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Gaussian statistics of the hard-sphere fluid
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By computer simulation of the hard-sphere fluid, we have determined the probabilities of obd&rving
molecular centers within molecular sized volumes of the fluid. These probability distributions are found to be
almost exactly Gaussian at medium densities. A maximum entropy prediction constructed from knowledge of
the first two moments of the distribution and a prior distribution consistent with ideal gas behavior quantita-
tively predicts the occupation distribution for low and medium densifi8$063-651X97)07110-9

PACS numbg(s): 61.20.Gy, 61.20.Ja, 61.20.Ne, 89.¥0.

[. INTRODUCTION the diameter of the hard-sphere solvent particles. A cavity of
diameterd can hold a solute particle of diameig+ o. Data
In a novel application of a computer simulation of liquid were collected for reduced densities, €4* =po><0.9,
water, Hummeret al. [1] examined the probabilities of ob- wherep is the average particle density in the simulation box.
servingN water molecules within molecular sized volumes To avoid the possibility of finite size effects, we simulated a
They showed that these distributions are almost exactlyeasonable large system—a periodic box with side length
Gaussian. Thus they were able to use information theor20- containing 32 768* particles. This box is approxi-
[2—4] and the oxygen-oxygen radial distribution function to mately 1000 times larger than the largest volume considered.
predict the probability of cavity formation in water. Their Approximately 15 1¢° data points were collected for each
approach provides a quantitative theory for hydrophobicvolume at each density.
chemical potentials and the solute-solute potentials of mean Data from the simulation are shown in Figs. 1 and 2. The
force from experimentally accessible information. points are plotted directly from the simulation data. For ref-
The approach is closely related to scaled particle theorgrence, the solid lines are pure Gaussians with the same
[5-8], and to the Gaussian field models of fluid. The mean and standard deviations, which are defined by summa-
Pratt—Chandler theory of hydrophobicity0] is based upon tion over positiveN (rather than integration over «). Fig-
the Gaussian model. ure 1 shows the occupation probabilities for spherical vol-
In this paper, we carry out an analysis similar to that ofumes ranging fromd=2.0c to d=4.0c for a density
Ref. [1], but for the case of a hard-sphere fluid — the idealp* =0.50. It is evident that at this density the distributions
fluid that provides a useful reference system for statisticahre very nearly Gaussian for all volume sizes considered.
perturbation theoriefsL1]. We show that away from very low The smallest volumej=2.00, corresponds to the exclusion
and very high fluid densities, the particle occupation distri-volume of the hard-sphere fluid itself. The largebt 4.00,
butions for hard-spheres in molecular sized volumes ar@as a volume 64 times greater than that of a hard-sphere
nearly Gaussian, consistent with the finding in Réfl for  particle.
liquid water. Therefore, to a good approximation, for both In contrast, Fig. 2 shows the occupation probabilities for a
water and simple hard-sphere fluids the effective Hamilto-
nians are bilinear in density fields. As such, approximate
normal modes of these fluids are linear functionals of these 1
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results. Then, in Sec. lll we review aspects of information
theory and its application to the current problem. Deviations
from Gaussian statistics at low densities can be accounted for _ oon 3
by employing a prior distribution that is consistent with ideal % '
gas behavior. This correction allows quantitative predictions = 000!
of the occupation distributions, and therefore chemical po-

fields.
In the next section, we present our computer simulation ‘“'{}? h
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tentials, at low to medium densities using the average density o000t ;
and pair distribution function of the fluid. 0.000001 1
0.000000 1

Il. COMPUTER SIMULATIONS
] ) FIG. 1. Probabilitie$®(N;v) of observingN hard-spherédiam-

