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Convective, absolute, and global instabilities of thermocapillary-buoyancy convection
in extended layers

Janis Priede and Gunter Gerbeth
Forschungszentrum Rossendorf, P.O. Box 510119, D-01314 Dresden, Germany
(Received 24 March 1997

We study the linear stability of thermocapillary-buoyancy convection in an extended liquid layer subject to
a longitudinal temperature gradient. It is found that by applying the concepts of convective, absolute, and
global instabilities, theory agrees well with experiment. Two different effects due to the lateral walls are
considered. First, the stationary disturbance due to the end walls induces a steady wave pattern spreading over
the whole layer as the zero-frequency mode becomes convectively unstable. Second, virtual reflections of
traveling disturbances by the lateral walls provide the feedback necessary for the onset of a global instability.
In the simplest case, a global neutrally stable state is formed by a couple of transverse waves propagating at the
same frequency in opposite directions, so that spatial amplification of one wave compensates for the attenua-
tion of the other. However, the most dangerous self-sustained disturbance is set up by a couple of mirror
symmetric oblique waves propagating purely spanwise. For purely thermocapillary-driven flow the threshold
of self-sustained instability is just slightly higher than that of the convective instability. However, for liquids of
large Prandtl number a moderate buoyancy effect may cause a significant stabilization of self-sustained oscil-
latory instability.[S1063-651X%97)02610-X]

PACS numbd(s): 47.20.Dr, 47.20.Bp

I. INTRODUCTION ciently deep liquid layers a stationary instability sets in be-
fore an oscillatory one, whereas the latter is predicted to be
Because surface tension of common liquids decreasedways the most unstable one. So the disagreement between
with temperature, any nonuniformity of surface temperatureexperiment and existing theory is not only quantitative, but
drives the liquid at the surface from hot to cold regions.also qualitative. Since a properly designed experiment meets
Viscosity and incompressibility of the liquid causes this mo-the principal assumptions of the theory, the disagreement
tion to spread to the underlying bulk liquid. Smith and DavisPetween both must be due to the latter, which is based on
[1] found that the thermocapillary effect driving such flows conventional linear stability analysis. 3 _
can additionally be the cause of a new type of instability " this paper, we show that linear stability analysis of a

called hydrothermal waves, which are predicted to occur aQomogeneou; basic state Is able to _br|.ng _predlct|ons Into
the longitudinal temperature gradient exceeds a certaiﬁgreememw'th experiment when the distinction between the

threshold that depends on the liquid properties and its geomqoncepts_ of convective, absolute and global _lnst_ab_ll[tTQS]
Is taken into account. Because up to now this distinction has

etry. T_he hydrothermal waves are coupled_ flow and temper heen ignored for the stability of convective flows in extended
ture _dlsturbances su;tamed by both velocity and temperatququid layers, we begin by presenting the basic ideas in
gradients of the basic flow. Up to now several experiments,n sicajly obvious terms. The concepts of absolute and glo-
have been done to verify this predictigd—5]. However, i instability rely essentially on the criterion defining the
there are two significant assumptions in the original theoryyirection of wave propagation. Our approach in this point
which complicate its straightforward verification. First, a giffers from the conventional one. We prove that the sign of
horizontally homogeneous basic flow is assumed. Seconghe real part of group velocity is a correct criterion for a
the effect of buoyancy, which is always present in earth exnonconservative medium to determine the direction of propa-
periments, was not taken into account by Smith and Davigjation of a certain class of most unstable modes. The con-
[1]. The first assumption is not a crucial problem for theventional approach ignores two important effects due to the
experiment, because an almost homogeneous basic flow caonfining lateral walls always present in real experiments.
be obtained in a midpart of a sufficiently extended liquid First, these walls disturb the assumed uniformity of the basic
layer[2]. On the other hand, the buoyancy effect can easilyflow. The problem is to evaluate how far this perturbation
be incorporated into the theofg]. can spread from the wall. We show that the effect due to the
Comparison of predictions of such an advanced theoryateral walls can cause a stationary wave pattern spreading
with results of an adequate experimg®} reveals a substan- through the whole layer when the zero-frequency mode be-
tial disagreement between both. Although both theory andomes convectively unstable. Second, the lateral walls can
experiment show that for high-Prandtl-number liquids likereflect convectively unstable disturbances, giving rise to a
silicon oil an oscillatory instability is stabilized with increase global instability.
of the depth of the layer, the experimentally found threshold The paper is organized as follows. The theoretical back-
of this instability is significantly higher than the predicted ground is discussed in Sec. Il. Section Il gives the formula-
one. This disagreement sharply increases with the depth dion of the problem. Stationary waves induced by end walls
the layer. Moreover, the experiment shows that for suffi-are analyzed in Sec. V. Both self-sustained transverse waves
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due to global and absolute instabilities and mixed absolutestems from the double infinite limit used in deducing this
global obliqgue wave instabilities are considered in Sec. V. Acriterion. Considering a single Fourier mode which extends
comparison with experimental results is done in Sec. VI. Aover the whole space, one actually proceeds first to the limit

summary and concluding remarks are given in Sec. VII.  of infinite space, and subsequently to the limit of infinite
time t—o. The problem one should be aware of is that the
Il. THEORETICAL BACKGROUND obtained result can depend on the order in which these limits
are proceeded.
A. On the conventional theory To illustrate this, consider a one-dimensional example of

The approach of Smith and DaVis] is based on conven- & spatially localized initial perturbation given by the wave
tional linear stability theory. Unfortunately, predictions of Packet
this theory about the stability of spatially extended systems ~(ex12)2 ik
are often interpreted incorrectly by ignoring the distinction po(X)~e e,

between the concepts of convective and absolute instabilitie\ﬁhere wave numbek. is that of the Eourier mode havin
[9]. Therefore, it might be useful to recall some principal ¢ 9

ideas underlying the linear stability analysis of spatially ex-naximum temporal growth rate, anddefines the width of

. . hhe wave packet. The limig— 0 recovers the pure Fourier
tended homogeneous systems. Our aim here is to present the ) C o
mode. In the wave-number space, this perturbation is given

necessary baquround in a'llphysmally obvious way, av0|d|n%y the Gaussian distribution centered abloyt
the mathematical complexities as much as possible. Our ap-

proach differs in some points from the commonly adopted
one. Yo(K) ~

The basic state, whose stability is to be investigated, is ey
assumed to be both stationary and uniform in one or more ) _ o ]
spatial directions. The equations governing the spatiotempothe evolution of this perturbation is given by the Fourier
ral evolution of infinitesimal perturbations of such a basicintegral
state are linear and independent of both time and the coordi- "
nates of which the basic state is independent. A particular l/,(x’t)Nf @O(k)e”kxf“’”dk. (1
solution of such equations is an exponential function of both —o
time and the corresponding coordinates. )

