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Evolution criterion in nonequilibrium and a variational principle for equilibrium states
of free-standing liquid crystalline films

Christina Papenfuss and Wolfgang Muschik
Technische Universita¨t Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany

~Received 6 March 1997!

Starting out with the thermodynamic balance equations of liquid crystalline films and the second law of
thermodynamics, an analog to the global surface free energy is derived whose time derivative is negative
definite out of equilibrium and zero in equilibrium. This evolution criterion allows one to formulate a varia-
tional principle for the equilibrium states by minimizing the modified global surface free energy derived above.
Thus the quantity which is extremal in equilibrium in the case of free-standing crystalline films is not presup-
posedad hoc, but derived from an evolution criterion based on the second law.@S1063-651X~97!14308-2#

PACS number~s!: 05.70.Ln, 44.60.1k, 68.90.1g
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I. INTRODUCTION

There are different approaches to a formulation of th
modynamics in terms of modified variational principles:
some cases special constitutive equations~linear force-flux
relations or even nonlinear force-flux relations, always
suming Onsager symmetry relations! have been inserted int
the balance equations, and these equations, valid for the
cial chosen material, have been derived from an extrem
principle @1,2#. The balance equations without constituti
assumptions can be derived from a variational principle
the number of wanted fields is doubled, with the shortcom
that there is no physical interpretation of the addition
fields. For a review and a classification of various modifi
variational principles, see, for instance,@3,4#.

Our aim here is to derive equilibrium conditions for fre
standing films of liquid crystals from a variational principl
To this end we start out with the derivation of an evoluti
criterion from the second law of thermodynamics. Such
criterion for the evolution of nonequilibrium states in time
of the form

d

dt EG~ t !
$•••%dV<0 ~1!

and is interesting in itself. Other evolution criteria have be
formulated, for example, a principle of maximum entro
production@5#. This principle, however, cannot be derive
by tools of nonequilibrium thermodynamics in general.

If an evolution criterion~1! is established, we obtain im
mediately a variational principle for equilibrium states,

E
G~ t !

$•••%dV→~minimal in equilibrium!, ~2!

if some presuppositions are satisfied. Such a variational p
ciple for equilibrium states of liquid crystals in three
dimensional configurations has been derived in@6#, using
exactly the same methods as applied in the present wor

There are important examples of liquid crystals which c
be regarded as two dimensional: A free-standing liquid cr
talline film consisting of a few molecular layers can be p
duced over a hole in a metal plate. Another two-dimensio
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system represents the phase boundary between the ne
and isotropic phases. Other two-dimensional examples
boundary layers on a glass surface or lyotropic double lay
representing biologically important cell membranes.

The considered surface is in general not flat. It is mov
in time, and the surface geometry is time dependent.
mapping velocity of the system in consideration iswI , and
w' is its component normal to the surface. The surface u
normal vector is denoted byeI , KM is the mean curvature o
the surface, and the index ‘‘;’’ denotes the covariant deriv
tive of the Levi-Civitàconnection on the surface. Latin ind
ces refer to a Cartesian coordinate system inR3 and greek
indices refer to a curvilinear surface coordinate system. T
surface is embedded in the surrounding bulk medium,
the bulk fluxes are in general discontinuous at the surf
~see Fig. 1!. The difference between the values of the bu
fields on both sides of the surface is denoted by

@f#:5f1f2. ~3!

The fact that phase boundaries and the other mentioned
amples are not mathematical surfaces in reality, but hav
finite thickness, will be ignored in the following.

The balance equations for surface densities have been
rived in @7,8#. They are summarized here~%s is the surface
mass density,vI is the material velocity in the bulk,t=s is the
surface stress tensor,t= is the bulk stress tensor,fI is the ac-
celeration due to external fields,sI s is the surface spin pe
unit mass,P= s is the surface couple stress tensor,mI s are the
surface couple forces,sI is the bulk spin density,P= is the

FIG. 1. Geometry of the curved surface.
4275 © 1997 The American Physical Society
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4276 56CHRISTINA PAPENFUSS AND WOLFGANG MUSCHIK
bulk couple stress tensor,es is the surface specific interna
energy,e is the bulk specific internal energy,qI s is the sur-
face heat flux,qI is the bulk heat flux, andueff is the effective
moment of inertia of the particles!.

