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Front form and velocity in a one-dimensional autocatalyticA1B˜2A reaction

J. Mai,* I. M. Sokolov,† V. N. Kuzovkov,‡ and A. Blumen
Theoretische Polymerphysik, Universita¨t Freiburg, Rheinstraße 12, D-79104 Freiburg im Breisgau, Germany

~Received 28 May 1997!

We consider the general irreversibleA1B→2A autocatalytic reaction in one dimension, for which the
corresponding diffusion constantsDA andDB may differ. Contrary to mean-field-type predictions, the Monte
Carlo simulations show that, as long asDA.0, only a unique, stable front propagates with constant velocity.
WhenDA50 the behavior changes drastically: both the front’s position and its characteristic width grow with
t1/2. These findings are adequately described within a Smoluchowski-type approach.
@S1063-651X~97!12610-1#

PACS number~s!: 05.40.1j, 82.20.Mj, 82.65.2i
in
ni
n

d
d
in
to

ua

-

te
e-
v

.

e
a

e
s

the
of

ole

istic
ral

-
of

ice

is
ny
he

f-
e

sen

ely,

the

s

ws
ur

ty,

e
t

ci
ia

a,
I. INTROUCTION

Reaction kinetics in low dimensions were extensively
vestigated in the past two decades, since they differ sig
cantly from the situation in high-dimensional spaces, a
thus violate strongly the classical kinetics schemes base
the mass-action law@1,2#. Remarkably, such violations di
not find much attention in the society of scientists deal
with front propagation in autocatalytic reactions. The au
catalytic A1B↔2A conversion~where both the direct and
the back reaction follow the bimolecular scheme! can be de-
scribed in the mean-field limit by the quadratic Fisher eq
tion @Eq. ~11.31! of Ref. @3##, whose solution fronts may
propagate with different velocitiesv; here the initial condi-
tions determine whether a certain velocity is attained@3#. We
note that a mean-field-type description is not appropriate
low dimensions~d51 and 2! where the reaction term de
pends strongly on particle correlations@4–7#. The reaction
A1B↔2A was investigated analytically and via Mon
Carlo simulations in Refs.@8, 9#, where, based on ensembl
averaged quantities, in one and two dimensions strong de
tions from the mean-field-type behavior were detected
detailed study of theirreversible autocatalytic reactionA
1B→2A in one dimension was provided in Ref.@10# for
equal diffusion constantsDA5DB . This reaction is the sim-
plest model for infection spreading, by which~irreversibly
infected! A particles infect at first encounter healthyB par-
ticles. Here we analyze the situation for generalDA andDB .

In fact, the question of the front structure falls into th
class of spontaneous local ordering phenomena, which h
found much attention in connection with theA1A→0, A
1A→A, and A1B→0 reactions@11–22#. Especially the
last reaction shows~due to fluctuations effects! nontrivial
large-scale spatial structures~clusters!; these findings lay
outside the classical kinetics scheme, and for their und
standing need much more elaborated theories and exten
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numerical studies. Note that a microscopic description of
front structure requires a knowledge of the local ordering
the A and theB particles near the front.

In Ref. @10# only the caseDA5DB was considered. Then
the particles are mathematically equivalent, and the wh
reaction consists solely in the renaming ofB particles toA
on encounter. This introduces an additional, rather unreal
symmetry into the problem; here we consider the gene
situation ofphysically differentparticles, and let the diffu-
sion coefficients of theA and theB particles differ. We show
that as long asDA.0 we recover the previously found re
sult, namely, that there exists only one stable velocity
propagation; furthermore, the velocity is proportional toDA ,
and the front form is universal~independent ofDA!.