If the system is regarded as unbounded along the exf the width .of the wave packet .exc!aed-s t.h.e Wavellength
tended directions, there are no boundary conditions to bé€ <Kc) considerably, the perturbation is significantly differ-
satisfied along those coordinates. Then an exponential vari&nt from zero only for wave numbers sufficiently closeo
tion of the perturbation along these coordinates may be arbilhén may be approximated by a power-series expansion
trary. This ambiguity may be eliminated by requiring the
perturbation to be bounded at both infinities of the corre- 0(K)~ .+ o (K—Ke) + Pk (K—kg)?, )
sponding coordinates. This restricts the perturbation to a con- 2
stant amplitude harmonic wave, called the Fourier mode
y~e &= \wherek is a real wave vector having compo- Where c=w(Ke), o= 00/ K= = Jo; /K|, and
nents only along those directions in which the basic state i@kk= ¢°@/ k%~ . Note that the maximum of temporal
uniform; r is the radius vector; and is a complex fre- growth rate at k=k. implies &wi/ak|k:kc=0 and
quency, V\(herewrzR[w] is the oscillation frequency, bqt Y= I[ o] < 0. Substituting Eq(2) into Eq. (1), and taking
wi=I[ w] is the temporal growth rate of the correspondingthe integral, we obtain
perturbation. The frequency and wave vectok are con-
strained to satisfy the dispersion relatid(w,k;R)=0, (X— wyt)?
where R stands for one or more parameters defining the w(x,t)~exp{—m
problem. The dispersion relation may be regarded as implic-
itly defining w as a function of argumemt and parameteR: Note that this result is exact only when the dispersion rela-
w=w(k;R). Note thatw may in general be a multivalued tion coincides with the given power-series expansion. For the
function ofk. Further,w will be used to denote the complex purpose of illustration, this is assumed to be the case here.
frequency branch having the largest imaginary part. There are two distinct possibilities of how to evaluate the

To determine whether the given basic state is stable olong-time asymptotics of the above solution. Proceeding first
not, formally one has to investigate the evolution of all vir- to the limit of infinite length of wave packets(~0), we
tual perturbations. But as long as the problem is linear, amecover the result of the conventional theory which yields
arbitrary disturbance may be considered as a superposition ef; . for the temporal growth rate. The other possibility is to
independently evolving Fourier modes. According to thiskeep e fixed and to proceed first to the limit—c. This
idea, after a sufficiently long time the perturbation will be results in the following asymptotic growth rate:
dominated by the Fourier mode having the highest temporal

1

e [(k=ko)/s]?,

gl (kex—wct)

growth ratew; .= w;(k.), wherek, is the critical wave vec- U= + Ykk U)2
tor at which this maximum is attained. It is said that the wi(U)=wic 2] w2 (wx=U)%,

system is stable it; <0, but unstable ifw; .>0.
However, it must be realized that this criterion may bewhereU is the translation velocity of the frame of reference
ambiguous with respect to extended systems. The ambiguitywhere the wave packet is observed. Becayge<O, this
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temporal growth rate is in general lower than the convenquently this will be referred to as the highest spatial growth
tional one, except for the frame of reference moving with therate. To derive the dispersion relation for an extended but
group velocity of the wave packet= w,, where both quan- bounded system, consider a wave sufficiently far away from
tities coincide. Since the length of any real disturbance ighe confining boundaries and propagating in the positive di-
always limited by that of the system, the last result gives theection of thex axis,

actual asymptotic growth rate for real systems. .

Thus, just beyond the threshold predicted by the conven- ho(X,t) =AgK+xen, (©)
tional theory, the most dangerous perturbation grows only in . . -
the frame of reference traveling with the group velocityyofWhereA is the amplitude of the'wave, and. = k+(w’.R) IS
this perturbation, while it decays in any other frame of ref-the complex wave number having the largest spatial growth
erence. This means that beyond this threshold the system fate for the given ffeq“e!"%‘ and C.OerI parameteR. Sup-
just able to amplify the disturbances excited externally. Sucos¢e that the wave with the highest spatial growth rate

a behavior, actually predicted by the conventional analysi:;pr()p""g"’1ting in the opposite direction at the same frequency

is referred to as the convective instability. Since the mos nd control parameter hgs_ the complex wave number
_=k_(w;R). Because within the framework of linear

unstable perturbation grows only while it travels with respec .
to the laboratory frame of reference, the disturbances having1eory the amplitude .Of Fhe reflected wave mgst .be propor-
a sufficiently small initial amplitude may leave the system of onal to that of the incident wave, the dominating mode
finite length before attaining an experimentally observabl
magnitude.

xcited by reflection of the incident wave, from the
oundary ak=L is given by

x.1) = R,AdksLeik-(x-L)=at)
B. Global instability P H=Ry

An unstable small initial perturbation can attain an ob-WhereR, is a complex, generally unknown reflection coef-
servable magnitude if it does not move away from the poinficient. The wave reflected once more from the opposite
of its excitation. This corresponds to the absolute instabilityooundary ak=0 may be written as
which, however, is not the only possibility for the develop- _ i(Ky —k_)Lai(KyX—ot)
ment of a self-sustained instability. Such an instability could YaX, =R RAET e ' (4)

develop directly beyond the threshold of convective instabilyyherer, stands for the corresponding reflection coefficient.
ity if there were some feedback in the system redirecting gq 5 superposition of two waves to evolve exponentially in
part pf a growing perturbation back to the point (_)f its origin. time with the given complex frequenay (to be a normal

In principle, the needed feedback could be provided by COUmode, it is necessary that the twice reflected wédecoin-
pling between different Fourier modes, but from the point of ;ijes with the incident oné3). This yields the dispersion
view of the conventional linear theory there is none. HOW- g |ation for the system of large but finite lendth[10],

ever, this is not always so. The principal point to realize is
that the mutual independence of different traveling waves is RyRe ke ~kIb=1, (5)
not only due to the linearity of the problem, but also stems

from the assumed absence of lateral boundaries. For a re&he imaginary part of EQ(5), implying

bounded system there are certain conditions which must be

satisfied at the lateral walls. The time-independent boundary ~ RLK+(@:R)—k_(@;R)JL = —argR,Rp) + mr,
conditions cannot be satisfied by a single traveling wave.
Rather, a superposition of several traveling waves is re- m=0.24..., (6

quired. Therefore, different traveling waves, which would beygfines a discrete spectrum of wave numbers which tends to
mutually independent in an unbounded system, becomgg ontinuous at —. Thus, in the limit of an infinitely
coupled in the presence of confining walls. _extended system, the above relation is satisfied by any wave
Since the boundary corrupts the uniformity of the basic, \mherg . and the dispersion relation actually reduces to
state necessary for propagation of a single Fourier modgp, req) part of Eq(5) alone which in addition significantly

