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Scattering of light from small nematic spheres with radial dielectric anisotropy

Huseyin Karacali,1 Steven M. Risser,1 and Kim F. Ferris2
1Department of Physics, Texas A&M University–Commerce, Commerce, Texas 75429

2Department of Materials Sciences, Pacific Northwest National Laboratories, Richland, Washington 99352
~Received 5 May 1997!

We have calculated the scattering cross sections of small anisotropic nematic droplets embedded in a
polymer matrix as a function of the dielectric constants of the nematic and the polymer. We have derived the
general form for the Helmholtz wave equation for a droplet which has spatially varying radial anisotropy, and
have explicitly solved this equation for three distinct models of the dielectric anisotropy, including one model
where the anisotropy increases linearly with droplet radius. Numerical calculations of the scattering amplitudes
for droplets much smaller than the wavelength of the incident radiation show that droplets with continual
variation in the dielectric anisotropy have much larger scattering amplitude than droplets with fixed anisotropy.
The scattering from droplets with linearly varying anisotropy exhibits a scattering minimum for much smaller
polymer dielectric constants than the other models. These results show that the scattering from small aniso-
tropic droplets is sensitive to details of the internal structure and anisotropy of the droplet.
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I. INTRODUCTION

There has been much recent interest in scattering f
anisotropic spheres. In the field of liquid crystals, this int
est has been stimulated by the development of a new gen
tion of displays and electro-optical devices@1# based on
polymer dispersed liquid crystals@2–7# ~PDLC’s!. These
materials consist of dispersions of small liquid crystal dro
lets embedded in a uniform polymer matrix. The optic
properties of PDLC’s are controlled by modulating the stru
ture of the nematic director with an external electric fie
Variation of the director alters the effective index of refra
tion of the droplet, changing the transparency of the PD
@8#.

The droplet structure and its optical properties are de
mined from the positional dependence of the nematic or
parameter, which is a second rank tensor. However, the
required quantities for uniaxial nematics are the director fi
@9,10# and the positional dependence of the scalar order
rameterS, which describes the degree of alignment of m
ecules with the director. The director configuration is dep
dent on many factors, including the size of the drop
elastic constants of the nematic, the anchoring energy,
orientation at the nematic-polymer interface, and the mag
tude of an external electric or magnetic field@11–13#. For
droplets with strong normal anchoring and no external fi
@12,14,15#, a commonly observed director configuration
the radial configuration, where the director is oriented alo
the radial unit vector. The dielectric tensor for a droplet w
a radial director configuration is diagonal in spherical co
dinates, with a value« r in the radial direction and« t in the
tangential directions. The magnitude of the components,
the anisotropy, is determined by the magnitude of the or
parameter (S) in the nematic phase@16#

« r5« iso1
2
3 «aS, « t5« iso2

1
3 «aS, ~1!

where« iso is the dielectric constant for the isotropic phas
561063-651X/97/56~4!/4286~8!/$10.00
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and«a is the maximum dielectric anisotropy.S ranges from
0 in the isotropic phase to 1 in the perfectly ordered pha

There have been several previous scattering studie
droplets with radial anisotropy. Roth and Dignam@17# de-
rived the general form~series expansion! for the scattering
cross section for spheres with constant radial anisotropy,
explicitly calculated the cross section as a function of drop
parameters in the small particle limit. Aragon and Pec
@18# and Lange and Aragon@19# determined a closed-form
solution for scattering from a thin radially anisotropic lay
on an isotropic sphere. Zumer and Doane@20–22# calculated
the scattering cross section for radial directors within
Rayleigh-Gans approximation. However, these previo
studies have limited applicability to small nematic drople
because they assumed an outer region of constant aniso
~order parameter! with an isotropic central region. Recen
work @23# has shown that while large (R>0.22 mm) nematic
droplets satisfy this condition, smaller droplets have anis
ropy that varies continually throughout the droplet.