Balance of mass:

]

]t
%s22%sKMw'1~%sw

a! ;a52@%~vm2wm!#em. ~4!

Balance of momentum:
]

]t
~%sw

k!22%sw
kKMw'1~%sw

kwa2ts
ka! ;a

52@2tkm1%vk~vm2wm!#em1%sf
k. ~5!
n
u

of
re
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m

o
c

de
Balance of internal angular momentum:

]

]t
~%sss

k!22KMw'%sss
k1~%sss

kwa2Ps
ka! ;a

5@Pkm2%sk~vm2wm!#em1%sms
k

1eklmta
l ts

ma1ea'
k %sw

'wa. ~6!

ueff is an effective specific moment of inertia.
Balance of internal energy:
]

]t
~es%s!22KMw'%ses1qs;a

a 2ws;a
k ts

ka2S ss
k

ueff
D

;a

Ps
ka1~%sesw

a! ;a

52Fqm2~vk2wk!tkm1S 1

ueff
sk2

1

ueff
ss

kDPkm1%e~vm2wm!1
%

2
~vk2wk!~vk2wk!

3~vm2wm!1
%

2ueff
~sk2ss

k!~sk2ss
k!~vm2wm!Gem1%sr s2eklmta

l ts
ma 1

ueff
ss

k2ea'
k w'wa

1

ueff
%sss

k . ~7!
ed

a

e
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e
w
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In all these balance equations are terms which have
analog in the balance equations for three-dimensional liq
crystals: terms involving the mean curvatureKM and terms
due to discontinuities of the bulk fluxes. The first kind
terms are caused by the time rate of the moving surface a
The second kind of terms couple the surface balance e
tions to the balance equations in the bulk.

The local formulation of the second law of thermodyna
ics is the dissipation inequality on the surface (hs) is the
surface entropy density,fI s is the surface entropy flux,fI is
the entropy flux in the bulk, andss is the surface entropy
production density!:

]

]t
~%shs!22%shsKMw'1~%shsw

a1fs
a! ;a

2@%h~vm2wm!1fm#em5ss>0. ~8!

Liquid crystals in which we are interested here consist
form anisotropic molecules. As a result of this internal stru
ture, there exists an internal angular momentum~spin!. The
orientational order of these anisotropic molecules is

FIG. 2. Free-standing film over a hole in a metal plate.
o
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scribed by an orientation distribution function~ODF!. The
tensorial moments of this ODF are the alignment tensorsa(k)

of successive order@9#, the second-order tensor is denot
with a= .

II. DERIVATION OF THE EVOLUTION CRITERION

Let us consider a liquid crystalline film in contact with
reservoir of given~constant! temperatureT* and ~constant!
isotropic pressurep* . The reservoir consists of a simpl
fluid, which means no couple stresses occur in the reserv
For instance, for a free-standing liquid crystalline film th
reservoir consists of the air surrounding the film from belo
and above, and of the metal plate surrounding the liq
crystal which is free standing over a hole in this metal pl
~see Fig. 2!. The liquid crystal brought into contact with th
reservoir consists of the two bulk regionsG1 andG2, which
are separated by the surfaceG. The contacting surface be
tween the liquid crystal and the reservoir is]G, consisting of
~see Fig. 3!

]G5]G1ø]G2øC. ~9!

FIG. 3. The liquid crystal is in contact with a reservoir along t
boundary]G5]G1ø]G2øC.
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56 4277EVOLUTION CRITERION IN NONEQUILIBRIUM AND A . . .
Here C is the cylindrical surface between the liquid crys
and metal plate. In the following it is assumed that the r
ervoir which is in contact with the liquid crystal is of un
form temperatureTR; i.e., the temperatures of the metal pla
and of the surrounding air are presupposed to be equal.

On the contacting surface]G1ø]G2 ~see Fig. 3!, we
have the same temperature and pressure as in the rese
and because of equilibrium between film and reservoir,
couple stresses vanish:

T]G65TR, ~10!

P]G6
kl

50, ~11!

q]G6
l :5t]G6

lk n]G6
k

5pRn]G6
l . ~12!

On C, we have

TC5TR, ~13!

qsC
a :5tsC

abhb5pC
Rha, ~14!

PsC
kl 50. ~15!