while preserving i_ts time invariance,_ reflection of a Sing.lesimplifies by getting independent of both the unknown re-
wave may result in all modes permitted by the dlspersmnﬂection coefficientsR,, R, and the length.
relation at the frequency of the incident wave. To find re- b2 '

flected waves, we have to solve the dispersion relation for [k, (w;R)—k_(w;R)]=0. (7)
complex wave numbers at real frequencies. This problem is
equivalent to that of finding the spatial evolution of a free Thus the dispersion relation for an extended, bounded sys-
wave apart from the source forcing it with the given fre- tem, which is originally due to Kulikovskiil1], is defined in
guency. Complex wave numbers mean that a perturbatioterms of the dispersion relation of the corresponding un-
may be either attenuated or amplified by the medium. Théounded one. Note that by increasing the length of the sys-
problem of distinguishing between these two opposite caseem this dispersion relation does not in general proceed to
will be addressed in Sec. Il C. that of the equivalent unbounded system. An exception is for
As argued above, a single incident wave may be coupledhirror-symmetric systems satisfying.. = =k(w;R), for
to multiple reflected waves. If the system is extendedwhich the convective instability also automatically ensures
enough, the reflected waves sufficiently far away from thethe global ond11]. In general, the threshold of the global
boundary will be dominated by the mode having either thenstability is higher than that of the convective instability
highest amplification or minimal attenuation rate. Subsebeyond which a spatially amplified wave necessary for glo-
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bal instability can arisg¢12]. It is interesting to note that, kA
although the absolute instability does not require reflections
from the lateral walls, it appears just as a special case of the 4
global one when both waves constituting the global mode '
merge together at some wave numkgrk, =k_. ’

C. Propagation direction in an active medium kig| ~~<0 2/ F

The concept of global instability essentially relies on the k;; sl L-7
criterion defining the direction of wave propagation. It is ’ : 1
well known that for an activgnonconservative medium v '
contrary to a conservative one the group velocity does not in : -
general present such a criteriptB]. The problem of identi- 0 kro k.; kia k
fying the direction of propagation is equivalent to that of
distinguishing between spatially amplified and attenuated (@)
waves. Since the space contrary to the time permits evolution
of waves in either direction, the sign of the imaginary part of
the wave number, unlike that of the temporal growth rate, L
cannot be used to discriminate those two opposite cases.

A general criterion for distinguishing spatially amplified W2 |2
and attenuated waves has been proposed by Td#dqsee
also Ref.[10]). This criterion can be interpreted as follows. Wi 1
Consider a free wave having a temporally constant, but in or(k)
general spatially varying, amplitude. If there is no absolute Oiol
instability, such a wave must be due to some remote forcing / 0

~

rather than being self-sustained. According to the causality

principle, it must take a finite time for the perturbation to

propagate from the source of its excitation to the point where \ ] X
it is observed. Forcing can be increased so quickly that the 0 ®ro

amplitude of the waves close to the source becomes larger (b)

than the amplitudes of those sufficiently far away which have

been em'tted eal’|ler, When the fOfCIng was |OW€I’ An al’bl— FIG. 1. Mapp|ngs between Comp|ex wave num@rand fre-
trary fast increase of forcing may be accomplished exponenquency planegb).

tially with sufficiently high temporal growth rate; . Conse-

quently, for w;—o all waves must be evanescent with sponds to the change of the amplitude of the original wave
distance away from the source. To determine whether thgy factor C(x,t) =e~ (**~ %) From here it follows that

given wave is spatially amplified or attenuated one needs tghe point of constant amplitud@= const moves with veloc-
increasew; while following the change df; . Change of sign  jty

of ki as w;— indicates that the wave has originally been

spatially amplified. Otherwise, it has been an attenuated one. ow; |[Jw;
The direction of propagation can straightforwardly be de- :5_ki= ¢9_ki
duced from the sign ok;. Although such a procedure is
sufficient for determining the direction of propagation, i
may not always be necessary. In a number of cases of pr
tical significance a simpler criterion may be used, which in
contrast to the previous one is local in the complex fre- 1 1
guency plane and, therefore more convenient for practical UZR(%) :R(d_“’)
application[15]. Such a criterion is suggested by the follow- do dk

ing causality arguments.

Because the problem for small-amplitude perturbationsThusU coincides with the group velocity when the latter is
which are assumed to be the case here, is linear, the amplieal. But, in generalJ has the same sign as that of the real
tude of such waves must be proportional to that of the forcpart of the group velocity. Since the suggested criterion in
ing. When the latter is changed, the same must happen wittontrast to the conventional one is defined by a local relation
the former. According to the causality, variation of the per-between complex frequency and wave number, both criteria
turbation must propagate from the source of its excitatiorare not necessarily equivalent. This raises the question about
rather than take place immediately in the whole space. Tthe correspondence between both criteria which is addressed
determine the direction of propagation, suppose that for delow.
constant amplitude forcing there is a wave generated with the Consider a solution of the dispersion relation mapping
spatially varying amplitude at rate=7[k]. If the forcingis  contourF, which passes in the complex wave number plane
changed exponentially with a small temporal growth rateat fixed k; parallel to the real axis, onto the complex fre-
dw;, the spatial growth rate changes BY;. This corre- quency plangsee Fig. 1. Assume that for every bounded

Y

) = const

t . . .
acincek is a complex function of complex argumeat we
obtain

dwl?

dk ®




56 CONVECTIVE, ABSOLUTE, AND GLOBAL . .. 4191

spatial growth ratgk;| <K the temporal growth rates are
bounded from above;<(}, whereK and() are some finite 2
constants. Note that this constraint is implied by the causality

principle which must be obeyed by any reasonably posed ,,
problem. The statement we want to prove is

(dw)_
sonR| 5| =Sartki),, o ©)

for the branch of complex frequency having largest temporal
growth ratew; at the given frequency, and spatial growth e;
ratek; . First, by the same arguments which led to relation %
(8), we obtain

dw Jk;
sgn R(ﬂ) :ng(&—a;)- FIG. 2. Sketch of the formulation of the problem.
I
Here y=—d7/dT>0 denotes the negative rate of change of
Surface tension with temperature, whitg and T, are refer-
) . ence values for surface tension and temperature, respec-
the highest temporal growth raie;o. Now, increasew; tively. The layer is assumed to be extended enough so that a
abovew o, upon keepingo, = w o fixed, and follow varia- 1,0 4eneous basic flow could develop sufficiently far away
Flon of the corresponding solution of the dispersion relatlor'lrrom the lateral walls. A sketch of the problem is shown in
in the complex wave number plane. The assumed constraify 5 The origin of the Cartesian coordinate system used is
w;<{ for all |ki| <K implies thatkj — asw;—+%. SUP-  got' ot the midheight of the layer. The axis is directed
pose that the statement to be proved is false, against to the imposed temperature grad@rdand thez axis
is normal to the plane of the layer. The surface tension is
sgr(a—ki) £sgnk;) (10) assumed to be high enough so that the free surface may be
dwi) Ve considered as a planar and nondeformable boundary.
Fe Transforming both the governing equations and boundary
conditions to a dimensionless form, the degtis chosen as
: . . a length scale, and the tinte velocity fieldv, pressure field
corresponding; proceeds away from its asymptotic value and temperature difference—T, are referred to scales
Ki »=Ki|, . Thus at somew; ;> w; o there must be such p,2 P 1D 0 . .
o e ) b : i d</v, vid, pv°/d<, and Bd, respectively. The fluid flow is
ki1 lying on the opposite side fronk; o than k.., i.€.,  governed by the Navier-Stokes equation, the incompressibil-

