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Scattering of light from small nematic spheres with radial dielectric anisotropy
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We have calculated the scattering cross sections of small anisotropic nematic droplets embedded in a
polymer matrix as a function of the dielectric constants of the nematic and the polymer. We have derived the
general form for the Helmholtz wave equation for a droplet which has spatially varying radial anisotropy, and
have explicitly solved this equation for three distinct models of the dielectric anisotropy, including one model
where the anisotropy increases linearly with droplet radius. Numerical calculations of the scattering amplitudes
for droplets much smaller than the wavelength of the incident radiation show that droplets with continual
variation in the dielectric anisotropy have much larger scattering amplitude than droplets with fixed anisotropy.
The scattering from droplets with linearly varying anisotropy exhibits a scattering minimum for much smaller
polymer dielectric constants than the other models. These results show that the scattering from small aniso-
tropic droplets is sensitive to details of the internal structure and anisotropy of the droplet.
[S1063-651%97)04810-1

PACS numbegs): 61.30—v, 42.70.Df

I. INTRODUCTION ande, is the maximum dielectric anisotrop$®.ranges from
0 in the isotropic phase to 1 in the perfectly ordered phase.
There has been much recent interest in scattering from There have been several previous scattering studies of
anisotropic spheres. In the field of liquid crystals, this inter-droplets with radial anisotropy. Roth and Digndfi7] de-
est has been stimulated by the development of a new generaived the general forniseries expansiorfor the scattering
tion of displays and electro-optical devicg¢$] based on cross section for spheres with constant radial anisotropy, and
polymer dispersed liquid crystal2—7] (PDLC’s). These explicitly calculated the cross section as a function of droplet
materials consist of dispersions of small liquid crystal drop-parameters in the small particle limit. Aragon and Pecora
lets embedded in a uniform polymer matrix. The optical[18] and Lange and Aragofi9] determined a closed-form
properties of PDLC's are controlled by modulating the struc-solution for scattering from a thin radially anisotropic layer
ture of the nematic director with an external electric field.on an isotropic sphere. Zumer and Do&@—22 calculated
Variation of the director alters the effective index of refrac-the scattering cross section for radial directors within the
tion of the droplet, changing the transparency of the PDLCRayleigh-Gans approximation. However, these previous
(8]. studies have limited applicability to small nematic droplets
The droplet structure and its optical properties are deterbecause they assumed an outer region of constant anisotropy
mined from the positional dependence of the nematic ordeforder paramet@rwith an isotropic central region. Recent
parameter, which is a second rank tensor. However, the onlyork [23] has shown that while largd&=0.22 mm) nematic
required quantities for uniaxial nematics are the director fieldiroplets satisfy this condition, smaller droplets have anisot-
[9,10] and the positional dependence of the scalar order paopy that varies continually throughout the droplet.
rameterS, which describes the degree of alignment of mol-  In this work, we will calculate the scattering from small
ecules with the director. The director configuration is depennematic droplets in the spherically symmetfzero external
dent on many factors, including the size of the dropletfield) radial director configuration. To determine how spa-
elastic constants of the nematic, the anchoring energy, thgally varying anisotropy alters the scattering, we will per-
orientation at the nematic-polymer interface, and the magniform calculations for three distinct models of the anisotropy.
tude of an external electric or magnetic figltil—13. For  The central defect modé¢Fig. 1) assumes a small isotropic
droplets with strong normal anchoring and no external fielddefect at the center of the droplet, and constant order param-
[12,14,15, a commonly observed director configuration is eter at all points exterior to the defect and still inside the
the radial configuration, where the director is oriented alongiroplet. This is the model that was used in the previous stud-
the radial unit vector. The dielectric tensor for a droplet withjes [17—27. The second model is the linear defect model,
a radial director configuration is diagonal in spherical coor-where the order parameter increases linearly within a small
dinates, with a value, in the radial direction and; in the  central defect region, and is constant throughout the remain-
tangential directions. The magnitude of the components, ander of the droplet. This model is representative of droplets
the anisotropy, is determined by the magnitude of the ordewith strong anchoring at the nematic-polymer interf§28|.

