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Statistical mechanics of monatomic liquids
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Two key experimental properties of elemental liquids, together with an analysis of the condensed-system
potential-energy surface, lead us logically to the dynamical theory of monatomic liquids. Experimentally, the
ion motional specific heat is approximatelyNR for N ions, implying the normal modes of motion are
approximately 3l independent harmonic oscillators. This implies the potential surface contains nearly har-
monic valleys. The equilibrium configuration at the bottom of each valley is a “structure.” Structures are
crystalline or amorphous, and amorphous structures can have a remnant of local crystal symmetry, or can be
random. The random structures are by far the most numerous, and hence dominate the statistical mechanics of
the liquid state, and their macroscopic properties are uniform over the structure class, fof Eygems. The
Hamiltonian for any structural valley is the static structure potential, a sum of harmonic normal modes, and an
anharmonic correction. Again from experiment, the constant-density entropy of melting contains a universal
disordering contribution oNkA, suggesting the random structural valleys are of universal numBewhere
Inw=A. Our experimental estimate fak is 0.80. In quasiharmonic approximation, the liquid theory for
entropy agrees with experiment, for all currently analyzable experimental data at elevated temperatures, to
within 1-2% of the total entropy. Further testable predictions of the theory are mentioned.
[S1063-651%97)01810-2

PACS numbds): 65.50+m, 64.10:+h, 05.70.Ce

[. INTRODUCTION smaller than theory, suggesting the presence of higher-order
correlations in the liquid9].

More than 50 years ago, noting that fusion has only small In spite of the long history of insightful contributions to
effects on the volume, cohesive forces, and specific heathe nature of the liquid state, we do not yet possess a theory
Frenkel[1] reached the conclusion that “the character of thefor the motion of particles in a liquid. What is needed is a
heat motion in liquid bodies, at least near the crystallizatiorHamiltonian which is approximately solvable for its energy
point, remains fundamentally the same as in solid bodiedgvels, a partition function which sums over those energy
reducing mainly to small vibrations about certain equilibriumlevels, and a comparison of the statistical-mechanical free
positions.” Twenty years earlier sti2] he argued that these €nergy with the experimental thermodynamic properties of
equilibrium positions are irregular in a liquid, just as in an liquids. This latter comparison will give some indication of
amorphous solid, but while the equilibrium positions are perthe validity of the theory, and will point the way toward
manent in a solid, they are not so in a liquid; rather eaCHheoretical improvements. This program will bg c_arr?ed out
liquid atom oscillates for a time about the same equilibrium!" the present paper, for the case of monatomic liquids.
position, then jumps to a new one. In the present work, Fren- Experimental properties of elemental liquids give a fairly

kel's qualitative picture will not be abandoned, but will only definite picturg of the 'quuiq st'ate, as descr'ibed. in Sec. Il.
be refined. With unwavering faith in this simple picture implied by ex-

From computer simulations of the motion of atoms in periment, we analyze the potential energy landscape, con-

small systems, containing 32 and 108 particles, Stillinger an’(ﬁtruct the Hamiltonian in Sec. lll, and evaluate the partition

) . unction and free energy in Sec. IV. Our comparison with
Weber[3-6] isolated mechanically stable arrangements of, periment in Sec. V comprises two parta) the relation to

the particles, called amorphous packings. They suggestefle eypneriment of principal theoretical quantities whose the-
that the equilibrium properties of liquids result from vibra- 5 qtical calculation is beyond the scope of this work, énd
tional excitations within, and shifting equilibrium between, 5 yetailed comparison of theory and experiment for the en-
these stable molecular packings. Again from computer simuyopy of elemental liquids as function of temperature. Section
lations for 500 particle systems, LaViolette and Stufiiip v/ presents a brief descriptive summary of the liquid theory,
observed a wide variety of packing symmetry when the sysand some of its predictions, and a discussion of some tech-
tem density was varied. nical points.