Let us focus here on the complex frequency branch which fo
the waves with spatial growth rakg has at frequency, o

This implies that with increasing; slightly abovew; o, the

[Ki 1| <[kid <[ki | Forki,to proceed tci ., asw; is in- ity constraint, and the energy equation:

creased further fromw; to +o°, there must be such

wj 2> w; 1> wj g at whichk; ;=k; 9. This means that for the v+ (v-V)v=—Vp+V?+GITe,, (12
givenk; o there is another branch in the complex frequency

plane having a temporal growth raig ,> w; o at the fre- V.v=0, (13
quency w; . However, this contradicts our basic premise

that w; o is the highest temporal growth rate for the given gHT+v-VT=Pr v, (14

frequencyw, o and spatial growth raté; ,. Consequently,
assumptior(10) is false, which proves relatiof®). Note that
this proof concerns only the wave branch having the highe
growth rate at the given frequency and spatial growth rate.

where Pe v/« is the Prandtl number and 6 Bgd*/v? is
stpe Grashof number characterizing the effect of buoyancy.

At the free surface= 3 there is balance of thermocapil-
lary and shear stresses,

Ill. PROBLEM DEFINITION e,X(d,v+ReVT)=0, (15

Consider a horizontal layer of liquid of kinematic viscos- and a kinematic constraint resulting from the nondeformabil-
ity », densityp, thermal expansion coefficient and thermal ity assumptiore,- v=0, where Re= y8d%p1? is the Reynolds
conductivity k. The layer, having at rest depth is bounded number which defines the strength of the thermocapillary
from below by a plane perfectly thermally insulating or con-effect. In order to keep consistency with previous papers on
ducting plate, and above by a free surface characterized ke given subject we introduce additionally the Marangoni
thermal conductance per unit afeaA constant temperature number Ma= Re Pr which is not an independent parameter
gradient B is imposed along the layer, and a steady sheahere. Besides, it is more convenient to use the dynamic Bond
flow is set up by a combined effect of buoyancy and viscoussumber Bo=Gr/Re=gapd’y instead of Gr to define the
surface stress due to the temperature dependence of surfaegative effect of buoyancy.
tension assumed to vary according to the linear law Between the free surface and the surrounding medium

there is a heat transfer which, as usually, is assumed to obey
=19~ Y(T—Tp). (1)  Newton’s law
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9,T==Bi(T-T.(x)) on z=3,

where Bi=hd/k is the Biot number and .(x)= —x is the
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temperature of the surrounding medium, having the same

rigid bottom there are no slip, impermeability, and zero heat

(16) W'+k?ReT=0 on z=3%, (24)
W'(—3z)=W(+3)=0. (25)

imposed temperature gradient as the liquid layer. On thé&or the longitudinal velocity component, we have
u'(z)=0(-3)=0. (26)

flux (insulating bottom
v=0, 9,T=0 onz=-1/2,
or a fixed temperaturgerfectly conducting bottojn

T(=1/2)=T.,.(x)=—x.

The problem under consideration has a steady parallel flow
solutionv=(u,0,0), maintaining zero mass flux through any

vertical cross section

— R 322+z 1 5 22 z+1
u(z)= 4 "4 16 %6 16 16 192/
17
T )= o R Z4+23 z? 2S\ z+1/2
(xZ)=—x-PrReje 52 3 |17 3] 32
+P 5 2 7 23+ yia
3 °9120 192" 96 384
1 3S\ z+1/2 P 18
15 192 T 20)) (18
— 3 Bo —
p(x,z)=Re{x §+? +Bof T(x,2)dz|, (19

whereS=0 andP= 23/16 for the thermally insulating bot-
tom, and S=Bi/(1+Bi) and P= 7/16 for the conducting
bottom.

We analyze the linear stability of the basic stat&g)—

The boundary conditions for the temperature perturbation are

T'+BiT=0 onz=} (27)
at the free surface, and
T'(-$H=0 or T(-%=0 (28)

at insulating or conducting bottoms, respectively. Since ther-
mal boundary conditions have mostly a quantitative effect,
which may be very significant for small P16], the follow-
ing results will be presented only for both free surface and
bottom being adiabatically insulated boundaries, i.e= Bi
andT'(—3)=0.

The dispersion relation is approximated by making use of
a modified Chebyshev tau spectral methadd], leading to a
matrix eigenvalue problerfiL8]. Spatial branchek(w,) are
formally defined by a polynomial matrix eigenvalue problem
with respect tok. It is more advantageous to seek spatial
branches as solutions of the complex equati¢k) — wo=0,
wherew(k) are complex frequencies defined by the ordinary
matrix eigenvalue problem.

IV. STATIONARY CELLS DUE TO THE END WALLS

The uniformity of the basic state may be disturbed by the
lateral walls. In this section we consider how far the influ-
ence of these walls can extend into the homogeneous basic
state. The disturbance caused by lateral walls has two spe-
cific features. The first is a relatively large amplitude. If this

(19 with respect to the infinitesimal disturbances in the formperturbation is evanescent with the distance, which is as-

(v,p,T)=(V,p,T) +{%(2),p(2), T(2) exdi (k- — wb)],
(20)

wherek = (k, ,ky) is the wave vector coplanar to the layer,

sumed to be the case here in order to allow for the develop-
ment of the spatially uniform basic state, then sufficiently far
away from the boundary the amplitude becomes small
enough for the linear theory to be applicable. The second
specific feature is the stationarity of this perturbation. Thus

is the radius vector, but is a complex temporal growth rate. the sought penetration distance is given by the inverse of the
Upon elimination of the pressure, the disturbance equationgpatial attenuation rate of the zero-frequency mode.

may be written as
DY D?+iw]W—ikJUD?—U"]W+Bo ReT=0, (21)
[D?+iw]0—ik,ul—k,uWw=0, (22

