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Gaussian statistics of the hard-sphere fluid

Gavin E. Crooks and David Chandler
Department of Chemistry, University of California, Berkeley, California 94720

~Received 30 May 1997!

By computer simulation of the hard-sphere fluid, we have determined the probabilities of observingN
molecular centers within molecular sized volumes of the fluid. These probability distributions are found to be
almost exactly Gaussian at medium densities. A maximum entropy prediction constructed from knowledge of
the first two moments of the distribution and a prior distribution consistent with ideal gas behavior quantita-
tively predicts the occupation distribution for low and medium densities.@S1063-651X~97!07110-9#

PACS number~s!: 61.20.Gy, 61.20.Ja, 61.20.Ne, 89.70.1c
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I. INTRODUCTION

In a novel application of a computer simulation of liqu
water, Hummeret al. @1# examined the probabilities of ob
servingN water molecules within molecular sized volum
They showed that these distributions are almost exa
Gaussian. Thus they were able to use information the
@2–4# and the oxygen-oxygen radial distribution function
predict the probability of cavity formation in water. The
approach provides a quantitative theory for hydropho
chemical potentials and the solute-solute potentials of m
force from experimentally accessible information.

The approach is closely related to scaled particle the
@5–8#, and to the Gaussian field models of fluids@9#. The
Pratt–Chandler theory of hydrophobicity@10# is based upon
the Gaussian model.

In this paper, we carry out an analysis similar to that
Ref. @1#, but for the case of a hard-sphere fluid — the ide
fluid that provides a useful reference system for statist
perturbation theories@11#. We show that away from very low
and very high fluid densities, the particle occupation dis
butions for hard-spheres in molecular sized volumes
nearly Gaussian, consistent with the finding in Ref.@1# for
liquid water. Therefore, to a good approximation, for bo
water and simple hard-sphere fluids the effective Hami
nians are bilinear in density fields. As such, approxim
normal modes of these fluids are linear functionals of th
fields.

In the next section, we present our computer simulat
results. Then, in Sec. III we review aspects of informati
theory and its application to the current problem. Deviatio
from Gaussian statistics at low densities can be accounte
by employing a prior distribution that is consistent with ide
gas behavior. This correction allows quantitative predictio
of the occupation distributions, and therefore chemical
tentials, at low to medium densities using the average den
and pair distribution function of the fluid.

II. COMPUTER SIMULATIONS

By Monte Carlo simulation, we have computed the pro
ability, P(N;v), thatN hard-spheres reside in a volumev. In
general, one could consider volumes of arbitrary shape
size. Here, we have limited our considerations to spher
volumes of various diameters as large asd54s, wheres is
561063-651X/97/56~4!/4217~5!/$10.00
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the diameter of the hard-sphere solvent particles. A cavity
diameterd can hold a solute particle of diameterd2s. Data
were collected for reduced densities, 0.1<r* 5rs3<0.9,
wherer is the average particle density in the simulation bo
To avoid the possibility of finite size effects, we simulated
reasonable large system—a periodic box with side len
32s containing 32 768r* particles. This box is approxi-
mately 1000 times larger than the largest volume conside
Approximately 1503106 data points were collected for eac
volume at each density.

Data from the simulation are shown in Figs. 1 and 2. T
points are plotted directly from the simulation data. For r
erence, the solid lines are pure Gaussians with the s
mean and standard deviations, which are defined by sum
tion over positiveN ~rather than integration over6`). Fig-
ure 1 shows the occupation probabilities for spherical v
umes ranging fromd52.0s to d54.0s for a density
r* 50.50. It is evident that at this density the distributio
are very nearly Gaussian for all volume sizes consider
The smallest volume,d52.0s, corresponds to the exclusio
volume of the hard-sphere fluid itself. The largest,d54.0s,
has a volume 64 times greater than that of a hard-sph
particle.

In contrast, Fig. 2 shows the occupation probabilities fo

FIG. 1. ProbabilitiesP(N;v) of observingN hard-sphere~diam-
eter s) centers in a spherical volume of diameter 2.0s ~n!, 2.5s
~1!, 3.0s ~s!, 3.5s ~3!, or 4.0s ~d! at a density ofr* 50.50.
Points are from computer simulation. Lines are the two-mom
maxent fit to the data using either an uninformative~—! or ideal gas
~- - -! prior.
4217 © 1997 The American Physical Society
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volume of fixed diameter (d53.5s) at densities ranging
from r* 50.10 to 0.90. At medium densities the distributio
are almost exactly Gaussian. At very high densiti
r* 50.90, deviations from pure Gaussian behavior are e
dent. This is to be expected, since at slightly larger densit
r* 50.94, the hard-sphere fluid undergoes an order–diso
phase transition@12,13#. At low densities deviations from
simple Gaussian behavior are also evident. At these dens
the fluid behaves more like an ideal gas, which, for sm
volumes, is not well described by Gaussian occupation
tributions.