In our simulations we start from a one-dimensional latt
of lengthL5104 ~with lattice constanta51!, which is ini-
tially randomly filled withB particles whose concentration
c0 . We take excluded-volume interactions into account: a
lattice site can be occupied by only one particle. T
excluded-volume condition is not important forB particles at
low concentrations, but it is crucial when the diffusion coe
ficient of theA particles tends to zero. At the left end of th
system we place anA particle. All particles perform random
walks on the lattice, and the particle to move next is cho
at random. Whenever anA particle meets aB particle sitting
on a neighboring site, the reaction takes place immediat
and theB particle is relabeledA. In this way the front propa-
gates.

The random motion of the particles is characterized by
diffusion coefficientsDA and DB of single, freeA and B
particles ~in the absence of excluded-volume interaction!.
To reduce the number of free parameters we setDA1DB
51. The simulation procedure is as follows: One first dra
at random a particle which will attempt the next move. In o
simulations we also distinguish whetherDA>DB or DA
,DB holds. For the sake of simplicity we discuss theDA
>DB case only. Then, if anA particle is drawn, it attempts
to step to the left or to the right with probability12 . The step
is accepted if the corresponding neighboring site is emp
otherwise theA particle keeps its position. If aB particle is
drawn, it makes an attempt to step to the left~or to the right!
with probability DB/2DA ~again, this step is accepted if th
corresponding neighboring site is empty! or does not attemp

-
.
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56 4131FRONT FORM AND VELOCITY IN A ONE- . . .
to make a step, with probability 12DB /DA . One Monte
Carlo step~MCS! is completed whenN drawings of particles
~corresponding to their total number! take place. Normally,
the time associated with one MCS is Dt
5a2@2 max(DA ,DB)#21 in natural units, witha being the lat-
tice spacing~we havea251!.

During the simulations we monitor the position of th
front ~i.e., the position of the rightmostA particle! and the
distributionspAA andpAB of the distances from theA at the
front to its left and right nearest neighbors. The results w
averaged over 1000 realizations of the process. The in
concentration of particles is chosen to bec050.1. For this
value of c0 we checked forDA5DB that under excluded
volume conditions the front’s velocity and form do not diff
~within the error bars of our simulations, see Fig. 1! from the
free case~without excluded-volume conditions! reported in
Ref. @10#.

In the standard Fisher approximation forA1B→2A, the
evolution of the particles’ concentrations is based
reaction-diffusion equations. For example, forDA5DB
5D, one has, for theB particles,

]

]t
cB5DDcB2kcAcB5DDcB2kcB~c2cB!. ~1!

Here we usedcA1cB5c5const, which also implies]cA /]t
52]cB /]t. Equation~1! leads to a stable front propagatio
as long as the front’s velocity exceeds the valuevc

52AkD. However, irreversible reactions on contact requi
in one dimension, strict segregation of theA andB particles,
which cannot result from Eq.~1! except in the physically no
meaningful limit k→`. In the Fisher picture this would
mean that no stable propagation is possible, clearly in c
tradiction to our numerical findings.

The classical kinetic scheme is a preaveraged appro
which neglects ordering on length scales comparable to
interparticle distance and~as stated above! does not apply in
one dimension, where the structure of the depletion zo
near the fronts is of great importance. Therefore the ove
assumption of a time-independent reaction ratek does not
hold in low dimensions; see Ref.@1#. Therefore we conside

FIG. 1. The front’s velocityv as a function of the diffusion
coefficientDA for c050.1. The circles give the results of the sim
lations, and the error bars are the standard deviation. The slop
the full line is 0.11, corresponding toa51.1 in Eq.~6!.
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another mean-field approximation; that, however, accou
for the formation of a depletion zone in one dimension. T
procedure follows Smoluchowski’s approach to classical
netics@23,24#, which is based on a two-particle approxim
tion, and which leads in low-dimensional space- to tim
dependent reaction coefficientsk(t).