In this work, we will calculate the scattering from sma
nematic droplets in the spherically symmetric~zero external
field! radial director configuration. To determine how sp
tially varying anisotropy alters the scattering, we will pe
form calculations for three distinct models of the anisotrop
The central defect model~Fig. 1! assumes a small isotropi
defect at the center of the droplet, and constant order par
eter at all points exterior to the defect and still inside t
droplet. This is the model that was used in the previous st
ies @17–22#. The second model is the linear defect mod
where the order parameter increases linearly within a sm
central defect region, and is constant throughout the rem
der of the droplet. This model is representative of dropl
with strong anchoring at the nematic-polymer interface@23#.
Small droplets with weak surface anchoring do not have
region where the order parameter is constant. To illustr
the role of continually varying order parameter, we use
linear model, in which the order parameter varies linea
with distance from the droplet origin. The results from th
4286 © 1997 The American Physical Society



t-
p

e-
i-
th
am
le
lu
he
e

de
a
on

e
a

s a

d
l

-
se
ly.
ill

ec-

d
he

ase

d

e

out
c-
e

ic
p
th

56 4287SCATTERING OF LIGHT FROM SMALL NEMATIC . . .
simple model with spherically symmetric dielectric aniso
ropy illustrate that scattering calculations for nematic dro
lets must include details of the internal structure.

In the following, we derive the wave equation for a m
dium with spatially varying, but spherically symmetric, d
electric anisotropy. From the boundary conditions on
fields at the droplet surface, we determine the scattering
plitude as a function of the dielectric properties of the drop
and the surrounding medium. We develop the explicit so
tion for the linear model and the linear defect model in t
small-particle limit. We then compare scattering amplitud
from these models to those from the central defect mo
which has been used previously in studies on small nem
droplets. Finally, we discuss these results, draw conclusi
and present possible extensions of this work.

II. WAVE EQUATION IN AN ANISOTROPIC MEDIUM

For a harmonic electromagnetic wave, the tim
independent parts of the electric and magnetic vectors in
three media satisfy

“3H5
iv

c
«E, ~2a!

“3E52
iv

c
H. ~2b!

Writing Eq. ~2a! explicitly in spherical coordinates gives

1

r 2 sin u S ]~rH f sin u!

]u
2

]~rH u!

]f D5
iv

c
« rEr , ~3a!

1

r sin u S ]Hr

]f
2

]~rH f sin u!

]r D5
iv

c
« tEu , ~3b!

1

r S ]~rH u!

]r
2

]~Hr !

]u D5
iv

c
« tEf . ~3c!

FIG. 1. Defect model of a droplet. The region betweenR0 andR
has constant radial anisotropy and dielectric components« r and« t .
In the central defect model, the region insideR0 is isotropic with
dielectric constant«1 . In the linear defect model, the dielectr
anisotropy grows linearly from zero at the origin to the anisotro
of the nematic phase at the boundary. The region exterior to
droplet has dielectric constant«3 .
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In any isotropic region,« t5« r . Equation ~2b! leads to a
similar set of equations, but not containing« t or « r .

We will represent the solution of these equations a
superposition of two linearly independent fields (eH,eH) and
(mE,mH) each satisfying the conditions@24#

eEr5Er , eHr50

mEr50, mHr5H .

The solution with vanishing radial magnetic field is calle
the electric wave~TM wave!, and that with vanishing radia
electric field is called the magnetic wave~TE wave!. In the
following, we will only discuss the electric wave. If the mag
netization of each medium is isotropic, the solution for the
waves is known@25,26# and has been discussed previous
If the magnetization is also anisotropic, the solutions w
correspond to those derived in the following.

We now define the standard Debye potential for the el
tric wave from

Ef5
1

r sin u

]

]f S ]~r eP!

]r D , Eu5
1

r

]2~r eP!

]u]r
,

~4!

Hf5
kt

r

]~r eP!

]u
, Hu52

kt

r sin u

]~r eP!

]f
,

where eP is the Debye potential for the electric wave an
kt5v« t /c. From these definitions, it can be shown that t
Debye potential must then obey

« r

« t

1

r

]2~r eP!

]r 2 1
« r« t8

« t
2r

]~r eP!

]r
1

1

r 2 sin u

]

]u S sin u
]eP

]u D
1

1

r 2 sin2 u

]2 eP

]f2 1S v2« r

c2 2
« r« t8

2

« t
3 1

« r« t9

« t
2 D r eP50,

~5!

where

« t85
d« t

dr
, « t95

d2« t

dr2 , ~6!