By Monte Carlo simulation, we have computed the prob-gter ) centers in a spherical volume of diameter®.Q\), 2.50
ability, P(N;v), thatN hard-spheres reside in a volumeln (+), 3.00 (O), 3.50 (X), or 4.0r (@) at a density ofp* =0.50.
general, one could consider volumes of arbitrary shape angoints are from computer simulation. Lines are the two-moment
size. Here, we have limited our considerations to sphericahaxent fit to the data using either an uninformative) or ideal gas
volumes of various diameters as largedas4o, whereo is (- - -) prior.
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FIG. 3. Logarithm(base 10 of the probabilitiesP(N;v) of ob-
) ) : servingN hard-spherédiameters) centers in a spherical volume of
eterg) centers in a spherical volume of diameter@3.&nd at den- diameter 4.6- and at a density op* =0.5. Points () are from
sities ofp* = 0.1(4), 0.3(+), 0.5(0), 0.7(x), or 0.9(®). Points -5 5ter simulations using an umbrella sampling technique. Lines

are from computer simulation. Lines are the two-moment maxent fit, . tha two-moment maxent fit to the data using either an uninfor-
to the data using either an uninformati¢e-) or ideal gas(- - -) mative (—) or ideal gag- - -) prior

prior.

FIG. 2. Probabilitied(N;v) of observingN hard-spherédiam-

oscillations in the variance exhibit the granularity of the

i ) . i fluid. The third central momenB3(v), is shown in Fig. 4b).
volume of fixed diameter d=3.50) at densities ranging The oscillations with volume size are evident. For a Gauss-
from p* =0.10 to 0.90. At medium densities the distributions 5, model, Bs(v) =0, and therefore such a model cannot
are almost exactly Gaussian. At very high densitiesccommodate these molecular level details.
p*=0.90, deviations from pure Gaussian behavior are evi-
dent. This is to be expected, since at slightly larger densities
p* =0.94, the hard-sphere fluid undergoes an order—disorde
phase transitior12,13. At low densities deviations from
simple Gaussian behavior are also evident. At these densitie |
the fluid behaves more like an ideal gas, which, for small
volumes, is not well described by Gaussian occupation dis-
tributions.

Straightforward simulations can only provide data for
small fluctuations, as large fluctuations are too improbable tc
be observed. To gather statistics for the wings of the distri- ||
bution, we have used umbrella samplirig}] with a periodic
simulation box of side length 16 containing 4096* par-
ticles. An area of the simulation is selected as our volume,
and constrained to contain only or N+ 1 particle centers,
whereN is varied over the relevant occupation range. As the
ratio, P(N;v)/P(N+1;v), is the same for the constrained 05
and unconstrained system, we can reconstruct the true distr
bution from these probability ratios. 041

Figure 3 shows the probability distribution calculated us-
ing umbrella sampling for a reduced density of 0.5, and a 031
volume diameter of &. The solid line is a Gaussian, which  _
closely matches the simulation data for small fluctuations. At 3 °2
large fluctuations, deviations from Gaussian behavior are =
evident at both high and low occupation numbers.

The central moments

(@)

Ba(v)
~N

(=3

Bm(v)=((N—=(N),)™, (1) 0 05 1 L5 2 25 3 35 4

were calculated directly from the simulation data. The nota- g, 4. (a) variance,B,(v), for spherical volumes, = 7d%/6,

tion (---), indicated an average with the distribution gt five reduced densitiep* = 0.1(A), 0.3(+), 0.5(0), 0.7 (x),

P(N;v), the.pmbab'“ty of findingN m0|eCU|_es in the \{0|' 0.9 (@). (b) Third central momenB;(v) for spherical volumes,
umewv. In Fig. 4 we can see that the variand,(v), is  v==d%6, at three reduced densitigs" = 0.1 (A), 0.5(0), 0.9

largely independent of the density. At high densities smal(®). Lines are guides to the eye.
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Information theoryf2—4] provides a systematic method of
reconstructing a least biased best guess for the probability
distribution given the available information. To do so we
maximize the entropy

