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Energy injection in closed turbulent flows:
Stirring through boundary layers versus inertial stirring

O. Cadot,* Y. Couder, A. Daerr, S. Douady, and A. Tsinober†

Laboratoire Physique Statistique, Ecole Normale Supe´rieure, 24 rue Lhomond, 75231 Paris, France
~Received 26 September 1996!

The mean rates of energy injection and energy dissipation in steady regimes of turbulence are measured in
two types of flow confined in closed cells. The first flow is generated by counterrotating stirrers and the second
is a Couette-Taylor flow. In these two experiments the solid surfaces that set the fluid into motion are at first
smooth, so that everywhere the velocity of the stirrers is locally parallel to its surface. In all such cases the
mean rate of energy dissipation does not satisfy the scaling expected from Kolmogorov theory. When blades
perpendicular to the motion are added to the stirring surfaces the Kolmogorov scaling is observed in all the
large range of Reynolds numbers (103,Re,106) investigated. However, with either smooth or rough stirring
the measurements of the pressure fluctuations exhibit no Reynolds number dependence. This demonstrates that,
though the smooth stirrers are less efficient in setting the fluid into motion, their efficiency is independent of
the Reynolds number so that the Kolmogorov scaling characterizes, in all cases, the dissipation in the bulk of
the fluid. The difference in the global behaviors corresponds to a different balance between the role of the
different regions of the flow. With smooth stirrers the dissipation in the bulk is weaker than the Reynolds-
number-dependent dissipation in the boundary layers. With rough~or inertial! stirrers the dissipation in the
bulk dominates, hence the Kolmogorovian global behavior.@S1063-651X~97!11606-3#

PACS number~s!: 47.27.Gs, 47.27.Nz, 47.27.Jv
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I. INTRODUCTION

Kolmogorov @1# was the first to emphasize in a quantit
tive manner the importance of the rate of dissipation of
ergy «D per unit mass in turbulent flows. In his first pap
devoted to turbulence, he assumed a scale invariance
particular kind~Eqs. 15 and 16 in Ref.@1# in conjunction
with similarity hypotheses and drew the consequence
«D has to scale as

«D;
L2

T3 S or equivalently as
U3

L D , ~1!

whereL, T, andU are the characteristic length, time, an
velocity of any scale in the inertial subrange. Kolmogor
defined and applied his concepts ‘‘for sufficiently small d
mains in the four-dimensional space (x1, x2, x3, t) not lying
near the boundary or its other singularities.’’

In the following we will use a nondimensional rate
energy dissipation,

bD5«D
L

U3 , ~2!

whereU andL will be associated with the large scale motio
of the turbulent flow. If relation~1! is valid,bD should be a
constant independent of the Reynolds number. Kolmogo
also assumed turbulence to be locally isotropic~in space! and
locally stationary~in time!, the latter meaning the equality o
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the rate of injection of energy« I in the turbulence and the
rate of energy dissipation«D ~or equivalently betweenb I

andbD).
Since then it has been widelybelievedthat scaling~1! is

valid for large enough Reynolds numbers as well as in
much broader context including a great variety of inhomo
neous flows, in fact for any flow for sufficiently large Rey
nolds number. However, as pointed out by Saffman@2#, the
direct evidence for Eq.~1! is still rather weak. Most of the
existing data, such as reported by Batchelor@3#, Sreenivasan
@4#, and Lumley@5#, were obtained for turbulent flows de
caying in time, i.e., without sustained turbulence product
~e.g., grid and jet turbulence!.

Experiments in which a steady regime of turbulence
produced in a closed cell should in principle lend themsel
to measurements of the global balance of energy. In cont
to the case of decaying turbulence in these systems, the m
energy dissipation has to balance the mean energy injec
and both can often be measured independently. On the o
hand, it is nota priori evident that Kolmogorov theory ca
apply here because of the presence of the containing w
and thus of boundary layers.