This is the Helmholtz wave equation, generalized to the c
where the dielectric properties are a function ofr . In the
limit that « t is constant, Eq.~5! reduces to that reporte
previously@17#. In the limit that« t5« r , Eq. ~5! reduces to
the standard Helmholtz equation.

Equation~5! is separable, with the angular solution th
standard spherical harmonics,YL

m(uf). The differential
equation for the radial function,Q(r ), is then given by

r 2
]2~rQ !

]r 2 1r 2
« t8

« t

]~rQ !

]r
1S ~ktr !22

« t8
2

« t
2 r 21

« t9

« t
r 2

2L~L11!
« t

« r
D ~rQ !50. ~7!

To this point, the derivation has made no assumptions ab
the dielectric anisotropy, other than requiring it to be a fun
tion of r only. To proceed further with the calculations, w

y
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4288 56KARACALI, RISSER, AND FERRIS
must specify the functional form of the dielectric constan
In the following, we solve for three distinct models of th
radial anisotropy.

III. SOLUTION OF THE ANISOTROPIC
WAVE EQUATION

External isotropic medium

In the region exterior to the droplet, the material is op
cally isotropic~dielectric constant«3!, so the radial equation
reduces to

r 2
]2~rQ !

]r 2 1„~ktr !22L~L11!…~rQ !50. ~8!

The solutions of this equation are the standard spher
Bessel functions. The incident wave~of unit amplitude! is
then represented as

r eP~ i !5
1

k3
2 (

L51

`

i L21
2L11

L~L11!
~pk3r /2!1/2JL11/2~k3r !

3PL
~1!~cosu!cosf, ~9a!

r mP~ i !5
1

k3
2 (

L51

`

i L21
2L11

L~L11!
~pk3r /2!1/2JL11/2~k3r !

3PL
~1!~cosu!sin f. ~9b!

For the scattered wave, Neumann functions can be use
the second solution since the scattered wave must vanis
infinity and the region of the interest does not contain
origin:

r eP~s!52
1

k3
2 (

L51

`

i L21
2L11

L~L11!
~pk3r /2!1/2aL$JL11/2~k3r !

1 iJ2L21/2~k3r !%PL
~1!~cosu!cosf, ~10a!

r mP~s!52
1

k3
2 (

L51

`

i L21
2L11

L~L11!

3~pk3r /2!1/2bL$JL11/2~k3r !1 iJ2L21/2~k3r !%

3PL
~1!~cosu!sin f. ~10b!

The scattering cross section is then given by

Csca5~l2/2p! (
L51

`

~2L11!$uaLu21ubLu2%, ~11!

wherel is the wavelength of the incident radiation.

Linear anisotropy region

In this region, we assume that both the radial and tang
tial components of the dielectric tensor vary linearly w
radius, while keeping the trace of the dielectric tensor c
stant. The components of the tensor can be represented
.

-
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-
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« r5«212br , « t5«22br ,
~12!

b5«a /R.

The differential equation for the radial function becomes

« t
2« r r

2
]2~rQ !

]r 2 2b« r« tr
2

]~rQ !

]r
1„« t

2« r~ktr !22b2« r r
2

2L~L11!« t
3
…~rQ !50. ~13!

If we assumerQ can be expanded in a power series

rQ5 (
n50

An~ktr !n1s. ~14!

Gathering terms by powers ofr gives

(
n50

@«2
3~n1s!~n1s21!2L~L11!«2

3#An~ktr !n1s

1 (
n50

@3L~L11!«2
2b2b«2

3~n1s!#An~kt!
n1s~r !n1s11

1 (
n50

@kt
2«2

323b2«2~n1s!~n1s21!2b2«2~n1s!

2~3L213L11!b2«2#An~kt!
n1s~r !n1s12

1 (
n50

@2b3~n1s!21b3~L21L22!#An~kt!
n1s~r !n1s13

2 (
n50

@3kt
2«2b2#An~kt!

n1s~r !n1s14

1 (
n50

@2kt
2b3#An~kt!

n1s~r !n1s1550. ~15!

