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Evolution criterion in nonequilibrium and a variational principle for equilibrium states
of free-standing liquid crystalline films
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(Received 6 March 1997

Starting out with the thermodynamic balance equations of liquid crystalline films and the second law of
thermodynamics, an analog to the global surface free energy is derived whose time derivative is negative
definite out of equilibrium and zero in equilibrium. This evolution criterion allows one to formulate a varia-
tional principle for the equilibrium states by minimizing the modified global surface free energy derived above.
Thus the quantity which is extremal in equilibrium in the case of free-standing crystalline films is not presup-
posedad hog but derived from an evolution criterion based on the second[18%063-651X97)14308-2

PACS numbeps): 05.70.Ln, 44.60tk, 68.90:+g

[. INTRODUCTION system represents the phase boundary between the nematic
and isotropic phases. Other two-dimensional examples are
There are different approaches to a formulation of therboundary layers on a glass surface or lyotropic double layers
modynamics in terms of modified variational principles: In representing biologically important cell membranes.
some cases special constitutive equatidimear force-flux The considered surface is in general not flat. It is moving
relations or even nonlinear force-flux relations, always asin time, and the surface geometry is time dependent. The
suming Onsager symmetry relatigoigve been inserted into mapping velocity of the system in considerationws and
the balance equations, and these equations, valid for the spe+ is its component normal to the surface. The surface unit
cial chosen material, have been derived from an extremumormal vector is denoted bg, Ky, is the mean curvature of
principle [1,2]. The balance equations without constitutive the surface, and the index “;” denotes the covariant deriva-
assumptions can be derived from a variational principle, iftive of the Levi-Civitaconnection on the surface. Latin indi-
the number of wanted fields is doubled, with the shortcominges refer to a Cartesian coordinate systenRinand greek
that there is no physical interpretation of the additionalindices refer to a curvilinear surface coordinate system. The
fields. For a review and a classification of various modifiedsurface is embedded in the surrounding bulk medium, and
variational principles, see, for instang8,4]. the bulk fluxes are in general discontinuous at the surface
Our aim here is to derive equilibrium conditions for free- (see Fig. 1 The difference between the values of the bulk
standing films of liquid crystals from a variational principle. fields on both sides of the surface is denoted by
To this end we start out with the derivation of an evolution
criterion from the second law of thermodynamics. Such a [¢l:=¢ ¢ ()
criterion for the evolution of nonequilibrium states in time is

of the form The fact that phase boundaries and the other mentioned ex-

amples are not mathematical surfaces in reality, but have a
d finite thickness, will be ignored in the following.
gt J {---}dVv=0 (1) The balance equations for surface densities have been de-
G rived in [7,8]. They are summarized hefe, is the surface

and is interesting in itself. Other evolution criteria have beed@SS densityy is the material velocity in the bulke is the
formulated, for example, a principle of maximum entropy Surface stress tensdris the bulk stress tensof,is the ac-
production[5]. This principle, however, cannot be derived Celeration due to external fields, is the surface spin per
by tools of nonequilibrium thermodynamics in general. unit mass s is the surfgce couple stress tensog, are the

If an evolution criterion(1) is established, we obtain im- surface couple forces is the bulk spin densityll is the
mediately a variational principle for equilibrium states,

f {+++}dV—(minimal in equiliorium, (2
G(t

if some presuppositions are satisfied. Such a variational prin-
ciple for equilibrium states of liquid crystals in three-
dimensional configurations has been derived 6 using
exactly the same methods as applied in the present work.
There are important examples of liquid crystals which can
be regarded as two dimensional: A free-standing liquid crys-
talline film consisting of a few molecular layers can be pro-
duced over a hole in a metal plate. Another two-dimensional FIG. 1. Geometry of the curved surface.
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bulk couple stress tensog, is the surface specific internal Balance of internal angular momentum:
energy,e is the bulk specific internal energys is the sur-
face heat fluxq is the bulk heat flux, andc is the effective
moment of inertia of the particlgs ad K K K K
Balance of mass: E (QSSS) - 2KMWL sts+ (stswa_ Hsa);a