Straightforward simulations can only provide data f
small fluctuations, as large fluctuations are too improbabl
be observed. To gather statistics for the wings of the dis
bution, we have used umbrella sampling@14# with a periodic
simulation box of side length 16s containing 4096r* par-
ticles. An area of the simulation is selected as our volum
and constrained to contain onlyN or N11 particle centers,
whereN is varied over the relevant occupation range. As
ratio, P(N;v)/P(N11;v), is the same for the constraine
and unconstrained system, we can reconstruct the true d
bution from these probability ratios.

Figure 3 shows the probability distribution calculated u
ing umbrella sampling for a reduced density of 0.5, and
volume diameter of 4s. The solid line is a Gaussian, whic
closely matches the simulation data for small fluctuations.
large fluctuations, deviations from Gaussian behavior
evident at both high and low occupation numbers.

The central moments

Bm~v !5Š~N2^N&v!m
‹v ~1!

were calculated directly from the simulation data. The no
tion ^•••&v indicated an average with the distributio
P(N;v), the probability of findingN molecules in the vol-
ume v. In Fig. 4 we can see that the variance,B2(v), is
largely independent of the density. At high densities sm

FIG. 2. ProbabilitiesP(N;v) of observingN hard-sphere~diam-
eters) centers in a spherical volume of diameter 3.5s and at den-
sities ofr* 5 0.1 ~n!, 0.3 ~1!, 0.5 ~s!, 0.7 ~3!, or 0.9~d!. Points
are from computer simulation. Lines are the two-moment maxen
to the data using either an uninformative~—! or ideal gas~- - -!
prior.
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oscillations in the variance exhibit the granularity of th
fluid. The third central moment,B3(v), is shown in Fig. 4~b!.
The oscillations with volume size are evident. For a Gau
ian model,B3(v)50, and therefore such a model cann
accommodate these molecular level details.

t

FIG. 3. Logarithm~base 10! of the probabilitiesP(N;v) of ob-
servingN hard-sphere~diameters) centers in a spherical volume o
diameter 4.0s and at a density ofr* 50.5. Points (s) are from
computer simulations using an umbrella sampling technique. Li
are the two-moment maxent fit to the data using either an unin
mative ~—! or ideal gas~- - -! prior.

FIG. 4. ~a! Variance,B2(v), for spherical volumes,v5pd3/6,
at five reduced densities:r* 5 0.1 ~n!, 0.3 ~1!, 0.5 ~s!, 0.7 ~3!,
0.9 ~d!. ~b! Third central momentB3(v) for spherical volumes,
v5pd3/6, at three reduced densities:r* 5 0.1 ~n!, 0.5 ~s!, 0.9
~d!. Lines are guides to the eye.
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III. INFORMATION THEORY

For a hard-sphere system, the effect of introducing a
ute particle into the fluid is to exclude the solvent from so
volumev. The excess chemical potential of the solute,mex,
is the work required to form this cavity in the solution. Th
excess solute chemical potential is directly related to
probability that this volume is devoid of particles via

bmex52 ln P~0;v !, ~2!

where b51/kBT, kB is Boltzmann’s constant andT is the
temperature.

The moments of this probability distribution are relat
to the n-particle molecular correlation functions
g(n)(r1 , . . . ,rn) @15#. Specifically,

ak5^N~N21!•••~N2k11!&v ~3!

5rkE
v
•••E

v
g~k!~r1 •••rk!dr1•••drk . ~4!

Probability theory provides the following inversion formu
to obtain the individual probabilities@16,17#:

P~N;v !5 (
k5N

`

~21!k2N
ak

N! ~k2N!!
. ~5!

Knowledge of the average density,r, and the pair distri-
bution function,g(2)(ur12r2u), allows the calculation of the
first two moments,̂N&v and^N2&v . The use of the inversion
formula, Eq.~5!, requires the knowledge of all moments
the distribution. The almost Gaussian behavior seen in
simulation data, however, suggests that the first two m
ments are sufficient to provide a good guess at the true
tribution. This approach provides a semi-empirical theory
solvation since, for real fluids, average density and pair
tributions can be determined experimentally. Indeed, P
and co-workers have stressed this point in their work
hydrophobicity@1,18#.