The entropy flux through the surface in contact with the r
ervoir ~which is in equilibrium per definition! is given by the
heat flux over the temperature of the reservoir:

fI sUC5
1

TR qI sUC ~16!

and

fI U]G65
1

TR qI U
]G6

. ~17!

By Eq. ~16!, we obtain on the cylindrical surfaceC:

E
C
fs

ahada5
1

TR E
C
qs

ahada ~18!
l
-

oir,
e

-

and, analogously by Eq.~17! on the boundaries]G1 or
]G2, respectively,

E
]G6

f6kekda5
1

TR E
]G6

q6kekda. ~19!

Now let the thickness of the regionsG1 andG2 normal to
the surface become infinitesimally small, and the cylindri
surfaceC becomes the curveC(s). Then the difference be
tween both the integrals in Eq.~19! results in the surface
integral over a jump contribution:

E
]G1

f1kekda2E
]G2

f2kekda→E
G~ t !

@fk#ekda,

~20!

1

TR E
]G1

q1kekda2
1

TR E
]G2

q2kekda→
1

TR E
G~ t !

@qk#ekda,

~21!

and therefore we obtain in this limit

E
G~ t !

@fk#ekda5
1

TR E
G~ t !

@qk#ekda. ~22!

Because the film may absorb heat,@q#•eI is nonzero in gen-
eral.

In contrast to the uniform temperatureTR of the reser-
voirs, the stress tensors are differently defined on]G6 and
alongC(s):

pRÞpuC~s!
R . ~23!

Even the units ofpR and puC(s)
R , which are N m22 and

N m21, are different.
Now Eqs.~18! and~22! are inserted into the global diss

pation inequality:
d

dt EG~ t !
~%shs!da1E

C
fahads2E

G~ t !
@fk1%h~vk2wk!#ekda

5
d

dt EG~ t !
~%shs!da1E

C

qs
a

TR hads2E
G~ t !

F qk

TR 1%h~vk2wk!Gekda

5
d

dt EG~ t !
~%shs!da1E

G~ t !

qs;a
a

TR da2E
G~ t !

F qk

TR 1%h~vk2wk!Gekda>0. ~24!

To obtain an evolution criterion, we have to recase Eq.~24! in the form of time derivatives according to Eq.~1!. Therefore the
heat flux is substituted by the balance of internal energy~7!:
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d

dt EG~ t !
%shsda>E

G~ t !
@%h~vk2wk!#ekda1

1

TR E
G~ t !

H 2w;a
k ts

ka2S 1

ueff
ss

kD
;a

Ps
ka2F ~wk2vk!tkm

1S 1

ueff
sk2

1

ueff
ss

kDPkm1%e~vm2wm!
%

2
~vk2wk!~vk2wk!~vm2wm!

1
%

2ueff
~sk2ss

k!~sk2ss
k!~vm2wm!Gem1%sr s2eklmta

l ts
ma %s

ueff
ss

k

2ea'
k w'wa

1

ueff
ss

kdaJ da1
1

TR

d

dt EG~ t !
%sesda. ~25!

Define

I :5E
G~ t !

Fw;a
k ts

ka1S 1

ueff
ss

kD
;a

Ps
kaGda5E

C~s!
S wkts

ka1
1

ueff
ss

kPs
kaDhads2E

G~ t !
S wkts;a

ka 1
1

ueff
ss

kPs;a
ka Dda. ~26!

The first term simplifies with the equilibrium conditions on the contacting surface:

l C~s!
ab hb5ps

Rha, PC~s!
ab 50, tC~s!

'a 50, ~27!

I 5ps
RE

C~s!
wbhbds2E

G~ t !
S wkts;a

ka 1
1

ueff
ss

kPs;a
ka Dda. ~28!

The integralI simplifies using the surface transport theorem@7,8,10# for any surface densitycs :

d

dt EG~ t !
csda5E

G~ t !
S ]cs

]t
1~csw

a! ;a22csKMw'Dda, ~29!

with cs[1,

I 5ps
RS d

dt EG~ t !
1da1E

G~ t !
2w'KMdaD 2E

G~ t !
S wkts;a

ka 1
1

ueff
ss

kPs;a
ka Dda. ~30!

For the stress tensor the balance of momentum and for the couple stresses the spin balance are inserted:

I 5ps
RS d

dt EG~ t !
1da1E

G~ t !
2w'KMdaD 2E

G~ t !
wk$@2tkm1%vk~vm2wm!#em1%sf

k%da2
d

dt EG~ t !