J
5 @520 KuW! (W)= ~[e(v™—w™]e™. (4) =[TT*™— psk(v™—w™M) Je™+ g mk

+ kim | ma k WJ'Wa.
Balance of momentum:; € Tals” €a Os ©)
1 (QW9 =20 WKW + (@aW W 15",
f5 IS an effective specific moment of inertia.
=—[—t“"+ o X(u™—w™]e™+ o X (5) Balance of internal energy:
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9eff
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In all these balance equations are terms which have necribed by an orientation distribution functid®DF). The
analog in the balance equations for three-dimensional liquidensorial moments of this ODF are the alignment tenaf?s
crystals: terms involving the mean curvatlfg, and terms  of successive ordd9], the second-order tensor is denoted
due to discontinuities of the bulk fluxes. The first kind of with a.
terms are caused by the time rate of the moving surface area.

T_he second kind of terms_couple the surface balance equa- || pERIVATION OF THE EVOLUTION CRITERION
tions to the balance equations in the bulk.

The local formulation of the second law of thermodynam-  Let us consider a liquid crystalline film in contact with a
ics is the dissipation inequality on the surface.) is the  reservoir of given(constant temperatureél* and (constank
surface entropy densityp, is the surface entropy fluxp is  isotropic pressurgd*. The reservoir consists of a simple
the entropy flux in the bulk, and is the surface entropy fluid, which means no couple stresses occur in the reservoir.
production density For instance, for a free-standing liquid crystalline film the

reservoir consists of the air surrounding the film from below

d N 0 aa and above, and of the metal plate surrounding the liquid
it (@sms) =205 KW+ (QsPsW*+ 5) o crystal which is free standing over a hole in this metal plate
(see Fig. 2 The liquid crystal brought into contact with the
—[oen(v"—wm™+ ¢p™eM=0c=0. (8)  reservoir consists of the two bulk regio@s andG~, which

are separated by the surfaGe The contacting surface be-
Liquid crystals in which we are interested here consist oftween the liquid crystal and the reservoiwis, consisting of
form anisotropic molecules. As a result of this internal struc-(see Fig. 3
ture, there exists an internal angular momentiigpin). The
orientational order of these anisotropic molecules is de- dG=dG UG~ UC. 9

air

metal plate '

air
FIG. 3. The liquid crystal is in contact with a reservoir along the
FIG. 2. Free-standing film over a hole in a metal plate. boundarydG=9¢G UG~ UC.
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Here C is the cylindrical surface between the liquid crystal and, analogously by Eqd7) on the boundariesG™* or
and metal plate. In the following it is assumed that the res9G~, respectively,
ervoir which is in contact with the liquid crystal is of uni-
form temperatur@®; i.e., the temperatures of the metal plate
and of the surrounding air are presupposed to be equal. Kk *kok
. " T . ¢~ e"da= —x g~ “e“da.
On the contacting surfaceG™UJG~ (see Fig. 3, we 9G* T Jsc*
have the same temperature and pressure as in the reservoir,
and because of eqqll|br|um between film and reservoir, they,y let the thickness of the regioiG”
couple stresses vanish:

(19

andG™ normal to

the surface become infinitesimally small, and the cylindrical

surfaceC becomes the curv€(s). Then the difference be-

Tie==TF, (100 tween both the integrals in Eq19) results in the surface
integral over a jump contribution:

5. =0, (11)
+kak —kak k7 ak
eda—f eda—>f e‘da,
'l?l(?Gi . =t|ﬁth nI;Gi = pRnLGi . (12) aG* ¢ G~ ¢ G(t)[d) ] (20)
OnC, we have
1 1 B 1
Tc=TR, (13 7w [ _,0"eda-gx Lqu ‘ekda— ¢ fG(t)[qk]ekda,
(21
a ._taBpr _ ~Rha
Yeci=tschg=pch?, (14
and therefore we obtain in this limit
&.=o. (15
The entropy flux through the surface in contact with the res- f [ p*]ekda= iR [g¥]e*da. (22)
ervoir (which is in equilibrium per definitionis given by the ® T Jew

heat flux over the temperature of the reservoir:
Because the film may absorb hefa] - e is nonzero in gen-