parameter §) in the nematic phasgl6] Small droplets with weak surface anchoring do not have any
region where the order parameter is constant. To illustrate
Er=8igot 5€,S, €1=Eiso— 3€aS, (1)  the role of continually varying order parameter, we use the

linear model, in which the order parameter varies linearly
where e, is the dielectric constant for the isotropic phase,with distance from the droplet origin. The results from this

1063-651X/97/564)/42868)/$10.00 56 4286 © 1997 The American Physical Society



56 SCATTERING OF LIGHT FROM SMALL NEMATLC . .. 4287

In any isotropic regiong;=¢,. Equation(2b) leads to a
similar set of equations, but not containiagor ¢, .

We will represent the solution of these equations as a
superposition of two linearly independent fieldsi(*H) and
(™E,"H) each satisfying the conditior4]

Scattered wave

Nematic region

eE,= E,, eHr=0
Incident wave

ME,=0, "H,=H.

The solution with vanishing radial magnetic field is called
the electric waveTM wave), and that with vanishing radial
Defect region electric field is called the magnetic way€E wave. In the
following, we will only discuss the electric wave. If the mag-

FIG. 1. Defect model of a droplet. The region betw&randR  netization of each medium is isotropic, the solution for these

has constant radial anisotropy and dielectric compongnésde,.  waves is knowr{25,26 and has been discussed previously.

In the central defect model, the region insig is isotropic with | the magnetization is also anisotropic, the solutions will

dielectric constant;. In the linear defect model, the dielectric correspond to those derived in the following.

anisotropy grows linearly from zero at the origin to the anisotropy  \we now define the standard Debye potential for the elec-

of the nematic phase at the boundary. The region exterior t0 thgic \wave from

droplet has dielectric constang.

1 9 [a(reI) 1 9°(r®Il)
simple model with spherically symmetric dielectric anisot- E¢:r sin 6 %( ar ) = “g0ar
ropy illustrate that scattering calculations for nematic drop- 4
lets must include details of the internal structure. ke d(reII) k. d(reI)
In the following, we derive the wave equation for a me- Hy=— , Hy=——— ,
r o6 rsingd d¢

dium with spatially varying, but spherically symmetric, di-
electric anisotropy. From the boundary conditions on th%here
fields at the droplet surface, we determine the scattering ame
plitude as a function of the dielectric properties of the dropletD
and the surrounding medium. We develop the explicit solu-

°II is the Debye potential for the electric wave and
= we/c. From these definitions, it can be shown that the
ebye potential must then obey

tion for thg Iinga( model and the linear defeqt model !n the8r 1 @3(rel)  ece] 9(reI) 1 P
small-particle limit. We then compare scattering amplitudes— — o2 +— p + - 53 |8 0 70
from these models to those from the central defect modeft r &l r resmn
which has been used previously in studies on small nematic 1 52 1 2 2 "
. . . w°e, &g o1
droplets. Finally, we discuss these results, draw conclusions, + — — —+ >— ——5—+ —|r°I1=0,
and present possible extensions of this work. resin” 6 d¢ c &t &
)
Il. WAVE EQUATION IN AN ANISOTROPIC MEDIUM
where
For a harmonic electromagnetic wave, the time- 5
independent parts of the electric and magnetic vectors in all ,_% ,,_d &y ®)
three media satisfy ST gr St g2y

) This is the Helmholtz wave equation, generalized to the case
VXH= s eE, (28 where the dielectric properties are a functionrofin the
limit that &, is constant, Eq(5) reduces to that reported
. previously[17]. In the limit thate,=¢,, Eq. (5) reduces to
VXE=— o H. (2p)  the standard Helmholtz equation. '
c Equation (5) is separable, with the angular solution the
standard spherical harmonic¥,"(#¢). The differential
Writing Eq. (2a) explicitly in spherical coordinates gives  equation for the radial functiorQ(r), is then given by

! a(er) sin 9) r7(I’H0) = lo 2 072(rQ) 2 St, a(rQ) 2 8{2 2 8{, 2

rzsina( 00 ap )" ¢ &b B3 et | k) el
1 (oH, d(rH,sing)| iw L+ 3) O)=0. ,
rsiné ( b ar :?StEa, (3b) ( ) e, (rQ) 7

) To this point, the derivation has made no assumptions about
1 (ﬂ(fH 0) 5(Hr)> o the dielectric anisotropy, other than requiring it to be a func-
r

ar 90 | ¢ ey (30 tion of r only. To proceed further with the calculations, we
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must specify the functional form of the dielectric constants. e,=e,+2Br, &=&,—Br
In the following, we solve for three distinct models of the (12
radial anisotropy. B=¢e,/R.