Closed systems were mostly investigated in two cases:
thermally induced turbulence obtained in Rayleigh-Be´nard
cells and the turbulent Couette-Taylor flow. The Kolomo
orov scaling for the global injected energy was observed
neither of these cases. Limiting ourselves here to mech
cally stirred fluids, we can recall the main results obtained
the Couette-Taylor flow in the experiments due to Wendt@6#,
Tong et al. @7#, and Lathrop, Finenberg, and Swinney@8#.
These papers gave results of measurements of the Reyn
number dependence of the torque applied to the rotating
inder. All the reported results are clearly different from wh
would be expected from Kolmogorov theory. The total inp
of
427 © 1997 The American Physical Society
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428 56CADOT, COUDER, DAERR, DOUADY, AND TSINOBER
power PI being known from the torque, it is possible
deduce from it an average nondimensional rate of ene
injectionb I by

b I5
PI

rV

L

U3 , ~3!

r being the density of the fluid andV the volume of the cell.
The results reported by Wendt@6# and Tonget al. @7# exhibit
a power-law dependence for the torque which, set in rela
~3!, yields thatb I is proportional to Re20.3 @6# or Re20.2 @7#
a result clearly different from that expected from Kolmo
orov scaling. Marcus and co-workers@9,10# adapted to the
Couette-Taylor experiment a type of calculation first done
Malkus and Veronis@11# in the Rayleigh-Be´nard case. This
calculation takes into account the presence of walls by inv
tigating the coexistence of two stable boundary layers wit
bulk inviscid flow. Using a marginal stability analysis for th
boundary layers, this approach yields a power-law dep
dence forPI(Re) of the type found in the experiments. Lat
rop, Finenberg, and Swinney@8#, performing very precise
measurements of the torque, refined these results. Their
obtained in a large range of values of Reynolds numb
demonstrate that the Re dependence of the torque is n
simple power law. Instead they found local exponents c
tinuously evolving with increasing Reynolds numbers. Th
interpreted this result using the Prandtl–von Ka´rmán model
of boundary layers. Finally, from a theoretical point of vie
Doering and Constantin@12# examined the energy dissipa
tion in a shear-driven turbulence confined between para
walls, and found an upper bound for the global dissipati
This upper bound has a scaling corresponding to that
dicted by Kolmogorov.

The problem addressed here is thus whether or not
possible to obtain experimentally the theoretical Kolm
gorov scaling for the total-energy injection and dissipation
a sustained turbulent flow in a closed cell. We will inves
gate this global energy problem in closed cells for two d
ferent experiments. The first is the flow between counter
tating stirrers@13,14#. The second is a Couette-Taylor flow
In both types of experiment the fluid is set into motion
moving solid surfaces. Two variants of each experiment w
be examined in which these surfaces will be either smoot
equipped with platelets perpendicular to the motion.

These experimental systems being examples of susta
turbulent flows, we will check the balance between ene
input and dissipation. This last aspect is addressed via in
pendent measurement of the total energy inputPI and of the
global energy dissipationPD which will be measured, in
each experiment, as a function of the Reynolds number.

Finally, in each case measurements of the pressure
tuations will yield the intensity of the velocity fluctuations
the bulk of the flow~i.e., far from the boundaries!. An inde-
pendent estimate of the dissipation, in this region only, w
be deduced from these measurements.

II. EXPERIMENT A

The first experimental system uses a geometry introdu
for turbulent studies by Douady, Couder, and Brachet@13#,
and widely used since@14–16#. This system~Fig. 1! consists
y
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of a cylindrical tank with two coaxial contrarotating stirre
at the top and the bottom of the tank. Details can be found
Ref. @14#.

The cell is a cylinder of radiusR0 with two stirrers of
radiusR50.9R0 at each end. The space separating the s
rers has a heighth equal toR ~see Fig. 1!. We used two
experimental cells differing in size by approximately a fac
of 2. In the smaller oneR058 cm, so that its volume isV
53 dm3. In the larger oneR0515 cm and the volume is
V522 dm3. The two stirrers were rotated in opposite dire
tions at a frequencyV/2p ranging from 1 to 6 Hz. It has
been shown experimentally that this system is maxima
efficient in forcing turbulence when the stirrers are count
rotating with equal angular velocities. In this geometry t
main flow consists of two superposed tori which rotate re
tively to each other so that they define a shear layer betw
them. Since these two circulations fill the whole cell, t
typical large length scale of the main flow is the radius of t
cell L;R and the velocity scale is given by the periphe
velocity of the disksU;VR. It is thus natural to define the
Reynolds number of this flow as Re5VR2/n.