We have constructed an expansion of the liquid entropy in  The liquid state of an element has the same theoretical
a multiparticle correlation series, and, using measured pairdescription, whether the liquid evolves from the crystal by
correlation functions, have shown that keeping only correlathe normal melting process, or by anomalous melting. How-
tions up to two particles gives an excellent account of theever, since we are going to infer liquid properties from in-
experimental entropy for most liquid metaB—-10], for lig- formation on the melting process, we have to keep in mind
uid argon[11], and for the hard-sphere liqujd2]. For those the existence of these two melting categories. Here is a brief
few liquids where theory and experiment do not agree at theummary of our findings on the melting of elemefit8,14.
pair-correlation level, the experimental entropy is always (&) In normal melting there is no significant change in the
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TABLE I. lon motional specific hea€} for the crystal at melt, structure calculations where possipis,19, approximately

andC; for the liquid at melt, for 19 elements. corrected for density changes, otherwise from free-electron
theory.

Element ~ C{/Nk C/Nk Element C}/Nk  G/Nk The data of Table | reveal the nearly universal property

Li 3.95 (3.21) Mg 3.20 3.02 C,~3Nk for both crystal and liquid at melt. Since we know

Na 3.43 3.39 zn 3.04 281 in general thatC,=3NKk is a property of Bl independent

K 3.41 3.36 cd 2.99 283 harmonic oscillators, and in particular that we have an excel-

Rb 3.45 3.39 Ga 3.03 312 lenttheory of ion motion in crystals in terms oN3indepen-

Cs 3.52 3.39 In 3.14 3.13 Qent harmoniq ogcillator[QO,lﬂ, we assume the ion m_otion

Al 3.06 299 sn 3.31 317 in eleme_ntal liquids can be re_solve(_j to good approximation

Pb 503 3.05 Hg 311 3.04 into 3N mde_pendent _harmonlc_oscnlators. an3|s_tent_W|_th

Cu 3.20 290 Si 347  (2.09 this assumption, we picture .the ions moving prlmarllly within

Ag 205 3.01 Ar 588 533 one or more nearly harmonic valleys in the potential energy

Au 3.06 (2.79 surface.

For monatomic liquids, the general behavior @f is to
decrease as temperature increases at constant density, and to
ecrease as density decreases at constant temperature.
hough the density dependence can be complicated by the
D presence of phase transitions on an isotherm, the system al-
stant density lie in the narrow range (0.64—-019k) and has  \5vs hecomes a gas at sufficiently low density, and also at
mean and variance given by (0:80_.10)N_k_ . . sufficiently high temperatur21], andC,=1.5Nk for a gas.
(b) In anqmalous melting there is a significant change ingjmyq)| [22] showed thatC, for liquid metals decreases as
the electronic structure, as for example polar crystal to met mperature increases at atmospheric pressure, and this de-

liquid. The entropy of melting at constant density is muchyeaqe reflects both the increasing temperature and decreas-
higher than the normal value, being (1.48-38Ek)for the ing density.

six anomalous elements we have studied, and apparently o the viewpoint of harmonic oscillators as liquid be-

contains the normal contribution, plus an amount due mostly,Jyior |et us examine some finer details of the data in Table
to the increase in potential energy in going to the new elec; ro, the alkali metalsC, is larger than 3.8k; in fact it is

tronic structure. _ around 3.8k for both crystal and liquid. We know this
From these findings, we formulated the hypothesis thafarger value is due to anharmonicity in the crysiaB,24
the liquid contains_a universal ion-motional disordering eN-2nd we believe it is due to the same kind of anharmc,)nic’ity in
tropy of NKkA, relative to the crystal, wher&=0.80[14]. the liquid as well. For Ar, the crystal shows ordinary behav-
ior, with a little anharmonicity, but the liquid is far from
Il. NATURE OF THE LIQUID STATE ordinary, with C,=2.33\k. This is because liquid Ar at 1
-~ ) ] bar is greatly expanded from the crystal, is very weakly
The constant-volume specific he@, is obtained by a pound, and the ion motion takes on some of the gas charac-
well-known thermodynamic correctidri5] from the experi-  ter. We have previously noted this character of liquid argon
mental constant-pressure specific h€gt. We assume for [13], and found some evidence that sufficiently compressed
the liquid, just as for the crystal, th@, is comprised of an  Ar pehaves like an ordinary liquifiL1,25. In Si, the large
ion-motional contributionC;, and an electron excitation anharmonicity of the crystal presumably results from the
contributionCg, strongly directional covalent bonds of the diamond structure,
while the very low liquidC,=2.05\k reflects the quite ex-
Cy=C+Cg. (1)  traordinary nature of liquid Si. First, because of anomalous
melting, metallic liquid Si is at a temperature far above the