The differential equation for the radial function becomes
Ill. SOLUTION OF THE ANISOTROPIC

WAVE EQUATION 3(r a(r
Q gle,r? % Be er? (aQ)-i—(s e, (ki )?— B2e,r?

External isotropic medium

In the region exterior to the droplet, the material is opti- —L(L+1)st3)(rQ)=0. (13
cally isotropic(dielectric constants), so the radial equation ) )
reduces to If we assumeaQ can be expanded in a power series

2
9°(rQ) - n+s
7 (P LLED)Q)=0. (@) Q= 2, Anlkir)™* -

Gathering terms by powers ofgives
The solutions of this equation are the standard spherical

Bessel functions. The incident wayef unit amplitude is

then represented as nZJO [e3(n+s)(n+5—1)—L(L+1)e3]Aq(kr)"*®
1 2L+1
r.el‘[(l):k_g LZ:L jL-1 m (7-rk3r/2)1/2JL+1/2(k3r) +nZo [BL(L+ 1)£§ﬂ_,88§(n+S)]An(kt)n+3(r)n+s+l
1)
PL”(cos f)cos ¢, (%a + [K2e2—3B82%,(n+5s)(n+5—1)— B2e,(n+5)
n=0
1 L, 2L+1 —(3L2+3L+1)82s, A (k)"*S(r)n+s+2
rmH(l):k_g LZ:L jL-1 [ D) (wk3r/2)1’2JL+1,2(k3r) ( ) B &2]An(ky) (r)

« P(Y(cos 0)sin & (@b 2 [28%(n1974 BALH L =2)JAn(k) " ()" ST

For the scattered wave, Neumann functions can be used as _ 2 [3k282,82]A (k )n+5(r)n+s+4
the second solution since the scattered wave must vanish at n=0 t m
infinity and the region of the interest does not contain the

origin: + E [2kt2,83]An(kt)n+S(l')n+s+5:0. (15)
n=0
1 < 2L+1 : -
rere =— = E L=l = = (rkar/2)Y2a, {J (kgr)  Since by definitionAq can not be equal to zero, we can solve
= L(L+1) "7 Lz the first term fors, giving solutionss= —1 and 2. Since the
region of interest includes the origin, tise= —1 solution is
+iJ_L-valkar) P (cos O)cos ¢, (10a not valid, ands=2 is the only possible solution.
(= _ iz 2 i1 2L+1 Constant anisotropy region
ks (=1 L(L+1) The solution in regions of constant anisotropy has been

previously determined17]. The radial solution is given

1/2 ;
X (kg 12) M0 {3 ¢ 1a(kar) +id | _qa(ksr)} solely in terms of Bessel functions of nonintegral order,

(1) i
X P17 (cos@)sin ¢. (10b) - 1" L 2L+1 ke 112
. . . . r°ll ___2 2 L(L+1 2 {CLJW(k?:r)
The scattering cross section is then given by k3 (=1 ( )

w +dJ_y(ksr) PP (cos H)cos ¢, (16a

— 2 2 2

Csca_(h /277-)21 (2L+1){|aL| +|bL| }! (11) L(L+1)8t 1 1/2
Tt (16b
r

where\ is the wavelength of the incident radiation.
IV. SMALL PARTICLE APPROXIMATION

Linear anisotropy region In the limit of small particles k;R<1), the terma, domi-