Our main goal here is to check the scaling of the glo
rate of turbulent energy dissipation in a wide range of R
nolds numbers. We thus used the possibility of tuning
rotation velocities and used two fluids: water (n
50.01 cm2/s andr51 g/cm3) or a glycerol solution~di-
luted with 20% water so thatn50.62 cm2/s and r
51.2 g/cm3). Five ranges of Reynolds number were th
investigated: 103,Re,2.53103, 53103,Re,2.53104,
63104,Re,93104, 1.53105,Re,33105, and 63105

,Re,23106. We complemented these results with me
surements of input power done by Zocchiet al. @15# in a
similar experiment using helium gas at low temperature
the working fluid, and where Reynolds numbers as high
Re;33106 were reached.

The aim here was to investigate the effect of the geome
of the stirrers. In the first set of experiments the stirrers w
disks of radiusR with a cylindrical rim of height 0.6R @Fig.
1~a!#. In the second set of experiments radial blades w
fixed perpendicular to the plane of the disks and

FIG. 1. Schemes of the two variants of experiment A.~a!
Smooth stirrers: the two stirrers are disks with a cylindrical rim.~b!
Rough or inertial stirrers: inside the rim, six blades are placed p
pendicular to the disk surfaces and thus perpendicular to the r
tion velocity.
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56 429ENERGY INJECTION IN CLOSED TURBULENT . . .
dially, so that they would be normal to the stirring veloci
@Fig. 1~b!#. Two types of blades were used. In the first ca
there were six radial blades of height 0.25R. In the second
there were ten small ribs of height 0.04R only.

In the absence of blades the velocity of the stirrers
locally everywhere parallel to their surfaces; for simplic
we will call these stirrers smooth. In the latter cases
blades are perpendicular to the motion and for simplicity
will call these stirrers rough~or inertial! stirrers.

The energy inputPI was obtained through the measur
ments of the total power consumed by the motors driving
disks ~from which the power necessary to drive the emp
system was subtracted!. With the orders of magnitude use
for the definition of the Reynolds number~L5R and
U5VR! and for the volumeV5R3, we define from Eq.~3!
the expression forb I as a function ofPI by

b I5
PI

rV3R5 . ~4!

As for the global energy dissipation, it was obtained v
measurements of the rate of increase of the mean temp
ture u of the fluid in the system. In order to minimize th
losses, the experimental cells were thermally insulated.
avoid a drift of the viscosity of the water-glycerol mixture
each experiment was started with the fluid at a fixed temp
ture u0 close to the room temperature. Then a measurem
of u~t! with a temperature probe having a resolution ofDu
50.01° was done at constant time intervals, and the di
pated power was obtained by

PD5C
du

dt
, ~5!

whereC is the heat capacity of the system. Again, from the
measurements and Eq.~3!, the nondimensionalized averag
rate of dissipationbD can be deduced by

bD5
PD

rV3R5 . ~6!

Finally it will be interesting to obtain an estimate of th
intensity of the velocity fluctuations in the bulk of the fluid
far from the boundaries. It was shown in Ref.@14# that the
standard deviation of the histograms of the pressure fluc
tions was proportional to the square of the forcing veloc
but was otherwise independent of the Reynolds number. T
means that this standard deviation can be considered
measure of the rms fluctuating velocity of the flow. We th
used pressure transducers as previously described@14# to
measure such histograms and define a typical velocity fl
tuationU8 as

U85A~2Dprms/r!. ~7!

From the values ofU8 found with relation~7!, and fol-
lowing the Kolmogorov argument@Eq. ~1!#, it is possible to
estimate the rate of dissipation in the bulk of the flow:«8
5U83/L. so we can deduce a corresponding nondimensio
rate of dissipationbB for the bulk:
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bB5«8
L

U3 5
U83

U3 5
U83

V3R3 . ~8!