Since by definition,A0 can not be equal to zero, we can sol
the first term fors, giving solutionss521 and 2. Since the
region of interest includes the origin, thes521 solution is
not valid, ands52 is the only possible solution.

Constant anisotropy region

The solution in regions of constant anisotropy has be
previously determined@17#. The radial solution is given
solely in terms of Bessel functions of nonintegral order,

r eP~2!52
1

k3
2 (

L51

`

i L21
2L11

L~L11! S pk3r

2 D 1/2

$cLJw~k3r !

1dLJ2w~k3r !%PL
~1!~cosu!cosf, ~16a!

w5S L~L11!« t

« r
1

1

4D 1/2

. ~16b!

IV. SMALL PARTICLE APPROXIMATION

In the limit of small particles (ktR!1), the terma1 domi-
nates the expression forCsca. The potentials inside and out
side the droplet may be expanded in a power series inr , and
only the leading term inktR is kept. In the small particle
limit, the angular distribution of the scattered light is th
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56 4289SCATTERING OF LIGHT FROM SMALL NEMATIC . . .
same as that of Rayleigh scattering@24#. However, the Ray-
leigh approximation ignores all details of the internal drop
structure, and takes into account only the average diele
tensor, yielding the same scattering amplitude for all mod
of the anisotropy.

Linear model

Keeping only the first-order terms, the incident and sc
tered potentials have the forms

rP~ i !5S pk3r

2 D 2

sin u cosf, ~17a!

rP~s!5a1S pk3r

2 D 21

sin u cosf. ~17b!

Solving Eq. ~15! for the potential inside the droplet, an
keeping only those terms that will be first order inktr at the
interface, gives

rP~2!5A0kt
2F r 22

b

«2
r 31

9

5

b2

«2
2 r 42

11

5

b3

«2
3 r 51

131

35

b4

«2
4 r 6

2
27

5

b5

«2
5 r 7Gsin u cosf. ~18!

Using the boundary conditions thatEu andHu be continuous
at the boundary lets us solve fora1 :
t
ric
ls

t-

a15
1

3

«3j22« th

«3j1« th
~k3R!3, ~19a!

j5223
b

«2
R1

36

5

b2

«2
2 R22

55

5

b3

«2
3 R31

786

35

b4

«2
4 R4

2
189

5

b5

«2
5 R5, ~19b!

h512
b

«2
R1

9

5

b2

«2
2 R22

11

5

b3

«2
3 R31

131

35

b4

«2
4 R4

2
27

5

b5

«2
5 R5. ~19c!

Linear defect model

In the linear defect model, the dielectric anisotropy i
creases linearly with increasing radius, while the bulk of t
droplet has constant anisotropy. The potential in the lin
defect region is given to first order by Eq.~15!. The potential
in the constant anisotropy region is given to first order by

rP~2!5@c~ktr !21/21w1d~ktr !21/22w#sin u cosf.
~20!

Using the boundary conditions onEu andHu gives
ect, has
me in
sotropic
a15
1

3

@~1/21q!«322« t#@~1/22q!h2j#2@~1/22q!«322« t#@~1/21q!h2j#S R0

R D 2q

@~1/21q!«31« t#@~1/22q!h2j#2@~1/22q!«31« t#@~1/21q!h2j#S R0

R D 2q ~k3R!3. ~21!

h andj are the same as defined in Eq.~19!, with R0 substituted forR. q is defined as

q5w~L51!5S 2« t

« r
1

1

4D 1/2

. ~22!

Isotropic defect model

The isotropic defect model, which consists of a region with constant anisotropy surrounding a small isotropic def
been previously solved@17#. We simply report the results here to use for comparison to the other models. We will assu
the following calculations that the dielectric constant of the central defect is the same as that of the nematic in the i
phase, i.e.,«15«2 . The scattering amplitude for the droplet in the isotropic defect model is given as

a15
2

3

@~s11!« r1«2#@s« r2«3#2@s« r2«2#@~s11!« r1«3#S R0

R D 2s11

@~s11!« r1«2#@s« r12«3#2@s« r2«2#@~s11!« r22«3#S R0

R D 2s11 ~k3R!3, ~23a!

s5S 2« t

« r
1

1

4D 1/2

21/2. ~23b!
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4290 56KARACALI, RISSER, AND FERRIS
The small particle approximation is generally conside
valid for ktR,0.2. As ktR becomes larger, terms that a
higher order inktR become increasingly important. We hav
used the previous solution@17# for the isotropic defect mode
to calculate the first order correction to the scattering cr
section. For the range of parameters used in Sec. V,
found the first-order correction to the cross section was
than 2.5% atktR50.5, and was smaller for smaller values
ktR. For larger values ofktR, the contributions from othe
terms in Eq.~11! will become significant, and the comple
sum must be evaluated.