1

2
%sw

kwkda

1
1

2 E
G~ t !

@%~vm2wm!#emwkwk2E
G~ t !

S 1

ueff
ss

k@Pkm2%sk~vm2wm!#em1%sms
k1eklmta

l ts
ma1ek

a'%sw
'waDda

2
d

dt EG~ t !
S 1

2ueff
%sss

kss
k1

1

2
@%~vm2wm!#em

1

ueff
ss

kss
kDda. ~31!

Using these equations in the dissipation inequality, we obtain

d

dt EG~ t !
%shsda>E

G~ t !

1

TR @%h~vk2wk!#ekda1E
G~ t !

S F ~vk2wk!tkm1%e~vm2wm!1
%

2
~vk2wk!~vk2wk!~vm2wm!

1
%

2ueff
~sk2ss

k!~sk2ss
k!~vm2wm!Gem1%sr s2eklmta

l ts
ma %s

ueff
ss

k1ea'
k w'wa

1

ueff
ss

kDda

1
d

dt EG~ t !
%sesda2ps

RS d

dt EG~ t !
1da1E

G~ t !
2w'KMdaD 2E

G~ t !
wk~ @2tkm1%vk~vm2wm!#em

1%sf
k!da1E

G~ t !

1

2
%sw

kwkda2E
G~ t !

~ss
k@Pkm2%sk~vm2wm!#em1%sms

k1eklmta
l ts

ma

1ea'
k %sw

'wa!da2
d

dt EG~ t !
S 1

2ueff
%sss

kss
k1

1

2
@%~vm2wm!#em

1

ueff
ss

kss
kDda. ~32!
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56 4279EVOLUTION CRITERION IN NONEQUILIBRIUM AND A . . .
We now assume that the film is at rest,

w'50, ~33!

and that there is no material flux through the film:

~vm2wm!em50. ~34!

In addition we assume the external forcesfI to be conserva-
tive ( fI52¹I gs):

2E
G~ t !

%sf
kwkda5E

G~ t !
%s~¹kgs!w

kda

5E
G~ t !

%s@~¹ags!w
a1~¹'gs!w

'#da

5E
G~ t !

%s@gs;awa1~¹'gs!w
'#da

5
d

dt EG~ t !
%sgsda. ~35!

Here Eq.~33! and the mass balance was inserted.
Finally from Eq. ~32! by use of Eqs.~33! and ~34!, and

multiplication by21, we have obtained the evolution crite
rion we looked for:

d

dt EG~ t !
S 2TR%shs1%ses1ps

R1
1

2
%swI •wI

1
%s

2ueff
ssI •ssI1%sgsDda<0 ;t. ~36!

We now transform this evolution criterion into a mo
convienient form. The~global! kinetic energy *G(t)(%s/
2)wI •wI da can be split into a sum of translational energy
the whole surfaceG(t) and some contribution to the globa
internal energy:

E
G~ t !

%s

2
wI •wI da5

1

2
WI •WI E

G~ t !
%sda

1E
G~ t !

%s

2
~wI 2WI !•~wI 2WI !da

5
M

2
WI •WI 1E

G~ t !
%ses8da, ~37!

wherees8 is the contribution to the internal energy ofG(t)
andWI is defined by use of the mean value theorem

MWI :5E
G~ t !

%swI da. ~38!

Similarly, by

MSI :5E
G~ t !

%ssI sda, ~39!

we obtain, for the spin density,
f

E
G~ t !

%s

2ueff
sI s•sI sda5

M

2ueff
SI •SI 1E

G~ t !

%s

2ueff

3~sI s2SI !•~sI s2SI !da. ~40!

Here the last term is another contribution to the global int
nal energy:

E
G~ t !

%s

2ueff
~sI s2SI !•~sI s2SI !da5:E

G~ t !
%ses9da. ~41!

For an observer moving with velocityWI and angular ve-
locity (1/ueff)SI , the first terms in Eqs.~37! and ~40! vanish.
With the definition

ēs5es1es81es9 , ~42!

the integral~36! reads, for such an observer,

d

dt EG~ t !
~2TR%shs1%sēs1ps

R1gs!da

5:
d

dt EG~ t !
gda<0 ;t. ~43!