Results

The results are expressed in terms of the Reynolds n
ber dependence. The dissipation coefficientsbB andbD can
be directly compared in absolute values, as they used
same definition. But there may remain a constant of prop
tionality in the comparison ofbB with b I or bD . Figure 2 is
a plot ofb I , bD , andbB . The comparison betweenb I and
bD shows that the energy production and dissipation are
good agreement with each other. In all cases~with and with-
out blades! the value of energy input is systematically abo
25% larger than energy dissipation. This is simply due to
fact that in this experiment the heat capacity of the syst
was considered to be that of the fluid. As a result, the hea
of the stirrers and container being neglected, the energy
sipation was slightly underestimated. The Reynolds num
dependences ofb I andbD exhibit a sharp contrast in the tw
cases of smooth and rough forcing.

~i! With smooth disks,b I andbD are found to decreas
with increasing Reynolds number~Fig. 2, black symbols!. In
the middle range of Reynolds number they can be appr
mately fitted by a power law dependence Re21/4, as shown in
Fig. 2. This does not necessarily mean that this power

FIG. 2. Experiment A: Logarithmic plots of the nondimension
rate of energy injectionb I and dissipationsbD andbB as a function
of the Reynolds number for the three variants of the experim
Black symbols: results obtained with smooth stirrers. Triangles~m!,
rate of energy dissipationbD ; circles ~d!, rate of energy injection
b I ; diamonds~l!, estimate of the rate of energybB dissipated in
the bulk of the fluid as estimated from the pressure fluctuations.
dashed line shows a power law dependence proportiona
Re21/4. Open symbols: results obtained with the very rough~or
inertial! stirrers. Triangles~n!, rate of energy dissipationbD ;
circles ~s!, rate of energy injectionb I ; diamonds~L!, rate of
energy dissipationbB . Results are obtained with the stirrers havin
smaller platelets.3 is the mean rate of the energy dissipatio
bD .



ld
n

ey
o
Th

pu
b
c

ex

e
t

be

th
e
as
e
it
h

m
ev
e

tw

h
gh
ge
i

th

id,
pli-
a
is

lay-

2.

or
tor
of
q.
the
d it

-

ce
ined
w
gh
l
nts

o-
the
ary
dis-
ed.
ery
me
to
the
is-

an

the
en

are

be
ne

s
-
e

th
th

430 56CADOT, COUDER, DAERR, DOUADY, AND TSINOBER
would provide a good fit, had the explored range of Reyno
number been larger or the measurements more precise. I
Taylor-Couette flow~Lathrop, Finenberg, and Swinney@8#!
or in wakes~Schlichting @17#! similar local power-law fits
were obtained, but an exploration of a larger range of R
nolds number revealed that continuously varying values
the exponents were needed in the different ranges of Re.
behavior could well exist here also.

~ii ! When the disks are equipped with blades, the in
power necessary to rotate the stirrers at a given velocity
comes much larger and the dissipated power increases
respondingly~Fig. 2, open symbols!. But there is also a
qualitative difference: over a range of Reynolds number
ceeding three orders of magnitude,b I andbD are now con-
stant, meaning that relation~1! is satisfied. The Kolmogorov
scaling is thus obtained globally. Additional results obtain
with smaller blades show that these, though less efficien
set the fluid into motion, are sufficient to makeb I andbD
become constant in the range of large Reynolds num
~Fig. 2!.

These findings raise the question of whether or not
nature of the bulk of the turbulent flow is different with th
two types of stirrings. An easy interpretation of the decre
of b I and bD could have been that the efficiency of th
smooth stirrers to set the fluid into motion decreases w
increasing Reynolds number. The integral velocity of t
flow U divided by the estimated large scale velocityVR
would then be a decreasing function of the Reynolds nu
ber. This hypothesis can be tested using the standard d
tion of the pressure fluctuations and the resulting estimat
the velocity fluctuations in the bulk given by Eq.~7!.