[Pr 1D +iw—iku]T—T'W+k 2(ik W' +k,{)=0,
(23

where D?=[(d?/dZ%) —k?] and the prime denotes the de-

rivative with respect t@, w=e,-V is the vertical velocity,

and U= (kxe,)-Vv is further referred to as the longitudinal

Such an approach was used originally by B{6], who
considered the problem of a steady flow in a rectangular
basin driven by a horizontal wind causing a constant shear
stress at the free surface of the liquid. The same problem was
reconsidered also in Rdf20] in the context of thermocapil-
lary convection of a zero Prandtl number liquid. In this ap-
proximation, perturbations of temperature and flow fields are
decoupled. As a result, the problem considerably simplifies
by reducing to a single equatiq@1). The boundary condi-
tion (24) is replaced by the fixed-stress condition

W'=0 on z=3. (29

velocity. It means that we consider the velocity disturbances

in the coordinate system linked with the direction of the

wave vector.
The boundary conditions for the vertical velocityare

Complex wave numbers for a stationary perturbation are
found from the equatiom(k;Re)=0, which has an infinite
number of discrete roots. We are interested only in the mode
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10' ———rrrr——rr——rr——r number. However, it is important to notice that these pertur-
- "-*—.; -------- ;‘;?_ 3 bations remain spatially attenuated regardless of how large
i nTT 1 the Reynolds number is. This implies that the basic flow
under consideration is hydrodynamically stable with respect
to at least zero-frequency disturbances. A more detailed ex-
amination shows that the basic flow driven solely by the
surface tension is linearly stable with respect to purely hy-
drodynamic perturbations of any frequerd]. It is impor-
tant to notice in Fig. 3 that for sufficiently large Re complex
wave numbers depend asymptotically on the Reynolds num-
ber ask~Re L. This means that for Rel both wavelength
and attenuation distance increase proportionally with Re.
Let us turn further to a more detailed examination of the
limit Re—oo. In this case, it is advantageous to rescale the
wave number as

10° |

Attenuation rate

I downstream
upstream ------
asymptotic - ( a)

i k=K Re L. (30

, Equation(21) then reduces to
10° |
F "

d2
UF_U

A 1 d2
‘\\\ 1 42 [E +iw
downstream ——— R 4
upstream ------ R
asymptotic - N wherel(z) =Re *u(z). The asymptotic growth rates found
N\ by making use of this reduced formulation are seen in Fig. 3
10"100 — '“"1‘01 = 1(')2 — 1;3 — to recover quite well the exact solution as-Re.
Reynolds number The spatial evolution of perturbations can change princi-
pally when nonzero Prandtl numbers are considered. In this

FIG. 3. Dimensionless spatial attenuation ratesand wave case, the flow disturbances become coupled with those of
numbers(b) of purely hydrodynamic (R+0) upstream and down- temperature which are governed by Eg3). For the trans-
stream dominating wave modes vs the Reynolds number for thgerse disturbances under consideration the hydrodynamic
surface-tension-driven basic flow (B®). part of the problem is still posed by E1). The sole feed-

back of the temperature perturbation to that of the flow is
with the largest spatial growth rate which dominates the perProvided by the boundary conditid@4). _ N
turbation far away from the wall. There is one such mode Temperature perturbations are associated with additional
propagating downstream and one upstream. Further, let y¥ave branches which, in the limit Re0, are decoupled
examine how these perturbations vary with the Reynold§rom the hydrodynamic ones considered above. When both
number. In the limit ReO, Eq. (21) reduces to the free surface and the bottom are adiabatic boundaries de-
DY D?+iw]W=0 which for w=0 has nontrivial solutions fined by the boundary conditiorl€7) and (28), with Bi=0,
satisfying the boundary conditior{@5) and (29) only when it can readily be found from Ed23) that in the limit Re-0
k=k, satisfies the dispersion relation sink(22k=0 [20].  the wave numbers of the dominating perturbations are
This equation has an infinite number of discrete roots whictk+= *i7. For nonzero Re the hydrodynamic and thermal
are not only complex conjugate, but also symmetric by pairgnodes are no longer independent. As seen in Fig. 4, where
with respect to the imaginary axis. From the physical pointdominating spatlal attenuation rates versus Re are.plotted .for
of view it is obvious that such viscosity-dominated wavesPr=0.01, an increase of Re can lead to the merging of dif-
corresponding to the complex wave numbers must be evderent modes. However, note that large-Re asymptotics of
nescent. spatial branches for small but nonzero Pr ané @rare dif-

The advection of disturbances by the basic flow appearingarent. This difference is due to the effect of the basic flow
at nonzero Reynolds numbers breaks the symmetry betwed the temperature disturbances, which is completely absent
the waves propagating in different directions. Since the adfor Pr=0. Conversely, for small but nonzero Pr, a suffi-
vection has no effect on the |Ongitudina| disturbances(:iently Iarge Re can be attained at which the effect of advec-
(k,=0) caused by the sidewalls, the following analysis will tion of temperature perturbations-Pr Re) becomes signifi-
be concerned with the transverse disturbances due to the ef@nt. As seen in Fig. 4, for a finite Prandtl number
walls only. Let us consider first the basic flow driven solely (Pr=0.01) and sufficiently large Re the downstream wave
by the gradient of surface tension. It may be seen in Fig. ®ranch becomes spatially oscillating like the upstream one.
that the spatial attenuation rates of the two dominating perBut @ more important result evident in Fig. 4 is that the
turbations induced by the hot and cold end walls, and propaasymptotics of wave numbér~Re™* also holds for nonzero
gating downstream and upstream relative to the surface vér. Therefore, similarly as for PrO, let us make use of the

locity, respectively, decrease with increase of the Reynoldsescaled wave numb&, Eq. (30), and rescale additionally

Wik, w=0, (31

Wave number
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FIG. 4. Dimensionless spatial attenuation rates and wave num- 560 LI B R |
bers of the downstream dominating wave modes vs the Reynolds 540
number for the surface-tension-driven basic flow B at 5
Pr=0.01. £ 520
3
AP . 5 50
the temperature perturbation ds=Re 6. Substituting the 3
rescaled temperature into ER3) and proceeding to the 3 480
limit Re—c, we obtain S 460
o
£
d2 I o _ > 440
~1 H e Tl o=T'\% -2 i o <C
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Pr 12 Tw—iku|o=T'w—k™“(ikw’ +kyU), 420 L (b)
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whereT’(z)=Re 1 T'(2). In terms ofk and #, the boundary Prandtl number

condition (24) reads ) . ) )
FIG. 5. Dimensionless downstream asymptotic attenuation rate
\7V”+EZA0=O on z—= % 33) (a) and the corresponding wave numliby vs the Prandtl number
for Re—» and Bo=0.