V. NUMERICAL RESULTS

In this section we present numerical calculations of
scattering amplitudes for the various models of the anis
ropy, and examine how the parameters of the model alter
magnitude of the scattering amplitude. In the following, t
dielectric constant of the surrounding polymer is«3 , the av-
erage dielectric constant of the nematic is«2 , the anisotropy
is b @see Eq.~12!#, and the dielectric constant of the centr
defect region is«1 .

A. Defect radius

Both the central and linear defect models contain a
rameter, the size of the defect,R0 , that does not appear i
the linear model. Previous studies@20,21# assumed a centra
defect that was up to 0.35 of the droplet radius. In Fig. 2
present the dependence of the scattering amplitude on
defect radius for a system where the average dielectric c
stant of the nematic is the same as that of the polymer ma
(«15«25«352) for two distinct dielectric anisotropies~b!.
The positive curvature results are for the linear defect mo
while those with negative curvature are for the isotropic
fect model. The isotropic defect model shows little variati
in the scattering amplitude up toR/R050.4. The linear de-
fect model, however, shows substantial variation at sma
values of the defect radius. The difference between these
models is solely due to the additional scattering introdu
into the system by the changing dielectric constant in
defect region in the linear defect model. Unless otherw
specified, the following calculations will useR0 /R50.2.

FIG. 2. Scattering amplitude as a function of defect size for
isotropic and linear defect models. The upper curve in each pa
from the linear defect model.
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B. Anisotropy dependence

In the linear model, the nematic dielectric susceptibil
and anisotropy vary linearly with radius throughout the dro
let. We show the relation between the scattering amplitu
and the anisotropy in Fig. 3, with«252.0. We show the
dependence on the anisotropy,b, for three distinct values
~«352.0, 1.0, and 4.0! of the dielectric constant of the sur
rounding medium. The values of«3 were picked to match
«2 , and the values of« t and « r at maximum anisotropy,
respectively. At small anisotropy, the scattering amplitude
much less when«3 is matched to«2 . However, at large
anisotropy there is a crossover, with smaller scattering
curring for«351. All three curves also exhibit an extremum
nearb50.9, with the«351.0 curve having a minimum. The
general result is that scattering is smaller when«3 is matched
to the average dielectric constant of the nematic. For ne
tive anisotropy, the smallest scattering amplitude also occ
for «352.0, while the scattering from the other two values
«3 remains large across the whole negative anisotropy ra

The isotropic defect model differs from the linear mod
in assuming the nematic dielectric susceptibility and anis
ropy is constant in the nematic region of the droplet. This
the model that has been used in previous scattering w
@17–22#. We show the total scattering amplitude for the is
tropic defect model in Fig. 4, again for«352.0, 1.0, and 4.0.
In this model, the scattering amplitude is smallest when«3 is
matched to«2 , even at large anisotropy. At small anisotrop

e
is

FIG. 3. Scattering amplitude vs anisotropy for the linear mod

FIG. 4. Scattering amplitude vs anisotropy for the linear def
model. Results from the central defect model are similar.
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56 4291SCATTERING OF LIGHT FROM SMALL NEMATIC . . .
the scattering amplitude for«254.0 is smaller than for
«251.0, although, as the anisotropy increases, there
crossover, with scattering smaller when«351.0. The results
for the linear defect model are almost identical with those
the isotropic defect model, except for a slight increase in
curvature of the lines nearb51. The difference in the scat
tering amplitude is less than 8% between the two de
models.