Because the time derivative is strictly negative in no
equilibrium and zero in equilibrium, it follows that the inte
gral is minimal at equilibrium. Consequently a variation
principle can be formulated, which will be done in the ne
section. It has to be noted that the integrand does not dep
explicitly on the mean curvature of the two-dimensional li
uid crystal. As a consequence, the curvature does not o
in the resulting Euler-Lagrange equations explicitly~see the
end of next section!. This is also true for the electromagnet
fields. They enter only by the constitutive equations for t
internal energy density and for the entropy density. Con
tutive equations will not be discussed here further. An ear
publication@11# deals with implications of the second law o
constitutive equations for two-dimensional liquid crystals.

III. VARIATIONAL PRINCIPLE

Here we want to show that the evolution criterion deriv
in the previous section implies a variational principle f
equilibrium states. To this end we assume that the follow
presupposition holds true.

The independent fields

%s ,es ,sI s ,wI s ,a= s ~44!

relax for sufficiently long timetI to unique equilibrium val-
ues,

%sueq~TR,ps
R!,esueq~TR,ps

R!,sI sueq~TR,ps
R!,

wI ueq~TR,ps
R!,a= sueq~TR,ps

R!, ~45!

which are determined by the equilibrium valuesps
R and Ts

R

kept fixed during the relaxation by the controling reservo
This equilibrium state is uniquely determined by the init
conditions and the environmental control~there is no branch-
ing during the process!.
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4280 56CHRISTINA PAPENFUSS AND WOLFGANG MUSCHIK
This uniqueness of the final equilibrium state must not
taken for the fact that in the case of possible phase transit
more than one value of

~%sueq,esueq,sI sueq,wI ueq,a= sueq!

belonging to the same controling parameters (TR,ps
R) is pos-

sible, but only one is realized@see Fig. 4~b!#.
We are now interested in a method of finding these eq

librium fields spanning the equilibrium subspace.
Proposition: The evolution criterion derived in the las

section logether with the presupposition above implies
variational principle for equilibrium states.

An arbitrary nonequilibrium state can be taken as init
condition for a thermodynamic process, relaxing to the eq
librium state. From the evolution criterion, we know th
along this process the integral

G~ t !5E
G~ t !

g da5E
G~ t !

~%sēs2%sT
Rhs1ps

R1%sgs!da

~46!

decreases. Therefore it is minimal in equilibrium compa
to all nonequilibrium states for arbitrary, but kept fixed co
troling parameters (TR,ps

R). As a result of the fact that the
equilibrium is presupposed to be unique for fixed controlli
parameters, there are no fields~44! for which Eq.~46! is less
than in equilibrium according to the evolution criterion. Th
means the equilibrium fields have to minimize Eq.~46!. The
value of this minimum depends on the values of the cont
ing parameters (TR,ps

R). Thus we obtain thevariational
principle

G„%s~• !,es~• !,sI s~• !,wI s~• !,a= s~• !;TR,ps
R
…→minimal

~47!

in equilibrium with respect to arbitrary, but constant contr
ling fields at the boundaryC.

The Euler-Lagrange equations belonging to this va
tional principle represent the equilibrium conditions. T
write them down explicitly, one has to chose the variables
which the integrand in Eq.~46! depends on; that means th
the state space has to be fixed. A reasonable choice fo
state space for liquid crystals is@9,11#

FIG. 4. The state space is spanned in this example by the de
%, the internal energye, and the alignment tensora= . ~a! The equi-
librium subspace is a two-dimensional hypersurface in this s
space.~b! The structure of the equilibrium subspace is such that
some values of% ande there are two equilibrium values ofa= .
e
ns

i-

a

l
i-

d
-

t

l-

-

-

f

he

Z5$%s ,es ,¹%s ,¹es ,a= s ,¹a= s ,¹¹a= s ,¹wI ,g
=
,b= % ~48!

~g
=

is the surface metric tensor andb= is the curvature tensor!.
This state space is different from the independent fields~44!
because constitutive properties of liquid crystals depends
the gradients of these fields. The surface spinsI s is a consti-
tutive equation, which therefore does not appear in the s
space. Also, the velocity of the surfacewI s is not included in
the state space because constitutive properties do not de
on the relative velocity between observer and the system
to the principle of objectivity@12#. The geometrical param
etersg

=
andb= are kept constant in the variation because

geometrical properties of the surface are given and
wanted.