To obtain accurate values 6 , from the experimentaCy, normal melting temperature of the metallic fofrh3]. Sec-

we consider only the nearly-free-electron elements, wher@nd: While the number of neighbors in the first peak of the
Ce is quite small, and where in addition we can apply thePair-correlation function is around 9—11 for most liquid met-

low-temperature expansion with confidence to crystal an@ls[2.6]’ for Si a_nd Ge itis respectively 6.4 and 28], and,
liquid alike: in this connection, Ashcroft27] suggested the presence of

dynamical clustering of the ions in liquid Ge. Finally, though

it is a small effect, the free-electron val@e = 0.22Nk for Si
might be an overestimate. The remaining 12 elements of
Table | show remarkably uniform behavior, witlE,
wheren(eg) is the electron density of states per atom at the=(2.9-3.3Nk for the crystals, andC,=(2.8—-3.2Nk for
Fermi energye:. For all the elements for which we are the liquids. Note that this group includes two more anoma-
currently able to evaluat€, accurately, for both crystal and lous melting elements, Sn and Ga, whose ligGidvalues
liquid at melt, the results are listed in Table I. Errordnof  are not at all unusual, perhaps because these two elements
+0.05Nk are expected, with larger errors likely in several are only weakly anomalous in their melting.

cases. Our data sources 0p are Hultgrenet al. [16] and To complete the qualitative picture of the liquid state, one
the JANAF (Joint Army—Navy—Air Forcgtables[17], and  more issue needs to be addressed. For harmonic oscillators,
the electron density of states was obtained from bandthe specific heat is independent of the number of structures a

electronic structure, as, for example, metal crystal to met
liquid. Experimental data for the entropy of melting at con-

Ce=31m°NK°Tn(eg), 2)
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system possesses. On the other hand, the entropy measuieshe pair correlation functiof26], is that the liquid is vir-
that number, for if a system hag accessible structures, the tually never found in a configuration in which two ions are
entropy contains the terik Inw. Our hypothesis of a uni- closer tharr., wherer is around 75% of the mean nearest-
versal disordering entropiMkA of the liquid relative to the neighbor separation.

crystal, mentioned in Sec. I, and noting that the crystal has The structures are labeleg wherey=1, ... wN, andw
only one structure, now suggests the number of accessible to be determined. The positions of the ions in structure
structures in a monatomic liquid is the universal numbly  areRy(y). For a proposition limited to configurations lying
where Iw=A. We will now proceed to a mathematical de- within the valley of structurey, we use the terminology “in
scription, which makes more precise this qualitative picturey.” When the system is iny, the position of ionK is mea-

of the liquid state. sured byug(y), its displacement from equilibrium, where

Uk (y)=rx—Rk(y). (5

Again when the system is ir, the adiabatic potential is
denoted® ., and is considered a functich ,({ux(y)}) of
ifiae displacements. Then when the system igithe ionic
ofjamiltonian isH,,, given by

lll. HAMILTONIAN

We consider a condensed-matter systenNdike atoms
distributed more or less uniformly in a volunve Each atom
is separated into an ion core and valence electrons, where
ion can be the bare nucleus, or can include some electr
shells, and for abbreviation we refer to the complete set of 2
valence electrons simply as ‘ft.he electrons.” The ions are Hy:E ;_K+q>y({uK(y)})_ (6)
labeledK=1, ... N, have positions, and the energy of M
the system when the ions are held fixed and the electrons are, , .
in their ground state is the adiabatic potentia{{ry}). If It is useful to expandb,, in powers of the displacements,

now the ions are allowed to move in this potential, with o =d + P +d 7
momentapy , the motion is described by the ionic Hamil- r= PoN+ Pu()+ PA(). @
tonianH,, Here ®(y) is the static structure potential,
2 — — —
p Do(y)=P,({ux(y)=0p)=P{Rk(7)})- 8
H=3 ot edrnd), 3 ’