FIG. 5. Third central moment,B3(v), for spherical volumes,
v5pd3/6, at two reduced densities:r* 5 0.1 ~n! and 0.9~d!. The
heavy black lines are calculated from the ideal gas prior tw
moment maxent fit. The light line is a guide to the eye for t
simulation data atr* 5 0.9.
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Information theory@2–4# provides a systematic method o
reconstructing a least biased best guess for the probab
distribution given the available information. To do so w
maximize the entropy

S52(
N

P~N;v !lnP~N;v ! ~6!

of the distribution with respect to the known constraints
the system,(NP(N;v)51 and (NNmP(N;v)5^Nm&v . If
the first throughmth moments are known we are led to th
functional form

P~N;v !5exp~l01l1N1l2N21•••1lmNm!, ~7!

where thel i ’s are Lagrange multipliers to be determine
from the constraints. The maximum entropy~maxent! pre-
diction of bmex, given the available data, is2l0.

Alternatively, we can use a relative or cross entropy@3,4#,

h52(
N

P~N;v !lnS P~N;v !

P̂~N;v !
D , ~8!

which is a measure of the information gain on changing fr
the prior probabilities,P̂(N;v), to the posterior probabilities
P(N;v). The prior probabilities allow us to explicitly include
our expectations about the system’s behavior. In the abse
of any new information the posterior probabilities are eq
to the prior probabilities and the relative information is ze
In the limit of gaining complete information about the sy
tem, such as all moments of the probability distribution, t
prior probabilities become irrelevant.

Maximizing the entropy is equivalent to maximizing th
cross entropy using a uniform, or uninformative prior. In t
system under consideration this would beP̂(N;v)51/Nmax,
whereNmax is the maximum number of particles that can
in the volume of interest. This is an appropriate prior wh
we have an enumeration of all the possible states of the
tem. In practice, the exact value ofNmax for a givenv is not
important. The resulting maxent distribution depends o
weakly on this value.

An examination of the simulation data in Fig. 2 show
that the largest deviations from the two-moment uninform
tive prior maxent prediction occur at low densities. The b
havior of fluid systems at low enough densities should
identical with that of an ideal gas. The probability that ea
particle is located within the volume of interest is small, a
approximately independent of the location of any other p
ticle. As such, a Poisson probability distribution

P̂~N;v !5
^N&v

Nexp~2^N&v!

N!
~9!

is a more appropriate prior than a uniform distribution. Th
distribution is distinctly non-Gaussian for small^N&v andN.

Maximizing the cross entropy using this prior we co
clude that

P~N;v !5
1

N!
exp~l01l1N1l2N21•••1lmNm!.

~10!

-
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All constants~those terms that do not depend onN) have
been absorbed into thel i ’s. Comparing with the uniform
prior maxent fit Eq.~7!, we see that the only difference is th
addition of anN! divisor.

We have used Eq.~10!, truncated at the quadratic term,
provide an improved estimate of the true distribution. F
ures 1 and 2 compare the simulation data~points! to both the
uniform ~solid lines! and ideal gas~dashed lines! prior two-
moment predictions. We can see that ideal gas prior res
in a dramatically improved fit at low densities. There is so
improvement at medium densities and almost none at h
densities.

It is not apparent from the standard Monte Carlo simu
tions whether the maxent predictions remain valid for la
volumes and large density fluctuations. Figure 3 shows
probability distribution for a reduced density of 0.5, and
volume diameter of 4s, calculated from the Monte Carlo
simulation with umbrella sampling. The Gaussian pred
tions of the two-moment fit are accurate for all spontane
fluctuations that occur in practice. The deviations at low
cupations are well described by the ideal gas prior tw
moment fit. Thus we can quantitatively predict the exc
chemical potential of a solute of diameter 3s. At high occu-
pations qualitatively similar deviations are presumably d
to the tight, solidlike packing of solvent into this volum
Such tight packing is extremely rare at this density, so t
these deviations do not affect the maxent predictions at
and medium occupations.

Figure 5 shows that at low densities, the ideal gas pr
two-moment fit accurately predicts the third central mome
The ideal gas prior does not provide an accurate theory
the errors in Gaussian statistics at high densities.
d,2/A3 the two-moment fit is exact at any density becau
no more than two particles can fit in the volume.