0.5

04+

s:—% P(N;v)InP(N;v) (6)

of the distribution with respect to the known constraints on
the system2\P(N;v)=1 and ZyN"P(N;v)=(N™),. If
the first throughmth moments are known we are led to the
functional form

oot s P(N;v)=expho+ A N+A N2+ X N, (7)
FIG. 5. Third central moment3;(v), for spherical volumes, where theh;’s arg Lagrange ”.‘“'“p"ers to be determined
v=md%6, at two reduced densities* = 0.1(A) and 0.9(®). The from the constraints. The maximum entroffyaxen} pre-

heavy black lines are calculated from the ideal gas prior two-diction of Bu® given the available data, is \o.
moment maxent fit. The light line is a guide to the eye for the Alternatively, we can use a relative or cross entrppyt],

simulation data ap* = 0.9.
e P(N:v))

P(N;v) ®

=— P(N;v)In
IIl. INFORMATION THEORY 7 % (N:v)
For a hard-sphere system, the effect of introducing a sol

o o) which is a measure of the information gain on changing from
ute particle into the fluid is to exclude the solvent from som -

s . x the prior probabilitiesP(N;v), to the posterior probabilities
volumev. The excess chemical potential of the soly, P(N;v). The prior probabilities allow us to explicitly include

is the work required to form this cavity in the solution. The . ) ;
) S O our expectations about the system’s behavior. In the absence
excess solute chemical potential is directly related to the . : .
. . . : d . of any new information the posterior probabilities are equal
probability that this volume is devoid of particles via

to the prior probabilities and the relative information is zero.
In the limit of gaining complete information about the sys-
tem, such as all moments of the probability distribution, the
prior probabilities become irrelevant.

Br=—In P(0v), (2
where 8=1/kgT, kg is Boltzmann’s constant and is the Maximizi h . val oo h
temperature. aximizing the entropy is equivalent to maximizing the

The moments of this probability distribution are related €'0SS €Ntropy using a uniform, or uninformative prior. In the
to the n-particle molecular correlation functions, SysStem under consideration this would BEN;v) = 1/Nmax,

g (ry, ....r,) [15]. Specifically, yvhereNmaX is the .maximum rjur_nber of partic_les thqt can fit
in the volume of interest. This is an appropriate prior when
a=(N(N=1)-- - (N—k+1)), (3)  We have an enumeration of all the possible states of the sys-

tem. In practice, the exact value Nf,,, for a givenv is not
important. The resulting maxent distribution depends only
=pkf f g®(ry - r)dry---dry. (4)  weakly on this value.
v v An examination of the simulation data in Fig. 2 shows
. ) . , that the largest deviations from the two-moment uninforma-
Probability theory provides the following inversion formula e prior maxent prediction occur at low densities. The be-
to obtain the individual probabilitiefl6,17: havior of fluid systems at low enough densities should be
" identical with that of an ideal gas. The probability that each
P(N:v)= E (—1)k-N @y ) particle is located within the volume of interest is small, and
' K=N NI (k—N)!~ approximately independent of the location of any other par-
ticle. As such, a Poisson probability distribution
Knowledge of the average densify, and the pair distri- N
bution function,g®(|r,—r,|), allows the calculation of the P(N:v)= (N)yexp(—(N),) ©
first two moments(N), and(N?), . The use of the inversion v N!
formula, Eq.(5), requires the knowledge of all moments of
the distribution. The almost Gaussian behavior seen in this @ more appropriate prior than a uniform distribution. This
simulation data, however, suggests that the first two modistribution is distinctly non-Gaussian for sméN), andN.
ments are sufficient to provide a good guess at the true dis- Maximizing the cross entropy using this prior we con-
tribution. This approach provides a semi-empirical theory ofclude that
solvation since, for real fluids, average density and pair dis- 1
tributions can be determined experimentally. Indeed, Pratt L 5 m
and co-workers have stressed this point in their work on P(N;v) =y exphot MaNF AN+ -+ ApNT.
hydrophobicity[1,18]. (10
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All constants(those terms that do not depend bi) have B
been absorbed into the;'s. Comparing with the uniform 18
prior maxent fit Eq(7), we see that the only difference is the 16
addition of anN! divisor.