The harmonic potentiafb,(y) expresses terms of second

. . , order in displacements,
whereM is the ion mass. When the Born-Oppenheimer ap-

proximation holds, the electrons remain in their ground state, .
andH, is the complete system Hamiltoni4&0]. In reality, (DH('}’):E% Uk () @y (y)-u(y), 9
however, the motion of the ions causes excitation of the elec-

trons from their ground state, and this is e;pecially importanfyhere the potential coefficien®,, () are merely second
for metals, where the electrons have excited states of Veraisp|acement derivatives @77 at equi”brium_ The anhar-

low energy. The excitation of electrons, including its cou-monic potentiakb A(y) is all terms higher than second order

pling to the motion of the ions, will be representedy,  in displacements, and since we already know the ion motion
so the total Hamiltonian is consists approximately ofN8 independent harmonic oscilla-
tors, then®(y) is a small contribution. NowH, can be
H=H,+He. (4 written so as to emphasize the importance of harmonic mo-
In this paper, we concentrate on the ionic motion, and wiIItlon’
not worry about the details dflz, though we will have to H,=®o(y)+Hu(y) +Paly), (10
estimate its contribution to the total free energy, in order to
compare the liquid theory with experiment. where the important dynamic term li;(y),
The set{rk} spans the Bl-dimensional configuration o2
space, which contains a number of nearly harmonic valleys _ K
inpthe potential-energy surface. The equﬁibrium configura)l/- Hu(%) =2, om PR (1)

tion at the bottom of each valley is a “structure.” A ridge is
formed at the intersection of neighboring valleys, and a lineThis is diagonalized in terms ofN8 normal modes labeled
along the ridge top denotes the intervalley boundary. We cah=1, . .. , 3, with momentap, , coordinatesq,(y), and
allow that all the valleys, plus a large number of intervalleyfrequenciesw, (y), so thatH,(y) becomes
boundaries, are accessible to the liquid state. The collection
of all accessible intervalley boundaries is called simply “the
boundary.” The entire collection of structural valleys, plus
the boundary, is denoted the “liquid configuration space,”
and contains all configurations important for the equilibrium ~ The HamiltonianH,, applies to any structure in configu-
statistical mechanics of the liquid state. This latter conclu+ation space. Let us consider first the nature of various struc-
sion follows from the specific-heat analysis of Sec. II. tures, and then the corresponding boundary conditions im-
In perspective, the great majority of configuration space igposed on the Hamiltonian. For most elemental systems, at
inaccessible to the liquid state. The main restriction, revealedny density in the condensed phase, there are crystalline

pr 1
Hi)=2 | o+ 3 Meiai(n|. (12
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structures having long-range order, some of which lie at thary contributions. The latter can be expressed as a set of
lowest energies. Above these are an array of structures withnteractionsH which cause transitions between valleys
out long-range order and generally called amorphous. Here énd y'.
will be necessary to divide amorphous structures into two
classes. IV. PARTITION FUNCTION

(@) Structures with a remnant of crystal symmetry, at least
among nearest neighbors, which we call “symmetric” struc- We first evaluate the canonical partition functi@n for
tures. These range from the microcrystalline structures obthe ion motion alone, and since the motion of ions in practi-
served in computer simulation8,4,7), to the tetrahedrally cally all monatomic liquids is classical, we use classical sta-
coordinated amorphous carbon made experimentally by iofiStics. Z; is written
implantation[ 28], and studied theoretically by local-density- 1
approximation techniquef29]. This class, though large in y A — f j exp(— BH )T dpgdry.  (16)
number, is stillrelatively few, because of the symmetry re- h="N!

striction. In addition, the structure potenti® , and the , . . .
P b(7) The configuration part of the integral includes all permuta-

set of normal mode frequencid®,(y)}, are sensitive to . ; . . o
near-neighbor symmetry, so these important quantities haions of the ions over each cpnflguratlon, so divisionNy
cancels the sum of permutations.

significant variations over the class of symmetric structures: Restricting th P tion int | to the liquid
(b) Structures with a wide distribution of nearest-neighbor estricting the configuration integral to the fiquid con-

orientations, where near-neighbor symmetry is frustratejiguration space, the partition function becomes a sum over

[30], as in the random close-packed hard-sphere model r he random structural valleys,

viewed by Finney{31]. We call these “random” structures, Z,=3.7 (17)

and the random character leads to two important properties, A

for largeN systems. First, they constitute the great majoritywhere

of all structures, and hence dominate the statistical mechan- L

ics of the liquid state. Second, each macroscopic structural

property is ﬂarrowly distributed over the class o? structures. Zy= 3N J J exp(— BH,)Ikdpcdug(y).  (18)

