C ALl e*lt‘) 63
Oxpe™ 71 27 | Gty aty . (69
1.4f g B
2 ] @ _ 7 Tefice 64
> 4r Uy,p,e w27]2: 1 e ( )
o8r and adding up Eq(56) for electrons and positrons, upon
oel | elimination of secularities, we obtain
0k ] n?+n?  2n®  sc?2aa* [ 1
= —+—|, (65
02f No No F [/
% 05 25 where
n@ .
FIG. 1. Dispersion relation, Eg¢43). Normalized wave number, ey no2aa*, (66)
y=kc/w¢, vs normalized frequency = w/w., for w,/w.=1/2, 0
and(a) =1, (b) »=0.5. 2
o= —= (w2+czk2—2kvgw), (67)
This equation means that the amplitude is constant in a wpF
frame moving with group velocity of the wave. ) )
Note that the effective plasma frequency is now given by F=vg—ac”. (68)

—2

= yw.. This is illustrated In Fig. 1, fofa) =1 and(b) 7
=0.5.
To third order ine, Eq. (22 yields

o vPr? o (00 Zaa
o e~ oc— — 2|~ noc
<9'[ C (?Z n(o) 77i
(2) (1)\ 4A(1)
d - ~ vy, tv 0A
X — 1+ b2 L c X TX X
z? te K c 9z
0@+ GAD s
c Jz (56)
To third order ine, the continuity equation yields
(3) (2)
d n>+ny’ d
=—— v +ul. (57)

at N 9z

w5=rnw, (see [10]), and the resonances occur af;

On the other hand, to second ordereinfrom Eq.(18) it
follows that

=2 (69)

Subtracting the continuity equation for electrons and pos-
itrons,

%(W%Onm):%(vz,p—vz,e), (70
and using Eq(69), yields
nZp=ne. (71)
Note that
n? n? 1 oM p(?
My no 2 & (72
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Therefore, from Eqs(65) and(71), it follows that c2k wgwc ( 1 1 ) -1 D
_ . Vg=—— S5 3|77 ;
nl(_z,ia,e n o&c?aa* [ 1 . 1 ) 73 w 207 \ 92 7%
NE) T
n n F Z
0 0 T W c’k dv 1o 2 vgwcwp 1 1 87
Let us now calculate®. From Egs.(19), to ordere®, it g ok |© TV T A 82
follows that
2
2 2 wvy C°7y
d|1o@+0v@+v 1[10{ +v§,1) N sn@)\ M Cp:_p?gm (2kovg— w?—c%?)?
dt|»n c nl2 c ng | ¢ P
, 06vgw [ 1 1
~ v§/3) +pr ==+ =], (83
+o. A=(T|_wcT. (74) [/ -
. L . . . wvg [ 1 1
When this equation is combined with a similar one for  Cg= wg —— | —+—7|(1-6)
vy, Eq.(20), we obtain ckn\nt 9t
2 2 2 2
0 L aovg® (1117 g (vGs suwg
T:Se'p(x+ly)e +c.c., (75 P2kyF | 72 2 2 |\ F KE
1 1 1 1
where X| =+ — —+—) (84)
9n “ Ny M-)\M+ 17—
s - w. 19 a+ i 1 da
SPT T pd g, o] o\ TF) a7 From Eq.(42),
o (1| oag ) (1] e
- PR—— = L =— + _— ] = — = — .
P P (el Eak iy e e e
224 2 225
to 2a‘a” ( _ UL5 to soa‘a* Therefore, the coefficient§p andCg can be rewritten in
L ognt F LA the form
kvg6c?2a%a* w0 2
oL , (76) C :__9_77 2k — 02— c2k2)2
wF 7 PTG Fo? (PReveT 0t )
and gévgwn? [ 1 1
top—a =zt =), (86)
t]_:Et, (77) 7+ /=
=€, (79 and
It is important to point out thah(® andA(®) can be taken , wvgn® [ 1
equal to zerdseg[8,9]). We can also calculate other second Cr=wp 2k |\ F t=r|(1-9)
. . + —_
and third order quantities, but we already have the necessary
information to calculate the nonlinear Sctilger equation. , wvgdn® [ 1 N 1\2
This is done in the next section. Y% TOokE 77; 7;
IV. THE NONLINEAR SCHRO DINGER EQUATION 2 3 5vg 5wvg 1 1 1 1
i i ; ; T @p7 = KE = t=||=*+t=].
Equation(17), to third order ine, yields ny N\ N+ 77—
87)
2 2 (3)_,, (3 (2) (1) (
(‘”7_2_02 ‘7_2>A<1):€3w2 Yxp~ Uxe (MM
X P "
ot 9z c Mo € V. ANALYSIS OF THE NONLINEAR SCHRO DINGER
2 1
~ nl(_’()e % 79 EQUATION
ng ¢ The first term inCp is
Using Eqgs.(39), (73), and(75), we obtain . 4(0%&)703773 1
A vy A, P70 AR (0?-w))?
2iw —+w — — +a°a*[C,+2Cg]=0, (80
ar oK 3¢ P ) 252 2otat |’ "
X| 1+ -
wz_ag (wz_wﬁc)z ' (88)