Equations(31) and (32) together with boundary conditions ) o ] )
(25), (27), (28), and (33) rewritten in terms of9 pose the Marangoni number in Fig. 6. Note first that the stationary

problem for asymptotic spatial branches at finite Pr aé'nstabiljty, like the oscillatory tra.ns.vers.e wave, occurs qnly
Re—oo for sufficiently large Pr. Second, it is evident that the station-

As éeen in Fig. 5, where the asymptotic downstream atdry perturbation is not convectively the most unstable one.
tenuation rate is plotted versus Pr, the coupling of the flow! "€re IS a certain range of nonzero frequency modes which
and the temperature perturbations can have a principally new

effect. That is, the downstream attenuation rate decreasing 340 i T T T T
with growth of Pr becomes negative forf0.67, where the 220 |- ! _
wave turns from a spatially attenuated to an amplified one. 5 !
This means that the stationary perturbation induced by the 2 300 - | 1
hot end wall can spread downstream throughout the whole 2 g, L \ B
layer, experiencing no attenuation. This results in a station- S ; \
ary in time, but spatially oscillating, wave extending from § 260 7]
the hot end wall over the whole layer. 2 L _r NN ]
At the point of zero spatial attenuation rate, where the § ; I SN errtha
wave turns from a spatially attenuated to an amplified one, g 220 | T .
. : CcST ——
the wave number becomes purely real. Additionally, the e R AOT —-mmm- i
steady amplitude of the wave implies that the temporal COT -------
growth rate is zero as well. Thus the given point lies on the 180 . . . "t s
conventional neutral stability curve defining the threshold of 0 ! pfandﬂ numb%,

the convective instability which for the zero-frequency per-

turbation is given by the two conditions;(ks;Re)=0 and FIG. 6. Critical Marangoni numbers vs Prandtl number for vari-
o, (ks;Re)=0, wherek; is real. This pair of equations de- s transverse wave instabilities of the thermocapillary-driven basic
fines the critical Rgbeyond which a spatially amplified sta- flow (Bo=0). CST, AOT, and COT stand for convective station-
tionary wave pattern emerges, whikggives the correspond- ary, absolute oscillating, and convective oscillating transverse
ing wave number. The threshold of this instability dependingwaves, respectively. The la€EOT) is the threshold of the oscilla-
on the Prandtl number is presented in terms of the criticalory convection predicted by the conventional theory.
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become convectively unstable before the stationary one 300
However, these convectively unstable oscillating modes.
contrary to the stationary one, may be experimentally unob- 290
servable. The principal difference between the stationary an
oscillating modes is that the first is generated by a perma
nent, large-amplitude disturbance due to confining bound:
aries, whereas the latter are caused by random smal
amplitude disturbances like noise. For such perturbations tc
be amplified by a convectively unstable medium up to an
experimentally observable amplitude either the amplification
rate or the length of system must be large enough

280

270

260

Marangoni number

250

240

1
global instability ———
1

V. SELF-SUSTAINED INSTABILITIES 230 1 1
45 5 5.5 6 6.5

A. Transverse waves Frequency

Here let us consider transverse disturbandgs=0) of
the basic flow driven solely by the thermocapillary effect.
The conventional linear stability analysis is concerned with
neutrally stable constant amplitude Fourier modes defined b
real wave numbers. As follows from the basic discussion,
such waves may in general be not self-sustained. Conse
quently, they must be due to some remote forcing. If so, ther
each such wave has to be associated with the direction il
which it leaves the source. Adopting such a point of view,
we will look in the following for the conditions necessary for
the development of self-sustained waves.

For this purpose it is advantageous to examine the neutre
curves plotted in Fig. 7 showing the marginal Marangoni
number for temporally neutral wavea{=0) versus the fre-
guency of these waves. The curve witi 0 corresponds to
the conventional stability threshold for constant amplitude FiG. 7. Neutral curves for various spatial growth rates and the
waves. As is seen, the constant amplitude waves can propgreshold of global instability given by self-intersectiofas. Phase
gate only when the Marangoni number exceeds a certaiand group velocities vs frequency at the threshold of the global
threshold, and the forcing frequency is not too high. For lowinstability (b); Pr=5.
enough frequencies the marginal Marangoni number is at
least a double-valued function. Moreover, for each Ma-the partial derivative with respect tg of this condition, we
rangoni number permitting propagation of constant ampli-obtain
tude waves there are at least two such waves which may be
emitted at different frequencies of forcing. But the most im- Jwi _ Jw;i JMa
portant fact to notice is that the neutral curve makes a loop oki o Ma dk;
and at some point intersects itself, where the frequencies of
both constant amplitude waves, which can propagate at thehe sign of the terndw;/d Ma depends on the direction of
corresponding Marangoni number, coincide. Were these twgariation of the temporal growth rate as Ma crosses the neu-
waves propagating in the opposite directions, they might bé&al stability threshold. Since in the case under consideration
coupled by reflections from the end walls, and, according tédhe wave becomes temporally growing;{&0) as Ma rises
the global stability condition7), they could sustain each above the neutral stability threshold, the corresponding term
other in a sufficiently extended liquid layer without aid of is positive. Thus the neutral curve proceeding downwards for
any external forcing. Sk;>0 or upwards forsk;<<0 implies a negative real part of

To determine the direction of propagation of these wavesthe group velocity. The opposite is true when the neutral
let us examine the variation of the neutral curve upon addingurve proceeds upwards fofk;>0 or downwards for
to the wave number a small imaginary part. The neutralbk;<<0. Concerning the conventional neutral stability thresh-
curve for a complex wave number defines the marginal Maeld for constant amplitude waves the above criteria may be
rangoni numbers permitting propagation of the waves with dnterpreted as follows. If, upon adding to the wave number a
temporally steady, but spatially varying amplitude. It may besmall imaginary partsk;, the neutral stability threshold
seen in Fig. 7a) that for a nonzero spatial growth rate one shifts to the region of temporally growing constant amplitude
branch of the neutral curve passes above the self-intersectiamaves, the corresponding waves wkh= dk; are spatially
for constant amplitude waves, while the other does it belovamplified rather than attenuated. Consequently, the two
that point. This allows us to deduce the sign of the real partvaves near the intersection have opposite signs of the real
of the group velocity of the corresponding waves. The neupart of the group velocity. Note that we proved this sign to
tral curves under consideration Mda(w, ,k;) are implic-  define the direction of propagation only for the wave having
itly defined by the conditiorw;(w, ,k; ;Ma)=0. By taking the highest temporal growth rate at the given frequency.