It follows that the structure potentighy(y), and the set of

normal mode frequencigso, (y)}, are essentially indepen- HereN! has been removed, because when the systemyis in

dent of y for largeN random structures, and one can defineeéach ionK is assigned an equilibrium positidR¢(y), and

the liquid structure potentiab},, and the liquid frequency O permutations are allowed. We can use the quasiharmonic

set{w,}, by approximation(15) for H,,, to find the equivalent approxi-
mation forZ,:

exp(— )
ZV%TOHAJ’ J’ eXF{—B

xXdp,daq, . (19

vy

Dy=Do(y), (13)

ot
— 1+ = Mwiq
{or}={on(V}, (14) 2M 2 T

wherey is a random structure in the thermodynamic limit.

We now consider the boundary condition i, requir- ~ Evaluating the integral gives
ing that the system is iry. In the theory of lattice dynamics,
negligible error is introduced by extending the crystal-
structure valley to infinity, thus eliminating the boundary
condition. The same procedure will constitute an acceptable
approximation for the random structural valleys, but the erroNow in Eq.(17) for Z,, thezhmefew counts the number of
in ignoring the intersections of neighboring valleys will not random structures, which i8™, so that
be negligible in the liquid theory. The correction of this error
is called the “boundary”_ contribution, beca_use it results Z,~wN EXD(—BCD'O)HA k_T (21)
from the presence of the intervalley boundaries. (JON

Let us use the above arguments to write a simple approxi- . . ) )
mation for H., for random structures. We first neglect the The error in this result is the neglect of anharmonic and
boundary condition, so the normal coordinaggy) are ~Poundary contributions. _ _
given infinite extent. We then use Ed43) and(14) to omit The Helmholtz free energy for the ion motion 5

y dependence ab(v) andfw, (), and finally we neglect =—KkT In Z,. We evaluate this from Ec1_21) forZ,, and gdd
anharmonicity, to write a termF g to account for the combined anharmonic and

boundary contribution. It is also convenient to introduce the

| kKT
ZVWGXK—B(DO)H)\ ﬁ_w)\ (20)

p2 1 liquid characteristic temperatur@,, related to the logarith-
H,~dy+ >, ﬁjL SM w2q2(y)|. (15  mic moment of the frequency distribution,
N
>\ In(hw
In(k6h) = I By 22

In this quasiharmonic approximatioH,, depends ory only
through the configuration-space location of structyyend
the error is specifically the neglect of anharmonic and boundThen

3N
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F|=‘b|o—NkT Inw—3NKT |ﬂ(T/05)+FAB- (23) termFg in the free energy, and that at temperatures where
the ion motion is classicalFg is the bare independent-
The next step is to calibrate. As noted in Sec. |, we electron free energy determined by the electron density of
previously concluded, from experimental data for entropy ofstates and Fermi statisti¢Sommerfeld model Hence the
melting at constant density, that the ion system has a univetotal free energy is
sal disordering entropfNkA of liquid relative to crystal,

whereA =0.80. Let us find the theoretical expression for this F=F+Fg. (29)
melting entropy. From Eq23), the ion motional entropy of - ) .
the liquid is Empirical evidence shows this to be an excellent model for
crystals, including transition metals, where the electronic
S;=Nk Inw+3NK[In(T/65)+ 1]+ Spg. (24)  contribution is quite importar{t32].
The free energy for the crystal is given by E_QB) evaluated V. COMPARISON WITH EXPERIMENT
for one structure only, namely, the appropriate crystal struc- FOR NORMAL MELTING ELEMENTS

ture, which we denote with a superscript
Thermodynamic functions for the liquid are calculated
Fi=d5—3NKT In(T/6g) +Fj, (25  from the free energy derived in Sec. IV. Here we will con-
sider the internal energy, the entropyS, and the constant-

where the anharmonicity is still present, as indicated, but th¢ | me specific hea€,, given by
boundary effect is negligible for the crystal state. The corre- v
sponding crystal entropy is U=®}+3NKT+Upg+Ug, (30)

S'=3NK[In(T/65)+ 1]+ S5 . 26
! [In(T/60)+ 11+ Sy 26 S=Nk Inw+3NK[In(T/65)+1]+Sap+Se, (30