1 eral.
s CTIR Gs|C (16) In contrast to the uniform temperatufi® of the reser-
voirs, the stress tensors are differently defined’@r and
and alongC(s):
Hsce = t
c==7rR Y .
T e PR Pl s - (23

By Eq. (16), we obtain on the cylindrical surfade: . . _
y Eq. (16), w I yindrical su Even the units ofp® and p|g,, which are Nm? and

N m™%, are different.
f $2h,da= iR f q°h,da (18) l_\Iovv_ Eqs.(1_8) and(22) are inserted into the global dissi-
c T Jc pation inequality:

d
| eamadar [ eds— | 1otreni-wdietda
dt Jem c G()

k

q
—r+en*-w"

R ekda

:ij (osms)da+ q—gh ds—j
dt () sTs c TR a ()

=gf ( )da+f %da—f
dt Jem Os7s G TN G()

To obtain an evolution criterion, we have to recase ([24) in the form of time derivatives according to Ed). Therefore the
heat flux is substituted by the balance of internal endigy

k
%+Q77(Uk—wk) ekda=0. (24)
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The first term simplifies with the equilibrium conditions on the contacting surface:

_ la _
C(s)hﬂ ps he, Hg@)—o, tC(as)—O:

da.

1
| =pR f wPh zds— f (wkt§4a+ — sKIIke
c(s) G(1) " Ot ’

The integrall simplifies using the surface transport theorgh8,1Q for any surface density,:

d
— f pda= f (‘/'S + (W), o — 2h K W™
dt Jou G(1)

da,
with =1,

da.

d 1
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dt Jew G() G(t) " Ot ’

For the stress tensor the balance of momentum and for the couple stresses the spin balance are inserted:
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We now assume that the film is at rest,

wt=0, (33
and that there is no material flux through the film:
(v™—wMe™m=0. (39

In addition we assume the external foro:eu) be conserva-
tive (f=-Y7):

- st"w"da:j o0«(V¥yowkda
G(t) G(t)

= |, e Tarw (V. v da
:f Qs[’)’s;awa'k(vi')’s)wi]da

G()
(35

d
= & jG(t)Qs')’sda-

Here Eq.(33) and the mass balance was inserted.
Finally from Eq.(32) by use of Egs(33) and (34), and

multiplication by —1, we have obtained the evolution crite-

rion we looked for:

d . L1
qr —T7Qsmst 05t P+ 5 OW-W
dt G(t) 2

Os

+ S¢-Sst 0sys|das<0 Vi
205

(36)

We now transform this evolution criterion into a more

convienient form. The(globa) kinetic energy [g)(0s/

4279
Os M j Os
—— S S.da= S-S+
fG(t) 20q = 7° 2005 = T Jo() 20ex
X(§s_ _S)'(Ss_ _S)da (40)

Here the last term is another contribution to the global inter-
nal energy:

Q U
f 298 (§s_ _S)'(§s_ _S)da::f Qsesda' (41)
G(t) eff G(t)

For an observer moving with velocity/ and angular ve-
locity (1/64)S, the first terms in Eqs37) and (40) vanish.
With the definition

e;=e,t+e.+el, (42)
the integral(36) reads, for such an observer,
d R a R
Tt J (=T 95775+Qses+ps+"ys)da
dt G(t)
d
= gda<0 Vt. (43
dt G(t)

Because the time derivative is strictly negative in non-
equilibrium and zero in equilibrium, it follows that the inte-
gral is minimal at equilibrium. Consequently a variational
principle can be formulated, which will be done in the next
section. It has to be noted that the integrand does not depend
explicitly on the mean curvature of the two-dimensional lig-
uid crystal. As a consequence, the curvature does not occur
in the resulting Euler-Lagrange equations explicigge the
end of next section This is also true for the electromagnetic
fields. They enter only by the constitutive equations for the
internal energy density and for the entropy density. Consti-

2)w-wda can be split into a sum of translational energy of tutive equations will not be discussed here further. An earlier
the whole surface&s(t) and some contribution to the global publication[11] deals with implications of the second law on

internal energy:

37)

wheree{ is the contribution to the internal energy 6ft)
andW is defined by use of the mean value theorem

MW:=f ow da. (38
G(t)

Similarly, by
MS:= f 0S:da, (39
G(t)

we obtain, for the spin density,

constitutive equations for two-dimensional liquid crystals.