We have used Ed10), truncated at the quadratic term, to
provide an improved estimate of the true distribution. Fig- &
ures 1 and 2 compare the simulation dgaints to both the
uniform (solid lineg and ideal gagdashed linesprior two- 81
moment predictions. We can see that ideal gas prior results s
in a dramatically improved fit at low densities. There is some 4]
improvement at medium densities and almost none at high |
densities. ol ) . . . ‘ .

It is not apparent from the standard Monte Carlo simula- o ol 02 03 04 05 06 07 08 09
tions whether the maxent predictions remain valid for large p*
volumes and large density fluctuations. Figure 3 shows the
probablllt)_/ distribution for a reduced density of 0.5, and Autesina hard-sphere solute as a function of reduced solvent density
volume diameter of &, calculated from the Monte Carlo p* =a3N/V, whereo is the diameter of a solvent sphere. Points are
simulation with umbrella sampling. The Gaussian predic+om computer simulation, and the lines are maximum entropy fits
tions of the two-moment fit are accurate for all spontaneougsing the mean and second moment and an uninform@atiyeor an
fluctuations that occur in practice. The deviations at low oc-deal gad- - -) prior. Diameter of solute is 10 (A), 1.50 (+), 2.0
cupations are well described by the ideal gas prior two-o (O), 2.50 (X), or 3.0r (@).
moment fit. Thus we can quantitatively predict the excess
chemical potential of a solute of diametes 3At high occu-
pations qualitatively similar deviations are presumably due It is apparent from our simulations and analysis that, for
to the tight, solidlike packing of solvent into this volume. the volumes and densities considered, density fluctuations in
Such tight packing is extremely rare at this density, so thathe hard-sphere fluid are well described by Gaussian statis-
these deviations do not affect the maxent predictions at lowics. The question arises as to whether the small anharmo-
and medium occupations. nicities at large fluctuations can be predicted from knowl-

Figure 5 shows that at low densities, the ideal gas prioredge of higher moments of the distribution. We can use the
two-moment fit accurately predicts the third central momentSimulation data to perform a three-moment maxent fit. With
The ideal gas prior does not provide an accurate theory foft Uniform prior this led to small improvements, as compared
the errors in Gaussian statistics at high densities. Fof°_the uniform two-moment fit, for reduced densities below

d<2/\/3 the two-moment fit is exact at any density becaus 0, bqt almost no improvgment at highgr densities. The ideal
no more than two particles can fit in the volume. gas prior, th_ree-moment fit |s_only marginally better than the
When the probability of observing a zero occupancy voidIdeal gas prior two-moment fit. .
is not too small, we can obtain the solute chemical potential, In con_clusmn,_to correct and_ Improve upon the two-
B, directly from the simulation using E€@). This chemi- momentllnformauon theory predlct|o_n we need a physical
cal potential is compared in Fig. 6 with values calculated Viaoerspectlvg that "’.‘”OW.S the cqnstrqctlon of_a physically rea-
the maxent formalism. The uniform prior predictions, thesonable prior. Th'_s prior provides information at_)ou_t all the
solid lines, are in serious error at all but the smallest densimoments of the d'StT'b“t'O”- T(.) develop a qu_antl_tanvely ac-
ties and solute volumes. Use of the ideal gas pfitzshed curate theory for high densities may require information
line) improves the predictions at all densities. At reduced®00ut the solid phases of the hard-sphere fluid.
densities,p* <0.5, this fit is able to give quantitatively cor-
rect answers, apparently irrespective of the size of the cavity.
At higher densities the improvements are not enough to pro- This research has been supported in part by a grant from
vide quantitative agreement. the National Science Foundation.
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FIG. 6. The excess chemical potentigl.®*, for spherical sol-

IV. DISCUSSION
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