Although the general behavior of the scattering amplitu
as a function of the parameters of the nematic and polyme
qualitatively similar for the models, there are substan
quantitative differences between them. In Fig. 5, we sh
the scattering amplitude as a function of anisotropy for
three models with«35«252.0. For positive anisotropy, th
linear model has a much larger scattering amplitude t
either of the defect models. At small positive anisotropy,
amplitudes differ by more than an order of magnitude. F
negative anisotropies, the linear and defect models pre
different behaviors with the linear model having a scatter
maximum, while the defect models have scattering wh
increases with increasing negative anisotropy. As stated
viously, there is little difference in the scattering amplitu
for the linear defect and isotropic defect models.

The differences between the three models is shown m
clearly in Fig. 6, which plots the ratio of the isotropic defe
scattering amplitude to that of the linear defect model, a

FIG. 5. Comparison of scattering amplitudes vs anisotropy
the three models.

FIG. 6. Ratio of the scattering amplitude of the isotropic def
model to that of the linear model and ratio of the isotropic def
model to the linear defect model plotted as a function of anisotro
a
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that of the linear model. The ratios are shown only for po
tive anisotropies. The isotropic defect model, used in ot
work, gives scattering amplitudes smaller than those fr
the other models for the whole anisotropy range. For la
anisotropy, the models all predict scattering of the same
der of magnitude. However, for small anisotropy the scat
ing in the linear and linear defect models is qualitative
different from that of the isotropic defect model. Expansi
of the scattering amplitude of the linear model@Eq. ~19!# in
the limit of smallb gives a linear dependence onb, while the
dependence of the isotropic defect model is of higher ord
This is indicated by the rapid decrease in the ratio as
anisotropy approached zero. Because the scattering in
linear defect model is dominated by the defect scattering
small anisotropy, the scattering ratio between the isotro
defect and linear defect models also approaches zerob
approaches zero.

C. Dependence on the surrounding medium

The preceding calculations have shown that the scatte
amplitudes are strongly dependent on the dielectric cons
of the surrounding medium. This dependence is shown
more detail in Fig. 7, where we plot the logarithm of th
scattering amplitude as a function of«3 for the linear model,
with «252.0. The scattering is shown for two distinct valu
of the anisotropy. The scattering amplitude shows a str
dependence on the dielectric constant of the surrounding
dium («3), with the amplitude large across most of the ran
of «3 . The place where the scattering amplitude goes to z
can be used to define the ‘‘effective dielectric constant’’
the droplet. In the linear model, this effective dielectric co
stant is very close to the value of« t , which is equal to 2-b
for this figure.

The results for both the linear and the linear defect mod
are similar, with one major difference. Both the defect mo
els predict the minimum scattering point to occur for a va
«3 of which is much closer to the value of the isotrop
droplet than does the linear model. This is illustrated in F
8, which compares the scattering as a function of«3 for the
linear model and linear defect model, for an anisotropy
b50.2. The minimum scattering point for the linear defe
model occurs for a value of«3 which is slightly below that of
the isotropic defect, while the minimum for the linear mod

r

t
t
y.

FIG. 7. Scattering amplitude as a function of the dielectric co
stant of the surrounding medium for the linear model.
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occurs at a much smaller value of«3 . This trend continues
for all positive anisotropies. The results from the linear d
fect model are very similar to those from the isotropic def
model, with only a slight shift in the minimum scatterin
point toward larger value of«3 for the isotropic defect
model.

We examine the condition for minimum scattering to o
cur in more detail in Fig. 9. Figure 9 plots the ‘‘effectiv
dielectric constant’’of the droplet vs anisotropy for both t
linear and linear defect models, with«252.0. The value of
« t for all the values of anisotropy is also shown in the figu
for reference. For positive anisotropy, the linear model p
dicts an effective dielectric constant for the droplet which
very close to the value of« t , except at very large anisotropy
while the linear defect model predicts an effective dielec
constant which is much closer to the isotropic value, which
«252.0. For negative anisotropy, the linear model still p
dicts an effective dielectric constant for the droplet which
between« t and the isotropic value for the droplet. The line
defect model, however, predicts that the effective dielec
constant for the droplet is still smaller than the dielect
constant of the isotropic droplet.