Velocity

4.5 5 5.5 6 6.5
Frequency
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Thus this criterion is not granted to be correct for all othergeneral rule. As will be seen later, there may be a drastic
wave modes having lower temporal growth rates at the givenlifference between both thresholds when the buoyancy be-
frequency. However, there is one particular point on eacltomes significant.

curve plotted in Fig. @), where the criterion of the group

velocity certainly gives the correct direction of propagation

for two wave branches. This is the point of self-intersection B. Oblique waves

of the neutral curve, where the frequencies of both neutrally According to Smith and Davigl], the convectively most
stable waves having the same spatial growth rate occur at thg,siaple disturbance for thermocapillary driven flow is ob-
same Marangoni number. Since there are no other neutrallyye rather than transverse. Analogically, the transverse
stable modes of this frequency and the given spatial growtfy 5 es are not granted to be the most unstable ones with
rate at the Marangoni numbers below the intersection, thigespect to a self-sustained instability. For the following
point corresponds to the maximal temporal growth rate forynysis it is important to note that the problem under con-
the given frequency and spatial growth rate. Thus, at th@jgeration is spanwise mirror symmetric. Because the trans-
self-intersection, the criterion of the group velocity is valid \erse waves remain invariant upon such reflections, the span-
for both branches of the neutral curve. The conclusion is thafise component of the group velocity must be zero
these two are indeed oppositely propagating waves whicfiplying that these waves propagate strictly streamwise. But

can therefore sustain each other by reflections from the conyis is not so for oblique waves whose spanwise component
fuj_lng end walls, giving rise to the global oscillatory insta- 5¢ the group velocity may in general be nonzero. In the
bility. L . _. course of propagation, obligue waves can encounter and be
A closer examination of the neutral curves shown in Fig.efiected not only by the end walls, but also by the sidewalls.
7(a) reveals that there may be a global instability at Ma-The mirror symmetry implies that for each oblique wave
rangoni numbers lower than that for the constant amplitudgnere is a spanwise mirror-reflected counterpart with the
waves. At sufﬁqently small pqsmve spatial growth rate thereggme streamwise, but an opposite spanwise direction of
is another self—mtersect!on p0|r.1t. of the corresponding ”eU”%ropagation. Thus a pair of mirror-symmetric oblique waves
curve where one wave is amplified, but another attenuated &ay pe mutually coupled by reflections from the sidewalls.
the same rate. The minimum of the global |nstab|_l|ty threSh'Further, if some oblique wave turns spatially amplified in the
old occurs when the Ioop of the ne_utra] curve tightens to'spanwise direction, the amplitude of such a wave can in-
gether to form a cusp, which is seen in Fige)for ki=0.19.  ¢rease in course of multiple reflections from the sidewalls of
Since both waves merging at the cusp have opposite signs gf syficiently wide system. Consequently, a neutrally stable
the real part of the group velocity, this quantity turns to zerog|opg) state requires at least a couple of mirror-symmetric
at the cusfisee Fig. T)]. Thus the mode corresponding to opjigue waves having spanwise invariant amplitude given by
the cusp cannot be associated with a particular direction Oi[ky]zo. However, such a pair of spanwise self-sustained

propagation. It implies that this mode does not travel Withwaves may in general drift streamwise, and so leave the sys-
respect to the laboratory frame of reference and, hence, {by without causing any self-sustained instability. The

may be self-sustained without any reflections from the endgireamwise feedback necessary for the onset of a self-
walls. o sustained instability requires an additional couple of mirror-
‘The cusp can be seen in Fig@y to correspond to the  gymmetric oblique waves with a streamwise direction of
minimum of the _marglnal_ Marangoni number, which re- propagation opposite to that of the first pair.
garded as a function &, gives Let us concentrate further on the particular case where
each pair of waves propagating in the same spanwise, but
opposite streamwise directions, like the transverse waves
dMa_JMadw considered in V A, merge together in a single oblique wave.
Kk, dw; ok, The resulting globally neutral state is constituted by a single
couple of mirror-symmetric waves propagating strictly span-
wise in opposite directions with a spanwise-invariant ampli-
from which the imaginary part of the group velocity is seentude. Comparing to the transverse waves, now there is one
to be zero at the given point. Since this point of zero groupeal quantity more involved, i.e., the spanwise component of
velocity is formed by merging of two oppositely traveling the wave vectok, ,=7R[ g, k], which may formally be re-
waves, it satisfies the Briggs pinching criterid@i] defining  garded as an additional control parameter like Ma. The prob-
the threshold of the absolute instability. Note that a corredem to be solved is nearly the same as that of the absolute
sponding cusp map in the complex frequency plane was sugpstability for the transverse waves, except that the corre-
gested in Ref[22] for the detection of the absolute instabil- sponding threshold now is a function kf, . The minimum
ity. of this threshold ovek; , gives the critical Marangoni num-
As seen in Fig. 6, the absolute transverse wave instabilityper for the onset of the self-sustained instability which is
like the convective one exists only for sufficiently large analogous to the absolute one in the streamwise direction,
Prandtl numbers (Prl). Note that disappearance of the but to the global one in the spanwise direction.
convective instability below Pr0.18 is related to the hydro- The critical Marangoni numbers corresponding to the
dynamic stability of the corresponding basic flgpt8]. The thresholds of both convective and self-sustained instabilities
difference between both thresholds diminishes with the infor the basic flow driven purely by thermocapillarity
crease of Pr, so that they become hardly distinguishablgBo=0) are plotted versus Prandtl number in Fig@8lt is
However, such a proximity of both these thresholds is not a@vident that the oblique disturbances are indeed more dan-
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S 80 vs Prandtl number for the dominating upstream stationary wave
2 20 induced by the hot end wall at the threshold of absolute-global
2 instability of thermocapillary-driven basic flow (Ba0).
2 60
g
g 50 the critical perturbation to be exponentially varying in the
'g 40 streamwise direction. The streamwise spatial growth rate
2 30 ki x=2[ky] versus Pr is plotted in Fig.(8). Note that for
%’ Pr>5, wherek; ,>0, the amplitude decreases in the positive
3 20 direction of thex axis, which is downstream with the free
£ 10} (b) - surface velocity, whereas for 5 it increases.
S R N R ST In addition, it may be seen in Fig(& that the threshold
1073 1072 10! 10° 10 102 108 of the absolute-global instability, in contrast to the absolute
Prandti number one of transverse wavésee Fig. 8, is lower for all Pr than

the threshold for stationary cells due to the hot end wall. This
means that the self-sustained instability due to traveling ob-
lique waves sets in before the stationary cells become spa-
tially amplified and spread over the whole layer, provided
the latter is extended enough. Since the extension of real
layers is limited, the spatial attenuation rate of stationary
waves is also of practical significance. The downstream at-
tenuation rate and the corresponding wave number of the
stationary perturbation occurring at the threshold of absolute-
global instability are plotted in Fig. 9. It is evident that for
Pr>0.12 this disturbance is spatially oscillating, and decays
over a distance comparable to the depth of the layer, whereas
for Pr<0.12 the decay becomes monotonic and occurs over a

0.3
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Spatial growth rate k; ,
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0% 102 107 100 10! 102 10 distance increasing with decrease of Pr. So, for F0 2 the
Prandtl number influence of the hot end wall can spread over tens of the layer
depth.