Ill. VARIATIONAL PRINCIPLE

Here we want to show that the evolution criterion derived
in the previous section implies a variational principle for
equilibrium states. To this end we assume that the following
presupposition holds true.

The independent fields

0s,€s,Ss,Ws,8s (44)
relax for sufficiently long timg to unique equilibrium val-
ues,

0sled TR P €l ed TR.PE), Ssled TR, PS),

Wl TR, PS),adled TR, DY), (45
which are determined by the equilibrium valug$ and T}
kept fixed during the relaxation by the controling reservoir.
This equilibrium state is uniquely determined by the initial
conditions and the environmental cont(tiiere is no branch-
ing during the process
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o) b) Z={0s,85,V0s,Ves,a5,Vas,VVas, Vw,g,b} (49

equilibrium
subspace

& .
Ar equilibrium
subspace

N (g is the surface metric tensor abds the curvature tenspr
This state space is different from the independent ficlds
because constitutive properties of liquid crystals depends on
the gradients of these fields. The surface sirs a consti-
tutive equation, which therefore does not appear in the state
space. Also, the velocity of the surfagg is not included in
the state space because constitutive properties do not depend
on the relative velocity between observer and the system due
! " to the principle of objectivity12]. The geometrical param-
etersg andb are kept constant in the variation because the
FIG. 4. The state space is spanned in this example by the densileometrical properties of the surface are given and not
¢, the internal energg, and the alignment tensar. (&) The equi-  \yanted.
librium subspace is a two-dimensional hypersurface in this state \yith the choice of the state spacs), the free energy

space(b) The structure of the equilibrium subspace is such that fordensityg in Eq. (46) generates the Euler-Lagrange equations
some values op ande there are two equilibrium values af. for the equilibrium fieldse deq, €deq, andaleq:
sleqr “sleq: Zleq-

A

This uniqueness of the final equilibrium state must not be dg — dg
taken for the fact that in the case of possible phase transitions Jo. V. e 0, (49
more than one value of s S

(Qs|eqaes|eqr§s|eqv\’_v|eqv§s|eo> a—g—_ (9_920 (50)
Qs " 90sa
belonging to the same controling parametélfg,()s) is pos-
sible, but only one is realizefdee Fig. 4b)]. )9 — 99 _—— 99
We are now interested in a method of finding these equi- QE_V“ EE’Z“LV“VB aaE up =0. (51)

librium fields spanning the equilibrium subspace.

Proposition The evolution criterion derived in the last Because the integra#3) is on a curved manifold, here
section logether with the presupposition above implies a@he surfaces, the derivatives in the Euler-Lagrange equa-
variational principle for equilibrium states. tions are covariant onds. Because this covariant derivative

An arbitrary nonequilibrium state can be taken as initia|depend3 on surface geometry, the Euler-Lagrange equations
condition for a thermodynamic process, relaxing to the equidepend implicitly on curvature. Additionally, also the consti-
librium state. From the evolution criterion, we know that tutive functiong may depend on the geometrica| parameters

along this process the integral which we have included in the state spd46).
G(t)= f g da= f (08— 05T 7st PS+sys)da IV. CONCLUSIONS
G(t) G(1)
(46) It has been proved that the free enef@ft) in Eq. (46) is