Then from Eqgs(24) and (26), the ion-motional entropy of

melting at constant density i§S; , Cy=3Nk+Cpp+Cg, (32

AS =Nk Inw+3NKk In(65/6,) +Sag—Sk- (270 where®}, and 6}, are functions ofV. For the nearly free-

) ) ) ) ) electron elementsCg is given by the low-temperature ex-
The only quantity here which might sensibly be a universalyansijon(2), and in this order we also have
constant isw, so we set

Inw=0.80, (28) TCe=T&=2U¢. (33

. . Th tions are not restricted in any w the meltin
and then investigate the consequences. ese equations are not restricted in any way by the melting

This discussion recalls the melting properties mentione rocess. However, the experimental dataat or as a func-

. \ ion of T/T,,, requir ial consideration when the melt-
in Sec. I. First,Syg and S; are usually small at melt. For on of /Ty, requires special consideratio en the me

| I | N h wal and liauid h ing process afl,, is anomalous, and to avoid such compli-
normal meiting elements, where crystal and liqui .a\{ecations, which after all are irrelevant to the theory of the
qualitatively the same electronic structure, the interioni

) liguid state, we restrict attention in this section to the normal
forces should be approximately the same, so Hﬁaﬂ'ow 1. a

) melting elements.

Then the last three terms in E@Q7) are all s_mall, and Eg. From Eq.(32), the ionic contributiorC, is
(27) readsAS,=0.80Nk+ (small scattey, which expresses
the nature of the expenmer_ltal data for normal melting elg— C,=3Nk+Cpg. (34)
ments. For anomalous melting elements, the crystal and lig-
uid have qualitatively different electronic structures, hencec,, stands for two terms, the anharmonic contribution,
65 and 0{) should differ significantly. Then27) is AS which can be of either sign, and the boundary contribution,
=0.8Nk+ (a large term) depending on the different elec-which is negative since it results from the limiting of the
tronic structures of crystal and liquid, which expresses thepotential-energy surface, at the intersections of neighboring
nature of the experimental data for anomalous melting elevalleys. From the experimental data for the liquids at melt,
ments. The calibratiof28) therefore provides a satisfactory Table I, C,g~0.4Nk for the alkali metals, and this was al-
rationalization of experimental data fA&rS, and tells us how ready attributed to anharmonicity in Sec. Il. For the rest of
many random structures are present in the potential-energiie normal melting elements in TableQ@,z~0, except for
landscape. Ar, where the large negativ€ g can result from both an-

Finally, let us consider the remaining part of the Hamil- harmonic and boundary effects. Finall@,g is presumably
tonian, the termHg which expresses excited states of theresponsible for the general decreaseCef with increasing
electrons, and the coupling of those states to the ion motiortemperature or with decreasing density, as mentioned in Sec.
The corresponding contribution to the partition function mayil.
be evaluated in quantum statistics for the electrons, and clas- From the crystal free energy, discussed in Sec. IV,
sical statistics for the ions. The work has not been done, as
far as the author is aware, and it poses an interesting and UC=dg+3NKT+UL+UE. (35
useful calculation. In the meantime, we will adopt the same
model for the liquid as we have used for the crygted], = The change in internal energy upon melting at constant den-
namely, that the presence bfz gives rise to an additive sity is AU=U'-U®, and is written
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TABLE Il. Data for the liquid entropy analysis. Columns 2—6 are experimental data for the liquid at melt, g/fsetieermal expansion
coefficient andBg is adiabatic bulk modulus. References provide the same experimental data at elevated tempéfdsuzealuated at the
density of the liquid at meltS; is theoretical electronic entropy at melt.

Element p (glen?) B (1074/K) Bs (kban SINK Cp/Nk Refs. 65 Se Nk
Na 0.925 2.57 59.4 7.78 3.83 [36, 37, 11 102.2 0.053
K 0.829 2.9 29.4 9.06 3.87 [38, 37, 11 61.9 0.080
Rb 1.479 3.0 23% 10.26 3.89 [39, 40, 17 37.7 0.089
Pb 10.68 1.12 358 10.13 3.68  [41, 42, 43, 1% 52.1 0.089
In 7.03 1.11 378 9.11 3.55 [44, 16 74.4 0.065
Hg 13.69 1.80 299 8.31 3.43 [45, 16 56.4 0.029

84 is calculated from experiment&; for Rb.