Note first that with excluded-volume interactions in o
dimension the front moves due to the reaction of the leftm
B particle with the rightmostA, whose actual position we
denote byxf . Let D̄B5DA1DB be the relative diffusion
coefficient of theA-B pair, andy their mutual distance. Le
us fix the coordinate system at the rightmostA. In an un-
coupled scheme the densitycB(y,t) of the B particles obeys

]cB

]t
5DB

]2cB

]y2 ~2!

and the boundary condition iscB(0,t)50. Now the front’s
motion between two reaction corresponds to the diffus
displacement of the rightmostA particle ~say, thenth one!.
After a reaction act, the number ofA’s increases by one, an
the front moves from thenth to the (n11)st A. In a mean-
field approximation the displacement of the front can
viewed in the laboratory frame as an overall drift with ave
age velocityv superimposed on the random, diffusive m
tion considered. In the coordinate system moving toget
with the front, we hence havey5x2vt and

]cB

]t
2v

]cB

]x
5D̄B

]2cB

]x2 . ~3a!

We note that a similar equation governs the density ofA
particles left of the front:

]cA

]t
2v

]cA

]x
5D̄A

]2cA

]x2 , ~3b!

where now the effective diffusion coefficient is given b
D̄A52DA . We now turn to two distinct cases, namely,DA
.0 andDA50.

II. CASE OF MOBILE A PARTICLES

In this case there exist stationary~time independent! so-
lutions of Eqs.~3a! and ~3b!. These solutions of Eqs.~3!
satisfy the equation

d2

dx2
cA,B~x!52

v

D̄A,B

d

dx
cA,B~x! ~4!

to the left ~right! of the boundary. The solution forcB(x)
which satisfiescB(0)50 andcB(1`)5c0 is given by

cB~x!5c0~12evx/D̄B!. ~5!

On the other hand one hascA5const, which is the only
solution satisfyingcA(2`),`.

Now we invoke the equality of the particle fluxes to th
left ( j 25vcA) and to the right@ j 15D̄B(]/]x)cB(10)# of
the boundary. This requirement is fulfilled only ifcA5c0 ,
but it does not fixv, the front’s propagation velocity. This

of
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4132 56J. MAI, I. M. SOKOLOV, V. N. KUZOVKOV, AND A. BLUMEN
parallels our findings in the special caseDA5DB @10#. As in
this special case, the continuous-medium picture does no
the value of the front’s velocityv: in order to determinev
one has to take the discrete aspect of the problem~the pres-
ence of particles! into account.

Next we include discreteness arguments into the ana
cal model. As we proceed to show, this then determinev
unambiguously. Let us consider the situation immediat
after the reaction: TwoA particles are now occupying neigh
boring places on the lattice. The numerical results show
the front’s form is stable, and that no shock-wave-type str
ture is formed~leading to a higher concentration ofA’s on
the front than far to its left!. Thus we are justified in assum
ing that the newly formedA-A pair separates on average
least by the distancel;c21 during the timet required by the
nextB particle to reach the front. Hencet equalsj 1

21, where
j 1}D̄B@]cB(0)/]x# is the flux of B particles toward theA
~within the Smoluchowski approximation!. This consider-
ation leads toc21}AD̄At}A2DA /cv, from which it follows
that

v>ac0DA , ~6!

wherea is some, until now unspecified, constant. Note th
in this approximation the velocity is linear inDA , so that it
vanishes forDA50.

We turn now to the results of the simulations, and disp
in Fig. 1 the velocity of the front as a function ofDA . The
plot confirms clearly that the linear dependence ofv on DA ,
Eq. ~6!, is obeyed. Moreover, the numerical results lead t
prefactora very close to unity, so thatv>c0DA .

In Fig. 2 we plot the front formsg(j)5cB(x)/c0 , as a
function of the dimensionless distancej5c0x, for two val-
ues ofDA , namely, 0.2 and 0.8. The dots are the results fr
the simulations, whereas the dashed lines correspond to
theoretical formg(j)512exp(2j/l), which follows from
Eq. ~5!; here we setl5c0D̄B /v, and used forv the numeri-
cally obtained values from Fig. 1. The findings displayed
Fig. 2 prove that the overall front form is reproduced qu
well by the mean-field approximation, Eq.~5!.