When the probability of observing a zero occupancy v
is not too small, we can obtain the solute chemical poten
bmex, directly from the simulation using Eq.~2!. This chemi-
cal potential is compared in Fig. 6 with values calculated
the maxent formalism. The uniform prior predictions, t
solid lines, are in serious error at all but the smallest de
ties and solute volumes. Use of the ideal gas prior~dashed
line! improves the predictions at all densities. At reduc
densities,r* <0.5, this fit is able to give quantitatively cor
rect answers, apparently irrespective of the size of the ca
At higher densities the improvements are not enough to p
vide quantitative agreement.
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IV. DISCUSSION

It is apparent from our simulations and analysis that,
the volumes and densities considered, density fluctuation
the hard-sphere fluid are well described by Gaussian st
tics. The question arises as to whether the small anhar
nicities at large fluctuations can be predicted from know
edge of higher moments of the distribution. We can use
simulation data to perform a three-moment maxent fit. W
a uniform prior this led to small improvements, as compa
to the uniform two-moment fit, for reduced densities belo
0.7, but almost no improvement at higher densities. The id
gas prior, three-moment fit is only marginally better than t
ideal gas prior two-moment fit.

In conclusion, to correct and improve upon the tw
moment information theory prediction we need a physi
perspective that allows the construction of a physically r
sonable prior. This prior provides information about all t
moments of the distribution. To develop a quantitatively a
curate theory for high densities may require informati
about the solid phases of the hard-sphere fluid.
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FIG. 6. The excess chemical potential,bmex, for spherical sol-
utes in a hard-sphere solute as a function of reduced solvent de
r* 5s3N/V, wheres is the diameter of a solvent sphere. Points a
from computer simulation, and the lines are maximum entropy
using the mean and second moment and an uninformative~—! or an
ideal gas~- - -! prior. Diameter of solute is 1.0s ~n!, 1.5s ~1!, 2.0
s ~s!, 2.5s ~3!, or 3.0s ~d!.
in

@1# G. Hummer, S. Garde, A. E. Garcı´a, A. Pohorille, and L. R.

Pratt, Proc. Natl. Acad. Sci.93, 8951~1996!.
@2# C. E. Shannon, Bell Syst. Tech. J.27, 379 ~1948!.
@3# E. T. Jaynes, inE. T. Jaynes: Papers on Probability, Statistic

and Statistical Physics, edited by R. D. Rosenkrantz~Reidel,
Dordrecht, 1983!.

@4# J. E. Shore and R. W. Johnson, IEEE Trans. Inf. TheoryIT-26,
26 ~1990!.

@5# H. Reiss, H. L. Frisch, and J. L. Lebowitz, J. Chem. Phys.31,
369 ~1959!.
@6# F. H. Stillinger, J. Solution Chem.2, 141 ~1973!.
@7# H. Reiss, inStatistical Mechanics and Statistical Methods

Theory and Application, edited by U. Landman~Plenum Press,
New York, 1977!, pp. 99–140.

@8# B. J. Berne, Proc. Natl. Acad. Sci. USA93, 8800~1996!.
@9# D. Chandler, Phys. Rev. E48, 2989~1993!.

@10# L. R. Pratt and D. Chandler, J. Chem. Phys.67, 3683~1977!.
@11# D. Chandler, J. D. Weeks, and H. C. Andersen, Science220,

787 ~1983!.



:
,

ic

56 4221GAUSSIAN STATISTICS OF THE HARD-SPHERE FLUID
@12# B. J. Alder and T. E. Wainwright, J. Chem. Phys.27, 1208
~1957!.

@13# W. W. Wood and J. D. Jacobson, J. Chem. Phys.27, 1207
~1957!.

@14# D. Frenkel and B. Smit,Understanding Molecular Simulation
From Algorithms to Applications~Academic Press, San Diego
1986!.

@15# J. P. Hansen and I. R. McDonald,Theory of Simple Liquids,
2nd ed.~Academic Press, London, 1986!.
@16# P. A. P. Moran,An Introduction to Probability Theory~Oxford

University Press, London, 1984!.
@17# A. Papoulis,Probability, Random Variables and Stochast

Processes~McGraw-Hill Book Company, New York, 1965!.
@18# S. Garde, G. Hummer, A. E. Garcı´a, M. E. Paulaitis, and L. R.

Pratt, Phys. Rev. Lett.77, 4966~1996!.