In this region, we assume that both the radial and tangemates the expression f@,.,. The potentials inside and out-
tial components of the dielectric tensor vary linearly with side the droplet may be expanded in a power series and
radius, while keeping the trace of the dielectric tensor conenly the leading term irk;R is kept. In the small particle
stant. The components of the tensor can be represented adimit, the angular distribution of the scattered light is the
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same as that of Rayleigh scatterirff]. However, the Ray- 1 836— 27y
leigh approximation ignores all details of the internal droplet a=3 st ten (k3R)?, (1939
structure, and takes into account only the average dielectric 3 !
tensor, yielding the same scattering amplitude for all models
of the anisotropy. 6 55 33 786 g4
§=2—3ER+—B—R . s RS 1888
Linear model &2 5 22 5 e 35 &;
Keeping only the first-order terms, the incident and scat- _ @ﬂ_s RS (19b)
tered potentials have the forms 5 sg '
. 7Tk3r 2 X 3
rl= sin 6 cos ¢, (179 B 9B , 11 1313
=1- Rtz SR - — 53R+
55 5 &5 35 &3
akar | 71 27 p°
o =a,| — ) sin @ cos ¢. (17b) "B S R®. (199

Solving Eg. (15 for the potential inside the droplet, and

keeping only those terms that will be first orderkim at the Linear defect model

interface, gives In the linear defect model, the dielectric anisotropy in-
creases linearly with increasing radius, while the bulk of the
8 93 11 33 131/8 droplet has constant anisotropy. The potential in the linear
rH<2)=Aokt{r2— — i -t 5’ 4 r6 defect region is given to first order by E{.5). The potential
5e; 5 & 35 in the constant anisotropy region is given to first order by
278° ] .
- g 8_2 sin @ cos ¢. (18) rH(Z):[C(ktr)fl/2+W+ d(ktr)’llz’w]sin 6 cos ¢.
(20)
Using the boundary conditions th}, andH , be continuous
at the boundary lets us solve fai : Using the boundary conditions dfy, andH, gives
Ro) 2
1 [(1/2+Q)83—28t][(1/2—Q)n—§]—[(1/2—Q)83—28t][(1/2+Q)77—SJ(E)
=5 Ry| 2 (k3R)>. (21)
[(1/2+q)83+8t][(1/2_q)7]_g]_[(1/2_q)83+8t][(1/2+q)77_§](ﬁ)
n and ¢ are the same as defined in E49), with R, substituted foR. q is defined as
28t 1 1/2
gqg=w(L=1)= 8_r+Z (22

Isotropic defect model

The isotropic defect model, which consists of a region with constant anisotropy surrounding a small isotropic defect, has
been previously solvefdl7]. We simply report the results here to use for comparison to the other models. We will assume in
the following calculations that the dielectric constant of the central defect is the same as that of the nematic in the isotropic
phase, i.e.e;=¢,. The scattering amplitude for the droplet in the isotropic defect model is given as

2s+1
) [<s+1>er+ez][ssr—sg]—[ser—82][<s+1>er+ea](EO)
31:§ R 25+1(k3R)3, (2339
[(S+1)8r+82][38r+283]—[58,—82][(S+1)8r—283]<—)

1/2

28t 1
—12. (23b)




4290

0.025

0.02

0.015

0.01

0.005

KARACALI, RISSER, AND FERRIS

B=0.2

0

0.05

0.1

0.15

0.2 0.25 0.3

la |

RR

FIG. 2. Scattering amplitude as a function of defect size for the FIG- 3. Scattering amplitude vs anisotropy for the linear model.