AU=A®y+Upg—US+AUE, (36) wherey is the Grineisen parameter for the crystal, tabulated
in Ref.[13]. Now the liquid at melt is quite expanded from
where the last three terms should be small for normal melten, and values ofgg(pim)/ 65(py) are in the range 0.81—
ing. But this quantity can also be evaluated in thermodynam®.90, which is about as far as we can safely apply the for-
ics, by equating the liquid and crystal Gibbs free energies amula (40). But the high-temperature liquid continues to ex-

a common pressure and temperature, with the r¢&glt pand, making it impossible to get reliable estimate®pht
ever lower densities, so instead we correct the measured en-
AU=TLAS+:--, (37 tropy to the fixed density,,. If p, is the density at atmo-

spheric pressure, the density correctiorsait each tempera-
where + - - represents a power series i starting atz?, ture is given by
and where for melting at a constant pressure and tempera-

ture, S(pim) =S(pa) —{VBBT, (41)
Pem where 8 is the thermal expansion coefficiefy is the iso-
= 1. (38  thermal bulk modulus, and
m
Combining Eqs(36) and (37), =Pm_q 42)
Pa
Dy(pim) ~ PG pim) = TmA S+, (39)

For the six liquids in question, data for the liquid at melt, and

where+ - represents the small terms in E¢®6) and (37). _(l)_:rblseollfrces for data at elevated temperatures, are listed in

This tells us that the liquid structure potential lies above that L |

of the melting crystal by abouf,,AS, a result which can be In Seq. IV we argued the approxmathﬂﬁ§ 0, for nor- .

checked by theoretical calculation of these two structure po[nal_meltlng elements. Let us use this to write the approxi-

tentials for a normal melting element. mation Syeory,
Let us consider the temperature dependence of thermody-

namic properties of the liquid at elevated temperatures. The

thermodynami_c functions,_all being derived_ from the freeComparison with Eq(31) shows the error in this formula is
energy, contain only one independent functlo_n _of temperaaue to usingdS in place Of0|0, and in neglecting,s. But
ture. We choose to analyze the entropy, and will include onIyEq_ (43) has no adjustable parameters. The comparison with

elements in all three of the following categories. experiment is shown in Fia. 1 for mercury To=3.2T. . and
(a) Nearly free electron elements, so we have a reliable P 9- y eme

theoretical evaluation o . IS qglte striking. :
(b) Normal melting elements, so we can approximage . Figure 2 shows the differenc8epSneary, for all the
by 68 ' high-temperature entropy data we are currently able to ana-
G-

) _ . lyze. Error estimates are as follows. Original val(i88] of
(c) Elements for which data exist to .flnd entropy at con—ag(pN) are accurate to around 1%, and this accuracy might
stant volume, up to temperatures sufficiently high to reveal

0,
meaningful temperature dependence, say up/,=2. e reduced to say 3% for our values €(py). Smaller

The sum total of elements satisfying these conditions iSrors, say around-0.02 are expected i, so the total

six. The need for the volume correction is as follows. WeS' " " e\{aluatlngstheory|s likely to be aroundﬂ_f 0.INK. qu
c . the experimental data collected here, combined error in the
have accurate valug83] of 6 at the densitypy, from

: ! ! measured entropy and the volume correction ranges from
inelastic neutron-scattering measurements on crystals at lo

W h densitvo b ¢ Wround 0.0Rk at T, to around 0.Nk at 3T,,. Hence the
temperatures. We correct thesgto densityp by means o theoretical-experimental differences shown in Fig. 2 are

y hardly beyond the combined expected errors of the analysis.
p i i -
05(p)~ 08(pN)<—) ' (40) Our ponqlusmn, for temperatures to arount,3 is that ap
p proximation(43) has an error not much larger thar0.2NKk,

Steoy=NK Inw+3NK[In(T/63)+1]+Sc. (43
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T tropy at elevated temperatures, at the fixed volume of the liquid at
m

melt, for six liquid metals.