where
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and the second term is 10w? c252
1+t —=|A=0) - —FT—mar
4w,2;5véw67;3 255 @c vz(l_ (2: )
= 1+ 9
Cp2 P (02— D)2 o Vg
6w’ 202038
—2—3 —2 p
Wpw 2w X[ 1+ -
—2((»23%2)2 1+ wz_%z. (89) 53) kvg(1—8c?/v]) wp
Cc Cc
8w?
On the other handCg=Cg;+ Crp+ Crs, Where X1+ = ) (98
C
2w2w57;31) 8w’w? .
= P g ¢ From Eq.(81), it follows that
Cr1 A 1+ @b (90 q
L 20, 1+ “ 99

ﬁ —_— f=—q
UL T P T RN e
R2 2kF(w2—ECZ)2 wz—acz '

and, from Eq.43), we obtain
_4(73577209(04 1) 1+ w? o7 w? _ 1 _1 ZEzp (100
R F(wi—wd)? Vg™ K 0=l (92 K2 1—2(17;/((02—_02)_ w2

Assumingw,/w.<1, andw<w., the coefficients can be

written in the following form:

Using Eqgs.(99) and (100 in Eq. (99), yields

CotoC 452,)7720)509 1 1 6w? 25;
+ = -1+ +
432p7]2w505 6w? ZEZP i " kcwg _ ﬂ:; ENT
Cpi=——F—5——| 1+ + , 93
P1 kCZFag wﬁ: acz ( ) Ug
w? 4w} 25w},
452,)505(061]2 4w ¢ ¢ ¢
ceT K 1+5°E ’ o 1+ 0o” 1-6)— 6% 1+ 6w2+ 20
x p— — —_—
o |70 o
and
wﬁr‘pwz 8w?
t— |1+t = (109
a)C wC
Cryi= 2wy’ 7vg (1-98)| 1+ sz) (95)
M ko wg |’ V1. DISCUSSION
The last term in Eq(101) is negligible with respect to the
—5 5 0.2 2 others.
Cro= M 1+ 6_“’2 ) (96) In the ultrarelativistic limit,6=1/3 and»<1, so that
kFwg wg
Cp+2Cgr<0. (102
45;5772(»8115 8w?
Cra=~ k’c’Fw? 1+ w2 | ©7) The general condition for instability of the nonlinear
Schralinger equation, E¢80), is
Using Egs.(93)—(97), we obtain
-2 2 3 —2 v
oot oc Aoyt vgl 1 /1+ 6w2+ 20, ® —2 (Cp+2Cg)>0. (103
P RT T 2ot { 502\ 22 o2 ok
c 1— c c
Vg From the dispersion relation, EG13), it follows that, for
s 4 w<w;, the second derivative ab with respect tok is al-
_ w—“ 1+ _“2’ ways negativégsee Fig. 1 Therefore, the system is modula-
vgk(1—oclvg) wg

tionally unstable for all frequencies satisfyirg< w, .
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For nonrelativistic thermal energie8<1 andn=1 [see This is the result of Kates and Kadp], except for an
Egs.(27) and(28)], so that Eq(101) reduces to overall factor of 2. Note also that the plasma frequency of the
5 system is 2,,.
Cot 2Coms 4wpw Vg
P TTR kePwg(1-civ))
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