isotropic and linear defect models. The upper curve in each pair is .
from the linear defect model. B. Anisotropy dependence
In the linear model, the nematic dielectric susceptibility
The small particle approximation is generally consideredand anisotropy vary linearly with radius throughout the drop-
valid for k{R<0.2. Ask;R becomes larger, terms that are |let. We show the relation between the scattering amplitude
higher order irk;R become increasingly important. We have and the anisotropy in Fig. 3, witk,=2.0. We show the
used the previous solutigi 7] for the isotropic defect model dependence on the anisotrop, for three distinct values
to calculate the first order correction to the scattering crosgs;=2.0, 1.0, and 4.0of the dielectric constant of the sur-
section. For the range of parameters used in Sec. V, weunding medium. The values @f; were picked to match
found the first-order correction to the cross section was lesg,, and the values of; and &, at maximum anisotropy,
than 2.5% ak;R=0.5, and was smaller for smaller values of respectively. At small anisotropy, the scattering amplitude is
kiR. For larger values okR, the contributions from other much less where; is matched tos,. However, at large
terms in Eq.(11) will become significant, and the complete anisotropy there is a crossover, with smaller scattering oc-
sum must be evaluated. curring fore;= 1. All three curves also exhibit an extremum,
nearB=0.9, with thee3=1.0 curve having a minimum. The
general result is that scattering is smaller whgiis matched
_ _ ) ) to the average dielectric constant of the nematic. For nega-
In this section we present numerical calculations of thejye anisotropy, the smallest scattering amplitude also occurs
scattering amplitudes for the various models of the anisotfyr ¢ ,—2.0, while the scattering from the other two values of
ropy, and examine how the parameters of the model alter the, yemains large across the whole negative anisotropy range.
magnitude of the scattering amplitude. In the following, the " The isotropic defect model differs from the linear model
dielectric constant of the surrounding polymeeis the av- i assuming the nematic dielectric susceptibility and anisot-
erage dielectric constant of the nematie:js the anisotropy  ropy is constant in the nematic region of the droplet. This is
is 8 [see Eq(12)], and the dielectric constant of the central the model that has been used in previous scattering work
defect region i%; . [17—-23. We show the total scattering amplitude for the iso-
tropic defect model in Fig. 4, again feg=2.0, 1.0, and 4.0.
In this model, the scattering amplitude is smallest whgis
matched ta:,, even at large anisotropy. At small anisotropy,

V. NUMERICAL RESULTS

A. Defect radius

Both the central and linear defect models contain a pa
rameter, the size of the defed®®,, that does not appear in
the linear model. Previous studig20,21] assumed a central 0.2
defect that was up to 0.35 of the droplet radius. In Fig. 2 we I
present the dependence of the scattering amplitude on th
defect radius for a system where the average dielectric con:
stant of the nematic is the same as that of the polymer matrix
(e1=e,=¢g3=2) for two distinct dielectric anisotropig$).

The positive curvature results are for the linear defect model, la | i
while those with negative curvature are for the isotropic de- I pr

fect model. The isotropic defect model shows little variation 0.05 - e

in the scattering amplitude up ®/Ry=0.4. The linear de- . £=2.0 ___..-""

fect model, however, shows substantial variation at smaller ~— . ___,_..i......--l--

values of the defect radius. The difference between these twc % o os ]
models is solely due to the additional scattering introduced B

into the system by the changing dielectric constant in the
defect region in the linear defect model. Unless otherwise FIG. 4. Scattering amplitude vs anisotropy for the linear defect
specified, the following calculations will uge,/R=0.2. model. Results from the central defect model are similar.
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FIG. 5. Comparison of scattering amplitudes vs anisotropy for ] ] ] ] )
the three models. FIG. 7. Scattering amplitude as a function of the dielectric con-
stant of the surrounding medium for the linear model.

the scattering amplitude foe,=4.0 is smaller than for 4t of the linear model. The ratios are shown only for posi-
e,=1.0, although, as the anisotropy increases, there is @ anisotropies. The isotropic defect model, used in other
crossover, with scattering smaller wheg=1.0. The results oy " gives scattering amplitudes smaller than those from
for the linear defect model are almost identical with those ofa other models for the whole anisotropy range. For large
the isotropic defept model, except for.a slight increase in thecmisotropy, the models all predict scattering of the same or-
curvature of the lines neg8=1. The difference in the scal- ey of magnitude. However, for small anisotropy the scatter-
tering amplitude is less than 8% between the two defecl,y iy the linear and linear defect models is qualitatively

models. _ , __different from that of the isotropic defect model. Expansion
Although the general behavior of the scattering amplltudq)f the scattering amplitude of the linear mogEg. (19)] in

as a function of the parameters of the nematic and polymer ig,q |imit of smallg gives a linear dependence gnwhile the

qualitatively similar for the models, there are substantialyependence of the isotropic defect model is of higher order.
quantitative differences between them. In Fig. 5, we showris s indicated by the rapid decrease in the ratio as the
the scattering amplitude as a function of anisotropy for allynisotropy approached zero. Because the scattering in the
three models withe3=e,=2.0. For positive anisotropy, the |inear defect model is dominated by the defect scattering at
linear model has a much larger scattering amplitude thagma| anisotropy, the scattering ratio between the isotropic

either of the defect models. At small positive anisotropy, thejefect and linear defect models also approaches ze as
amplitudes differ by more than an order of magnitude. Forapproaches zero.