We measured these standard deviations for the first
types of stirrings~smooth and very rough! as a function of
the Reynolds number. The results are given in Fig. 3. T
values ofU8 found for the turbulence created by the rou
stirrers are close to their velocity, and are six times lar
than with the smooth stirrers. But the important feature
that in the latter as in the former caseU8 is found to be
independent of the Reynolds number. This result shows

FIG. 3. Plot of the typical velocityU8 in the bulk of the flow as
deduced from the histograms of the pressure fluctuations@see Eq.
~7!#. The black triangles~m! are the data obtained with smoo
stirrers, and the open ones~n! correspond to the data obtained wi
the rough ones.
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with smooth stirrers the turbulence in the bulk of the flu
though weaker than with rough ones, has a constant am
tude. In other terms, smooth or rough, the efficiency of
given type of stirrer to set the bulk of the fluid in motion
independent of the Reynolds number.

Now it is possible to usebB @Eq. ~8!# to estimate the
balance between the energy dissipation in the boundary
ers and that in the bulk of the fluid. The values ofbB found
with rough stirrers are shown by open diamonds in Fig.
They are only very slightly smaller than those ofb I and
bD . If, as is likely, the dissipation in the bulk accounts f
most of the total dissipation, this shows that the prefac
necessary forbB to represent the dissipation in the bulk is
the order of unity. This is also an indirect justification of E
~8!, i.e., the use of the pressure fluctuations to estimate
rate of energy transfer directly. This is a useful result, an
will be used in a forthcoming paper@23# devoted to the in-
vestigation of drag reducing solution.

With this justification, we computedbB for the smooth
stirrers~see Fig. 2!. As we found the velocity to be propor
tional toVR, the correspondingbB was constant as in the
case of rough stirrers. In the bulk of the fluid the turbulen
is thus of the same nature as what would have been obta
with rough stirrers, and the dissipation in the bulk of the flo
follows the Kolmogorov argument. But, in contrast to rou
stirrers,bB is seen~Fig. 2! to be much weaker than the tota
dissipation. The dissipation in the bulk thus only accou
for a small fraction of the total.

The turbulence created by smooth stirrers being inhom
geneous with boundary layers and a bulk central region,
results of Fig. 2 show that the dissipation in the bound
layers dominates and that it is only the decrease of the
sipation coefficient in the boundary layer which is observ
The extrapolation of the two curves suggests that at v
large Reynolds number the bulk dissipation would beco
dominant, so that the dissipation coefficient would cease
decrease, and would stabilize at a constant value equal to
dissipation in the bulk. If the decrease of the boundary d
sipation is approximated by a power law Re21/4, this stabili-
zation would occur for Reynolds numbers larger th
108–109. If the decrease ofb I is in fact logarithmic, as
suggested by the comparison with open flows and with
Couette-Taylor case, the stabilization would occur for ev
larger values of Re.

III. EXPERIMENT B

The previous results obtained with smooth stirrers
similar to those of Ref.@8# in a Couette-Taylor flow. It was
thus natural to check whether an inertial stirring could
obtained in this geometry too. Experiment B was thus do
in a classical Couette-Taylor cell shown in Fig. 4~a!. The
length of both cylinders wash5230 mm. The radii of the
outer and inner cylinders containing the fluid beingb5120
mm and a575 mm, respectively, the radius ratio wa
h5a/b50.625. As in theexperiment by Lathrop, Finen
berg, and Swinney@8#, only the inner cylinder rotated. Th
Reynolds number could be defined as

Re5
Va~b2a!

n
. ~9!
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56 431ENERGY INJECTION IN CLOSED TURBULENT . . .
In the first set of experiments all the surfaces in cont
with the fluid were smooth. In the second, parallel ribs w
glued onto both the inner and outer surfaces. These ribs w
straight and parallel to the axis of the cylinders. A cro
section of the cell is shown in Fig. 4~b!. Since we wanted the
flow to remain close to a classical Couette-Taylor flow, t
ribs were chosen to be small. They were square in sec
had a height of 3 mm, and were set at approximately 36-
intervals on both surfaces.

We checked that the presence of these ribs do not cha
the basic flow drastically. In particular we used a very v
cous solution of glycerol containing iriodine, and inves
gated the primary instability leading to the formation
Couette-Taylor rolls. With or without ribs it occurred prac
cally at the same threshold, and led to a similar struct
with three pairs of counter-rotating rolls along the length
the cylinder.

As in experiment A the Reynolds number was varied
tuning the velocity, and by using water or a glycerol soluti
diluted with 20% water. The Reynolds number ran
73103,Re,53105 could thus be covered.