With the choice of the state space~48!, the free energy
densityg in Eq. ~46! generates the Euler-Lagrange equatio
for the equilibrium fields%sueq, esueq, anda= ueq:

]g

]es
2¹̄a

]g

]es,a
50, ~49!

]g

]%s
2¹̄a

]g

]%s,a
50, ~50!

]g

]as
kl2¹̄a

]g

]as,a
kl 1¹̄a¹̄b

]g

]as,ab
kl 50. ~51!

Because the integral~43! is on a curved manifold, here
the surfacesI , the derivatives in the Euler-Lagrange equ
tions are covariant ones¹̄. Because this covariant derivativ
depends on surface geometry, the Euler-Lagrange equa
depend implicitly on curvature. Additionally, also the cons
tutive functiong may depend on the geometrical paramet
which we have included in the state space~48!.

IV. CONCLUSIONS

It has been proved that the free energyG(t) in Eq. ~46! is
minimal in equilibrium. This free energy is generated
integrating the special surface free energy density

g5%sēs2TR%shs1ps
R1%sgs ~52!

according to Eq.~46!. Such a statement is usually introduce
as anad hoc assumptionin Landau theory@13#: A surface
free energy like Eq.~52! is written down by guess. The as
sumption that the global free energy belonging to t
guessed surface free energy is extremal results in Eu
Lagrange equations which are the basis of Landau’s the
Here this procedure is derived by proving the variation
principle ~47!, which stems from the evolution criterion@6#
whose background is the second law.

An analogous variational principle has been proved
three-dimensional liquid crystals@6#. But treating the anchor-
ing problem of liquid crystals at a surface the free ene
used by other authors@14# consists of bulk and surface con
tributions. Hence the surface contributions are invaria
generated by the alignment tensor or by the macrosco
director and by the normal vector of the surface. The cor
sponding bulk contributions are elastic energies, i.e., sc
invariants involving gradients of the alignment tensor or t

ity

te
r
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56 4281EVOLUTION CRITERION IN NONEQUILIBRIUM AND A . . .
macroscopic director, respectively. Such a variational p
ciple cannot be obtained in the frame of the theory o
singular surface, because the here used dissipation inequ
is valid for the surface and for the bulk separately. T
results in separate variational principles for the surface
for the bulk. The question, if a coupling between bulk a
surface terms occurs in the variational principle, if t
boundary is not treated as a singular surface, but as a su
region of finite thickness with great field gradients will b
examined elsewhere. Another possibility would be to inclu
the fields of the adjacent bulk regions into the state spac
the surface quantities.

With the special ansatz for the curvature dependenc
the surface free energy

f s5
1
2 kc~KM2c0!22 k̄cKG ~53!

@kc , c0 , andk̄c are material-dependent parameters andKG is
the Gauss’ curvature,KG5det(b= )#, the variational principle
~46! is the same used in@15,16# for lyotropic membranes
Note again that the curvature comes in only through the c
stitutive equation for the free energy and does not enter
plicitly into the Euler-Lagrange equations. However, t
Euler-Lagrange equations are influenced by surface ge
etry through the fact that the element of surface area in
~46! is the volume form in a curved space. Consequently,
derivatives in the Euler-Lagrange equations are covariant
rivatives.

The presuppositions necessary to derive the variatio
principle are summarized again.
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~i! The specific external force is conservative:fI
52¹I gs .

~ii ! The surrounding material has constant temperat
TR and constant pressurepR in the bulk regions, and constan
pressureps

R along the curveC which contacts the liquid crys
tal with the isotropic reservoir in the plane of the surface~see
Fig. 3!: P= 50, P= s50.

~iii ! There are no couple stresses in the liquid crys
mI s50.

~iv! The film is at rest:w'50.
~v! There is no material flux through the film

(vI 2wI )•eI 50.
The evolution criterion has been derived for a tw

dimensional system in contact with a reservoir. The tempe
ture TR in the integrand of the global free energyG is the
constant temperature of the reservoir, andpR andps

R are its
constant pressures. The derivation of the evolution criter
shown here is possible, if only one reservoir is present
system in contact with two reservoirs of different tempe
tures or even more complex situations with a temperat
field on the contacting boundary are left to future investig
tions.
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