negative anisotropies, the linear and defect models predict
different behaviors with the linear model having a scattering
maximum, while the defect models have scattering which
increases with increasing negative anisotropy. As stated pre- The preceding calculations have shown that the scattering
viously, there is little difference in the scattering amplitudeamplitudes are strongly dependent on the dielectric constant
for the linear defect and isotropic defect models. of the surrounding medium. This dependence is shown in
The differences between the three models is shown mor@ore detail in Fig. 7, where we plot the logarithm of the
clearly in Fig. 6, which plots the ratio of the isotropic defect Scattering amplitude as a function ©f for the linear model,
scattering amplitude to that of the linear defect model, andvith £,=2.0. The scattering is shown for two distinct values
of the anisotropy. The scattering amplitude shows a strong
1 dependence on the dielectric constant of the surrounding me-
[ dium (e3), with the amplitude large across most of the range
isotropic defect/linear defect model of 5. The place where the scattering amplitude goes to zero
can be used to define the “effective dielectric constant” of
the droplet. In the linear model, this effective dielectric con-
e stant is very close to the value of, which is equal to 28
oa L e for this figure.
J il The results for both the linear and the linear defect models
wal _,.--'"""isotropic defect/linear model are simi!ar, with one major diffe_rence.. Both the defect mod-
A - els predict the minimum scattering point to occur for a value
L o ’ g3 of which is much closer to the value of the isotropic
0 e droplet than does the linear model. This is illustrated in Fig.
' B ' ' 8, which compares the scattering as a functior pfor the
linear model and linear defect model, for an anisotropy of
FIG. 6. Ratio of the scattering amplitude of the isotropic defect8=0.2. The minimum scattering point for the linear defect
model to that of the linear model and ratio of the isotropic defectmodel occurs for a value @f; which is slightly below that of
model to the linear defect model plotted as a function of anisotropythe isotropic defect, while the minimum for the linear model

C. Dependence on the surrounding medium

Ratio of scattering amplitudes
\
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10° . lets. The droplets have the nematic director oriented along
: the radial axis of the droplet, due to the homeotropic anchor-
ing of the nematic molecules at the droplet-polymer inter-
face. Since the nematic molecules are optically anisotropic,
the dielectric susceptibility inside the droplet has a radial
anisotropy. Calculation of the scattering amplitude and cross
section requires solution for the Debye potentials inside the
droplet, which exhibit strong dependence on both the anisot-
ropy of the nematic and the dielectric constant of the sur-
rounding polymer. The dielectric anisotropy in the nematic is
B ‘ B B ‘ L determined by the spatial variation of the order parameter,
1 5 2 25 3 35 4 which is not known[23] analytically, but has been deter-
€ mined numerically elsewhere.
In this work, we have adopted three distinct models of the
FIG. 8. Comparison of the scattering amplitude as a function of'der _parameter inside the droplet. The isotropic defect
polymer dielectric constant for the linear and linear defect modelsModel, which assumes a small central isotropic defect sur-
rounded by a region with constant order paramé&ed con-
occurs at a much smaller value of. This trend continues  stant dielectric anisotropyras been used in previous scatter-
for all positive anisot_ropies. The results from the Iinear de-ing studies, and is particularly relevant for largeR (
fect model are very similar to those from the isotropic defect-. 0.22um) droplets. For small droplet® 0.22 xm) with
model, with only a slight shift in the minimum scattering giyong anchoring, the order parameter can be represented by
point toward larger value ok; for the isotropic defect he jinear defect model, which assumes a central defect in
model. _ - - _ which the order parameter grows linearly, surrounded by a
curV\i/r? ﬁ]xgg'ggtg?leigogi%'t'%n Ifici’gl:?:anIs;nglr]c:tg’(:t?\tée‘r‘lgf?etc()ti\?g region of constant or'der parameter. For small droplets With
. ; . g | weak surface anchoring, there is no simple model to describe
dielectric constant”of the droplet vs anisotropy for both thethe radial behavior of the order parameter, as there is no
linear and linear defect models, with,=2.0. The value of . ' o
region of constant order parameter. To examine the signifi-