FIG. 8. Critical Marangoni number®), directions of the wave
vector (b), and the streamwise spatial growth ratks,& 7] e,- k])
(c) vs Prandtl number for various instability thresholds of ther-
mocapillary driven basic flow (Be0). AGOO, COO, CST, AOT It turns out that with an increase of the buoyancy effect
denote absolute global oblique oscillating, convective oblique oscilthe threshold of the instability observed in the experini&ht
lating, convectivg stati.o.n.ary transvgrse, and absolute oscillating)egins to differ strongly from that supplied by the conven-
transverse wave instabilities, respectively. tional stability analysig1,6]. The conventional theory pre-

dicts an oscillatory instability to be always the most danger-

gerous with respect to a self-sustained instability than th@us one, whereas the experiment shows a stationary
transverse ones. Although the threshold of self-sustained innstability developing first for sufficiently large Bond num-
stability is in principle higher than that of the convective bers. The present approach in contrast to the conventional
instability, the difference between both is small, particularlyone proposes a physical mechanism of the stationary insta-
for Pr>1. Nevertheless, there is a noticeable difference irbility whose threshold is seen in Fig. 10 to be in good agree-
the directions of the critical wave vectors for both types ofment with the corresponding experimental findings. Note
instability [see Fig. &)]. In contrast to the conventional that the experimentally detected threshold is slightly lower
stability theory, the given analysis predicts the amplitude otthan the theoretical one, especially at larger Bond numbers.

VI. COMPARISON WITH EXPERIMENT
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1000 ' r - : extended liquid layer subject to a longitudinal temperature
A%%? —— gradient. The concepts of convective, absolute, and global
" expt. 0 instabilities are applied to calculate the thresholds of experi-
2 i COO ------- mentally observed spatial and temporal oscillations of the
§ 750 | oscillatory | steady multicellular = flow. First, the conventional approach, based upon the con-
5 convection convection / cept of convective instability, is critically discussed. Second,
§ 4 /jff.- the concept of the global instability for a spatially homoge-
é /,,,r-’—_fj_',;; neous system is presented in physically obvious terms by
§ 500 ________.___—_ij;jjf,f,e..'--“"' . considering the virtual reflection of waves from distant con-
Z)E SAIVE S :able fining boundaries. It is proven that the direction of propaga-
tion of the wave mode having the highest temporal growth
(a) rate for a given frequency and spatial growth rate is correctly
250 1 L L 1 determined in an active medium by the sign of the real part
0 02 oéﬁnd numb%? 08 ! of the group velocity. The proposed criterion in contrast to
the conventional one is local in the complex frequency plane
30 T T AGOO — and, therefore, it is more convenient for practical application.
expl. o We consider the effect of the boundaries on the spatially

homogeneous basic state purely due to the thermocapillary
effect. The principal idea is that distant lateral boundaries,
besides reflecting waves, may be regarded also as a perma-
nent stationary disturbance of the homogeneous basic state.
The problem is to determine how far this perturbation pen-
etrates into the homogeneous basic state. Within the frame-
\ work of linear theory, the solution of the problem is given by

\ the spatial attenuation ratenaginary part of the wave num-

".| 7] ben of zero frequency mode. For large Reynolds numbers

critical direction of wave vector (deg)

(b) (Re—) the attenuation length increases proportionally with
%01 —_ "'0'1 — Re, but within the purely hydrodynamic approximation
' Bond number (Pr=0) it remains finite for any bounded Re. Coupling of

temperature and hydrodynamic perturbations, which takes
FIG. 10. Experimental and theoretical critical Marangoni num-place at nonzero Pr, results in a negative downstream
bers for the onset of both steady multicellll@ST) and oscillatory asymptotic attenuation when $0.67. This means that for
convection(AGOO) (a) and the corresponding angle between the pr~ . 67 and sufficiently large Reynolds number the station-
critical wave vector ana axis (b) depending on the Bond number ary wave induced by the upstreaimot) end wall may turn
for 1-c_S siligqn oil (P=13.9). The convective Qscillating oblique spatially amplified and spread over the whole layer regard-
wave instability(COO) results from the conventional theory. less of its extent. Since the wave number of the stationary

This slight difference may be because of the continuous proconstant amplitude wave which first covers the whole layer
ceeding of the spatial attenuation rate to zero as the MdS Purely real, such a wave develops beyond the threshold of
rangoni number approaches the corresponding threshol§Onvective instability of the zero-frequency mode.

Thus a liquid layer of a limited extension might seem as_ 1€ analysis of self-sustained traveling waves is based on
covered by a steady wave pattern of apparently constant arf?€ concept of the global instability of spatially homoge-
plitude already before the attenuation rate becomes exactfye0US Systems. The mechanism of this instability is provided
Zero. by virtual reflections of convectively unstable waves from

In addition, the experimentally detected threshold of c)S_distar_r[ lateral \_/valls. The simplest neutrally stable self-
cillatory instability, which for Be=0.2 begins to differ susta|r_1ed state is formed by the transverse waves coup_l_ed by
strongly from that of the convective instability, is seen in rgflectlons from the end walls, so that the spatial gmplmca-
Fig. 10 to be in good agreement with the threshold of thdion rate of one wave compensates for the attenuation rate of
absolute-global instability introduced in this paper. However,the other. The most unstable transverse wave state |s_found
note that for Bo-0.2 the stationary wave developing from to occur when the wave numbers of both waves belonging to
the hot end wall covers the whole iayer before the oscillatory1€ Same branch merge together. This corresponds to the case
instability sets in. Thus the last occurs on a basic state beingf the absolute instability. The most dangerous self-sustained
already disturbed by the first. This disturbance, which is nelnStability is caused by oblique rather than purely transverse
glected here, may be responsible for the remaining differencgisturbances. Such a self-sustained state comprises in general
between theoretical and experimental thresholds noticeabf/C couples of spanwise mirror-symmetric oblique waves.
in Fig. 10. Further development of the theory requires the! '€ MOSt unstable state is formed when two waves propa-

analysis of nonlinear effects. gating streamwise in the opposite, but spanwise in the same
directions merge together. This results in a single oblique
VII. SUMMARY AND CONCLUSIONS wave propagating strictly spanwise. The critical global mode

comprises a couple of such mirror-symmetric oblique waves.
This study dealt with the linear stability of This resembles the absolute instability streamwise but the
thermocapillary-buoyancy-driven convection in a horizontalglobal one spanwise.
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When the basic state is purely due to thermocapillarity layer of 1-cS silicon oil are found to be in good agreement
the threshold of the global instability is only slightly higher with the corresponding experimental d@g3.
than that of the convective instability. For>Pt, the effect
of the buoyancy results in a drastic rise of the global insta-
bility threshold above the convective one. Moreover, under ACKNOWLEDGMENTS
the effect of buoyancy the stationary perturbation due to the
upstream end wall turns convectively unstable and spreads We thank G. P. Neitzel for providing us experimental
over the whole layer before the onset of oscillatory convec+esults. We are grateful to A. Gailitis for interesting and use-
tion because of the global instability. The thresholds of botHul discussions. This work was supported by the German
oscillatory and stationary wave instabilities calculated for aSpace AgencyDARA).
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