minimal in equilibrium. This free energy is generated by
decreases. Therefore it is minimal in equilibrium Compar6dntegrating the Specia| surface free energy density
to all nonequilibrium states for arbitrary, but kept fixed con- o
troling parametersTFR, p?). As a result of the fact that the g=0— TR ms+ p§+ 0sYs (52
equilibrium is presupposed to be unique for fixed controlling
parameters, there are no fieldil) for which Eq.(46) is less according to Eq(46). Such a statement is usually introduced
than in equilibrium according to the evolution criterion. That @ anad hoc assumptioin Landau theory13]: A surface
means the equilibrium fields have to minimize £4p). The  free energy like Eq(52) is written down by guess. The as-
value of this minimum depends on the values of the controlsumption that the global free energy belonging to the

ing parameters TR,pY). Thus we obtain thevariational guessed surface free energy is extremal results in Euler-
principle Lagrange equations which are the basis of Landau’s theory.

Here this procedure is derived by proving the variational
G(04(-),e4(+),86( - ), Ws( - ),as(-); TR, pH)— minimal principle (47), which stems from the evolution criteridi6]
B (47  Whose background is the second law.

An analogous variational principle has been proved for
in equilibrium with respect to arbitrary, but constant control- three-dimensional liquid crystal§]. But treating the anchor-
ling fields at the boundarg¢. ing problem of liquid crystals at a surface the free energy

The Euler-Lagrange equations belonging to this varia-used by other authoifd 4] consists of bulk and surface con-
tional principle represent the equilibrium conditions. To tributions. Hence the surface contributions are invariants
write them down explicitly, one has to chose the variables ofyenerated by the alignment tensor or by the macroscopic
which the integrand in Eq46) depends on; that means that director and by the normal vector of the surface. The corre-
the state space has to be fixed. A reasonable choice for tlgponding bulk contributions are elastic energies, i.e., scalar
state space for liquid crystals [i8,11] invariants involving gradients of the alignment tensor or the
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macroscopic director, respectively. Such a variational prin- (i) The specific external force is conservativd:
ciple cannot be obtained in the frame of the theory of a=—Vy,. )
singular surface, because the here used dissipation inequality (ii) The surrounding material has constant temperature
is valid for the surface and for the bulk separately. ThisTR and constant pressup® in the bulk regions, and constant
results in separate variational principles for the surface anéressurep? along the curve which contacts the liquid crys-

for the bulk. The question, if a coupling between bulk andig| with the isotropic reservoir in the plane of the surfésee
surface terms occurs in the variational principle, if therig. 3): [1=0, II,=0.

boundary is not treated as a singular surface, but as a surface (i) There are no couple stresses in the liquid crystal:
region of finite thickness with great field gradients will be j =0,
examined elsewhere. Another possibility would be to include” " (jy) The film is at restw* =0.
the fields of the adjacent bulk regions into the state space of (v) There is no material flux through the film:
the surface quantities. (fv —w)-e=0.

With the special ansatz for the curvature dependence of The evolution criterion has been derived for a two-

the surface free energy dimensional system in contact with a reservoir. The tempera-
ture TR in the integrand of the global free ener@yis the

constant temperature of the reservoir, afdand p? are its

constant pressures. The derivation of the evolution criterion
shown here is possible, if only one reservoir is present. A
system in contact with two reservoirs of different tempera-
tures or even more complex situations with a temperature

n: K . .
>{_leld on the contacting boundary are left to future investiga-

fs:%kc(KM_CO)z_chG (53
[k, Co, andk. are material-dependent parameters Kpds
the Gauss’ curvaturd{s=det(b) ], the variational principle
(46) is the same used ifl5,16 for lyotropic membranes.
Note again that the curvature comes in only through the co
stitutive equation for the free energy and does not enter e
plicitly into the Euler-Lagrange equations. However, the 1ons.
Euler-Lagrange equations are influenced by surface geom-
etry through the fact that the element of surface area in Eq.
(46) is the volume form in a curved space. Consequently, the
derivatives in the Euler-Lagrange equations are covariant de- We thank H. Ehrentraut for valuable discussions, the Dra-
rivatives. loric Company, D-95100 Selb, Germany, and the European
The presuppositions necessary to derive the variationdUnion for financial support under Grant No. ERBCHRXCT
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