g, for all the values of anisotropy is also shown in the figure X . : .
for reference. For positive anisotropy, the linear model preSance of a constantly changing order dielectric anisotropy

dicts an effective dielectric constant for the droplet which is(0rder parametgrfor scattering calculations, we have used

very close to the value of,, except at very large anisotropy, the Ilnea_r model,_whlch_ assumes the order parameter in-
while the linear defect model predicts an effective dielectriccreases linearly with radius. _
constant which is much closer to the isotropic value, which is We have derived the general form of the wave equation
e,=2.0. For negative anisotropy, the linear model still pre_y\/here the dielectric anls_otropy |s'afunct|onrofand explic- '
dicts an effective dielectric constant for the droplet which isitly solved for the scattering amplitude of the three models in
betweere, and the isotropic value for the droplet. The linear the small particle limit. The scattering amplitude in all three

defect model, however, predicts that the effective dielectric"0dels depends on four parameters; the dielectric constant

constant for the droplet is still smaller than the dielectric®f the defect regiors,, the dielectric constant of the sur-
constant of the isotropic droplet. rounding polymere 3, the average dielectric constant of the

nematic regiore,, and the dielectric anisotropg. For all
the results showng; was set equal t@,. In addition to
these parameters, the two defect models have an additional
The development of PDLC devices has renewed interegtarameterR, /R, which is the relative size of the defect. The
in the scattering of light by small, radially anisotropic drop- size of the central defecR,/R, is not directly observable,
but the results show that the scattering amplitude in the iso-
22 tropic defect model is insensitive to the defect size for
; Ro/R<0.4. The scattering amplitude for the linear defect
2h T —— model shows larger variation in the scattering with defect
NG - ""~~.._yfeardefect model size, with the scattering increasing as the defect radius in-
: e Tt creases.
€ 16l ! o e Comparison of the scattering amplitudes calculated from
3 - R the three models revealed some important qualitative as well
14 [ ., . as quantitative distinctions. The scattering amplitudes from
; Rt —— the isotropic defect model were very similar to those from
1.2 the linear defect model, using a reasonable valRg/R
) ; ‘ L LS =0.2) for the defect radius. In the limit of small anisotropy,
o 0.2 04 06 08 1 the linear model predicted much larger scattering amplitudes
B than either of the defect models. This is of importance in
small droplets with weak anchoring, where the anisotropy is
FIG. 9. Value of polymer dielectric constant to produce mini- continuously varying throughout the droplet. The models
mum scattering as a function of anisotropy for the linear model andalso differ in predictions of the effective refractive index of
linear defect model. the droplet, that is, the value of the dielectric constant of the

VI. DISCUSSION AND CONCLUSIONS
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surrounding polymer which gives zero scattering. The lineanation of the scattering from droplets with radial anisotropy
model gives “effective dielectric constants” which are close will require extension of these calculations to include both a
to the value of the tangential component of the dielectriomore realistic model of the dielectric anisotropy, and solu-
tensor in the nematic phase, while the defect models give ation when the droplet radius is approximately equal to the
effective dielectric constant which is much closer to the isowavelength of the incident radiation.

tropic value of the droplet.

In conclusion, we have shown the scattering amplitude of
nematic droplets are complex functions of the nematic and
polymer parameters. We have shown, in the small particle
limit, that the scattering is strongly dependent on the varia- This work was supported by the U.S. Department of En-
tion of the dielectric anisotropy with radius in the droplet, ergy, Office of Basic Energy Sciences under Contract No.
and that the model with linear variation differs in many im- DE-AC06-76RLO 1830. One of the authdtd.K.) received
portant respects from the standard model with an isotropidinancial support from Abant Izzet Baysal University, Bolu,
central defect and constant anisotropy. Quantitative determifurkey.
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