FIG. 1. Theory for the entropy of crystal and liquid mercury ) ) )
(solid line), compared with experimental entropgrossey at the ~ WhereA is a universal constant. This suggests the number of
fixed volume of the liquid at melt. random structures in the potential energy landscapé'jsso
the entropy of melting contains the tersk Inw, implying
which is 1% or 2% of the total entropy, and is only 25% of In w=A. Our estimate of the value df is 0.80.
the difference 0.8k between liquid and crystal entropies at

melt. Testable predictions
The theory applies to any monatomic liquid, hence it cov-
VI. SUMMARY AND DISCUSSION ers both normal and anomalous melting. However, to avoid
Liquid dynamics theory unnecessary complications, we limit our consideration here

to normal melting elements.

Two key experimental thermodynamic properties of el- (a) Reflecting the experimental properties upon which our
emental liquids, together with an analysis of the many-iontheory is built,C;~3Nk for the liquid at melt, and\S con-
potential-energy surface, lead us logically to the dynamicajgins the universal contributioNK Inw.
theory of monatomic liquids. The steps are as follows. (b) At the same density, liquid and crystal characteristic

(@) Experimentally, the ionic specific heat of the liquid at temperatures are expected to be approximately the same:

melt is approximately Bk for a system ofN ions. This gl ~ ¢S This can be tested by direct theoretical calculations
implies the ionic normal modes of motion are approximatelyof these quantities.

a set of N independent harmonic oscillators, or what is
equivalent, the ion motion is mainly confined to nearly har-
monic structural valleys in the potential-energy surface. ic

(b) Structures are either crystalline or amorphous, and

(c) The liquid structure potentiaﬁb'O is approximately
®5+T,AS, a relation which can be tested by direct theoret-
al calculations ofb(y) for crystal and random structures.

for largeN systems: th(_ay are the vast majority of a_II StrUC- 11 remarkable accuracy of 0.2Nk.
tures, hence they dominate the statistical mechanics of the The comparison of theory with experiment for liquid en-
o e e e Py Ty s a st f e asinarmric aprodmation o
qtr tyr y Mhe solid, plus the universal liquid disordering entropy, while
S l(JC) lfl_ﬁs' Hamiltonian for th i £i " wh the comparison of theory with experiment for liquid entropy

¢ € rlamiftonian for the motion ot 10nS IS, WNen o4 |0\ 516 temperatures is a test of the quasiharmonic ap-
the system is in the valley of any structupeand is written

in Egs. (10) and (12) as the structure potential, a sum of proximation for the liquid.

harmonic normal modes, and an anharmonic correction. All

random structures contribute equally to the partition func- Structures and normal modes

tion. The ion motional free energy in ER3) is the sum of As a technical point, it is possible that genuine structures

four terms: the liquid structure potential, the entropy fromdo not exist for some or even many of the potential-energy

summing over structures, the single-structure harmonic vivalleys in configuration space. A structure might be nearly

brational free energy, and the term expressing anharmonitable, but not exactly so, with some small forces remaining,

and boundary contributions. so that the exact potential surface leads very slightly down-
(d) Experimentally, the entropy of melting at constantward from approximate structure to approximate structure.

density contains an ionic disordering contribution kA, Nevertheless, in the classical liquid state, the particles have
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kinetic energy at least on the order loT,,, and the struc- events provide the irreversible driving force to achieve and
tures will be dynamically stabilized. Dynamic stabilization maintain equilibrium. An important property of any normal
can be expressed through a self-consistent potehtiak for ~ many-particle system, which means to exclude macroscopi-
example in a self-consistent phonon thef®y,35. cally correlated states such as superfluid states, is that the
irreversible driving force is local. On this ground, we con-
clude that transits are local, that is, when Mgarticle sys-
o tem moves from the structure fR¢(y)} to the structure at
When the liquid system moves across a bogndary, fron'{RK(yr)}, the equilibrium positionR change for only a
one structural valley to another, we call the motion a “tran-gmali local group of ion&. We will learn more about tran-

sit.” While the equilibrium statistical_ rr_iechan_ics of_the liquid gjts as we apply the present liquid theory to irreversible pro-
has been constructed without explicit consideration of trangegges.

sits, the transit events have an essential role in achieving and
maintaining thermodynamic equilibrium. This situation is in
strict analogy to the physics of gases, either classical or
quantum, where the equilibrium statistical mechanics is The author appreciates helpful discussions with Bradford
merely the statistics of free-particle states, while scatterin@Clements and Heinrich Rier.

Transits
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