The same techniques were used as in the previous ca
measure both the injected power and the dissipated po
They were in fair agreement with each other, but the m
surements of injected power always showed more sca
probably because of a slow evolution of the inner friction
the motors. For this reason only the dissipative powers
shown on Fig. 5. In order to obtain values ofbD from the
thermal measurements, it is necessary to know the hea
pacity of the system. In the present case, where a larger s
mass is in contact with the fluid, we had to measure this h
capacity separately. This was done by measuring the incr
of temperature of the system when heated by an imme
resistor.

As shown in Fig. 5, with the smooth wallsbD exhibits a
Reynolds number dependence. In their work on the Coue
Taylor flow, Lathrop, Finenberg, and Swinney@8# measured
the global torqueG exerted by the motor and gave the
results in terms of Reynolds dependence ofG. Introducing
b I as defined above, their adimensional torque can be wri
as

G5pF h~11h!

~12h!2 Gb I Re
2. ~10!

FIG. 4. Schemes of experiment B:~a! the Couette-Taylor cell
with smooth surfaces and~b! the section of the system perpendic
lar to the axis of rotation and showing the ribs which make
walls rough.
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Knowing the dimension of their cell it is thus possible
deduceb I from their results:

b I5
G

pR2

~12h!2

h~11h!
. ~11!

Some of their points are shown in Fig. 5. Though our expe
ments cover a smaller range of values of Reynolds num
the Reynolds number dependence of the two experiments
in good agreement. Lathrop, Finenberg, and Swinney@8# un-
derlined that only a local exponent could be obtained fr
their results. We observe the same trend in our results,
not as clearly, the temperature measurements being less
cise than the torque ones. Compared to those of Ref.@8#, our
results are systematically shifted to larger values, either
cause of the difference in the geometry of the cells or
cause of the calibration of the heat capacity in our exp
ment.

When small ribs are added, the energy which has to
injected in the flow at a given value of the Reynolds numb
is much larger~of the order of 12 times at Re5105). The
important results seen from Fig. 5 is that, as in experimen
bD becomes essentially independent of the Reynolds n
ber. Though our measurements, compared to those don
experiment A, covered a smaller range of Reynolds numb
they are sufficient to show that the same conclusions can
drawn in the two cases. This type of scaling is not only th
expected from Kolmogorov theory, but means that the ac
dissipation is a constant fraction of the upper bound p
dicted by Doering and Constantin@12#. Larger dissipation
rates would naturally be obtained if larger platelets we
fixed onto the cylinders, and it would be interesting to s
how close to the bound one can get by optimizing th
shape.

e

FIG. 5. Couette-Taylor experiments. Logarithmic plots of t
nondimensional rates of energy dissipationbD as a function of the
Reynolds number. The black triangles~m! are the results obtained
with smooth cylinders, and the open ones~n! correspond to those
obtained with the ribbed ones. The crosses~3! show for compari-
son the rates of energy injectionbD deduced from the data obtaine
with smooth cylinders by Lathrop, Finenberg, and Swinney@8#.
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IV. DISCUSSION

Our results concern statistically stationary regimes
tained in closed cells. Thus they provide a generalization
results which are well known in open flows and decay
turbulence. For comparison, we can recall briefly two clas
cal cases: the drag of bluff and slender bodies and the re
tance of pipes~cf. Schlichting@17#!.

At high Reynolds number a moving body creates a tur
lent wake. The energy injected into the turbulence can
deduced from the drag. In the turbulent regime, if relation~1!
holds, then the drag should increase asU2. This dependence
is perfectly observed in the case of a disc perpendicula
the direction of the undisturbed flow. In this case, if norm
ized byrU2, the drag coefficientCd ~Muttray @18#, Schiller
@19#! remains constant over almost four decades of Re
contrast, the experiments on flat plates, moving paralle
their main surfaces, shows that the normalized drag co
cient decreases with increasing velocities. Eventually
drag becomes constant at a value which is a function of
roughness of the surfaces.