VI. DISCUSSION AND CONCLUSIONS

The development of PDLC devices has renewed inte
in the scattering of light by small, radially anisotropic dro

FIG. 8. Comparison of the scattering amplitude as a function
polymer dielectric constant for the linear and linear defect mod

FIG. 9. Value of polymer dielectric constant to produce mi
mum scattering as a function of anisotropy for the linear model
linear defect model.
-
t

-

-

c
s
-

ic

st

lets. The droplets have the nematic director oriented al
the radial axis of the droplet, due to the homeotropic anch
ing of the nematic molecules at the droplet-polymer int
face. Since the nematic molecules are optically anisotro
the dielectric susceptibility inside the droplet has a rad
anisotropy. Calculation of the scattering amplitude and cr
section requires solution for the Debye potentials inside
droplet, which exhibit strong dependence on both the ani
ropy of the nematic and the dielectric constant of the s
rounding polymer. The dielectric anisotropy in the nematic
determined by the spatial variation of the order parame
which is not known@23# analytically, but has been dete
mined numerically elsewhere.

In this work, we have adopted three distinct models of
order parameter inside the droplet. The isotropic def
model, which assumes a small central isotropic defect s
rounded by a region with constant order parameter~and con-
stant dielectric anisotropy! has been used in previous scatte
ing studies, and is particularly relevant for large (R
.0.22mm) droplets. For small droplets (R,0.22mm) with
strong anchoring, the order parameter can be represente
the linear defect model, which assumes a central defec
which the order parameter grows linearly, surrounded b
region of constant order parameter. For small droplets w
weak surface anchoring, there is no simple model to desc
the radial behavior of the order parameter, as there is
region of constant order parameter. To examine the sign
cance of a constantly changing order dielectric anisotro
~order parameter! for scattering calculations, we have use
the linear model, which assumes the order parameter
creases linearly with radius.

We have derived the general form of the wave equat
where the dielectric anisotropy is a function ofr , and explic-
itly solved for the scattering amplitude of the three models
the small particle limit. The scattering amplitude in all thr
models depends on four parameters; the dielectric cons
of the defect region«1 , the dielectric constant of the sur
rounding polymer«3 , the average dielectric constant of th
nematic region«2 , and the dielectric anisotropyb. For all
the results shown,«1 was set equal to«2 . In addition to
these parameters, the two defect models have an additi
parameter,R0 /R, which is the relative size of the defect. Th
size of the central defect,R0 /R, is not directly observable
but the results show that the scattering amplitude in the
tropic defect model is insensitive to the defect size
R0 /R,0.4. The scattering amplitude for the linear defe
model shows larger variation in the scattering with def
size, with the scattering increasing as the defect radius
creases.

Comparison of the scattering amplitudes calculated fr
the three models revealed some important qualitative as
as quantitative distinctions. The scattering amplitudes fr
the isotropic defect model were very similar to those fro
the linear defect model, using a reasonable value (R0 /R
50.2) for the defect radius. In the limit of small anisotrop
the linear model predicted much larger scattering amplitu
than either of the defect models. This is of importance
small droplets with weak anchoring, where the anisotropy
continuously varying throughout the droplet. The mod
also differ in predictions of the effective refractive index
the droplet, that is, the value of the dielectric constant of

f
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surrounding polymer which gives zero scattering. The lin
model gives ‘‘effective dielectric constants’’ which are clo
to the value of the tangential component of the dielec
tensor in the nematic phase, while the defect models give
effective dielectric constant which is much closer to the i
tropic value of the droplet.

In conclusion, we have shown the scattering amplitude
nematic droplets are complex functions of the nematic
polymer parameters. We have shown, in the small part
limit, that the scattering is strongly dependent on the va
tion of the dielectric anisotropy with radius in the drople
and that the model with linear variation differs in many im
portant respects from the standard model with an isotro
central defect and constant anisotropy. Quantitative dete
s

t.

e,

e

l.
r

c
an
-

f
d
le
-

ic
i-

nation of the scattering from droplets with radial anisotro
will require extension of these calculations to include both
more realistic model of the dielectric anisotropy, and so
tion when the droplet radius is approximately equal to
wavelength of the incident radiation.
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