This difference in behavior of the resistance to motion
bodies at high Reynolds numbers has led to a distinc
between bluff bodies and streamlined~or slender! bodies.
They differ by the way in which energy is injected into th
fluid. When a disk of diameterL moves in a fluid with its
surface perpendicular to the motion, large vortices of typi
sizeL are created in the near wake just behind the disk,
then detach from it. The injection scale is thus large and w
defined. In contrast, for a plate moving in its plane~at zero
incidence!, there is formation of boundary layers and t
energy is injected into the fluid via these boundary layers
it is not easy to define an injection scale. If the plate is rou
a transition to a constantCd is observed at large velocity~see
@17#!.

The second classical situation is the flow in pipes
which a coefficient of resistancel is defined@20,21#. This
coefficient of resistancel should be constant if relation~1! is
satisfied. In smooth pipes it is in fact a decreasing function
the Reynolds number. In rough pipes this coefficient
comes constant for Reynolds numbers larger than a cha
teristic threshold. The larger the roughness, the smaller
threshold at which this crossover occurs.

Several theoretical models account for the behavior
both the drag of the smooth plate and the resistance of
smooth pipes. They are based on models of the boun
layers. The model due to Blasius~cf. Ref. @17#! leads to
power laws of the Reynolds number. It predicts, for instan
that for the tubesl will decrease as 0.316 Re21/4. The model
by Prandtl~cf. Ref. @17#! which provides a better fit of the
experimental data gives a universal law of resistance
smooth pipes which has a logarithmic dependence on
Reynolds number and thus no power law. It was used in R
@8#, where it provides the framework of the interpretation
the data.

V. CONCLUSION

Most recent works devoted to turbulence have conc
trated on the statistical properties of local measureme
such as the probability distribution function of the increme
of the velocity or of the pressure in a point. Another a
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proach has been the investigation of the coherent struct
present in turbulence. On the other hand, the enginee
community was always more interested in the global prop
ties of a turbulent flow: For instance, what is the drag o
given body or the resistance of a tube? Here we have trie
revisit this problem with a view to testing the validity of th
Kolmogorov model to predict such global properties as
total injection of energy or the total dissipation in a confin
flow.

We have shown that the distinction between the turbul
flow created by smooth and rough surfaces is not limited
open flows, but extends to the steady regimes of turbule
in closed cells. With smooth stirring, confirming the findin
of previous works, our results show that the global dissi
tion is weak and dominated by the dissipation occurring
the boundaries. In contrast, when the moving surfaces h
platelets perpendicular to the motion, much more energ
injected into the fluid. In this case the role of the bounda
layers is weaker, most of the dissipation occurs in the bulk
the fluid, and the global dissipation follows the Kolmogoro
scaling. A simple interpretation is that the energy is direc
supplied to the trailing vortices behind the platelets. The v
tices thus typically have the size of the platelets, so that
energy injection occurs at a well-defined scale and with
well-defined velocity in the inertial range. For this reason
can call this an inertial stirring.

A general result of the present study is also the possib
of estimating directly the rate of energy transferred to
bulk of the flow by measuring the pressure fluctuations on
We found for these steady flows in closed cells that the
ficiency of the stirrers in setting the bulk of the fluid int
motion is a function of their roughness but is surprising
independent of the Reynolds number. This is true even w
smooth stirrers, so that in all cases the dissipation in the b
as estimated using the pressure fluctuations, appears to
isfy Kolmogorov scaling.

With smooth stirrers the dissipation in the boundaries
dominant and gives a drag coefficient which decreases w
Reynolds number. As we found a constant drag coefficien
the bulk, this suggests that beyond a certain Reynolds n
ber the boundary drag coefficient will no longer be dom
nant, so that the global drag coefficient will become consta
This turbulence in the boundaries was shown to exhibit
Kolmogorov scaling at the level of the second-order statis
@22#, but it is conceivable that the existence of different r
gions in the flow could have an effect on some of the ot
statistical properties of the turbulent flow. It should be p
ticularly interesting to see whether or not the intermittency
the velocity signals is dependent on the type of energy in
tion. A forthcoming article~Cadot, Bonn, and Douady@23#!
will be devoted to a discussion of the drag reducing prop
ties of diluted polymers, as observed in turbulence genera
by the two types of stirrings, respectively.
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