FIG. 2. Front formsg(j) for DA50.2 ~triangles! andDA50.8
~circles!; the dashed lines represent the theoretical expres
g(j)512exp(2vj/c0D̄B), where D̄B51 and v is taken from the
simulations.
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In order to have a further, more stringent test for the v
lidity of the independent pair approximation used in the de
vation of Eqs.~3!, we now evaluate analytically the mea
AB distance at the front’s position~which, a priori, depends
on interparticle correlations! and we compare it to the result
of simulations.

A simple mean-field expression for theAB distance at the
front can be obtained by taking theB particles to be inde-
pendent of each other. Letc(x) describe the probability to
find aB particle atx. Dividing thex axis from the rightmost
A particle into partitions of lengthDx, one hasc(xi)Dx as
the probability to find aB particle within thei th partition,
wherexi denotes the center of the partition. The probabil
to find the leftmostB inside thekth partition is given by
p(xk)5c(xk)DxP i 50

k21@12c(xi)Dx#, which corresponds to
the probability to find aB particle within thekth partition
and not to find anyB-particles in each of previous partitions
Using the fact that P i 50

k51@12c(xi)Dx#5exp@(i50
k21ln(1

2c(xi)Dx)#'exp@2(i50
k21c(xi)Dx#, and changing from a sum to

an integral in the exponent, one obtains the probability d
sity to find the leftmostB at the distancey measured from
the rightmostA:

p~y!5c~y!expS 2E
0

y

c~x8!dx8D , ~7!

which is an extension of Hertz’s formula@25,26# valid in one
dimension for anx-dependent concentration. This gives, e.
for the meanAB distance

LAB5E
0

`

xp~x!dx5E
0

`

dx xc~x!expS 2E
0

x

c~x8!dx8D .

~8!

Partial integration leads to

LAB5E
0

`

dx expS 2E
0

x

c~x8!dx8D . ~9!

Using Eq.~5! we obtain

LAB5c0
21E

0

`

dj exp$2j2l@12exp~2j/l!#%, ~10!

where j is the dimensionless distance introduced abo
Changing the integration variable toz5l21@12exp
(2lj)#, we have

LAB5c0
21ll21elE

0

l

zl21e2zdz5c0
21l12lelg~l,l!,

~11!

whereg(a,x) is the incompleteg function. In Table I we
display the theoretical values ofLAB @given by Eq.~11!#, and
confront them with the results from the simulations. T
good agreement between the numerically determined va
~obtained as an average taken for each Monte Carlo step! and
the calculated values shows that interparticle correlations
of minor importance.

n
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56 4133FRONT FORM AND VELOCITY IN A ONE- . . .
III. CASE OF IMMOBILE A PARTICLES

For DA50 we again start from Eq.~3a! and have now
D̄B5DB . Note that the velocityv given by Eq.~6! vanishes
for DA50. This is due to the fact that forDA50 no station-
ary solution of Eq.~3a! for cB(x) exists. On the other hand
for DA50 it is clear that the velocity of the front is governe
by the flow of B particles toward theA boundary, and tha
the A cluster left from the boundary has a density equal
unity. TheA cluster hence grows by the accretion of colli
ing B particles, and the front moves with atime-dependen
velocity

v~ t !52DB

]cB~x,t !

]x U
xf50

. ~12!

This result suggests to extending Eq.~3a! to the form

]cB

]t
2v~ t !

]cB

]x
5D̄B

]2cB

]x2 . ~13!

Furthermore, Eqs.~12! and ~13! are closely related to trap
ping by a single sink, Ref.@1#, and to the target problem
@1,27#, whose solutions in one dimension scale withx/ADBt.
We hence also assume that

cB~x,t !5c0gS x

ADBt
D , ~14!

which automatically leads to a time dependence of the
locity of the formv(t)5A/ADBt, so that the front’s position
xf goes asxf}t1/2. In Fig. 3 we plot the numerically found
xf(t) vs t on double logarithmic scales. The figure indicat

TABLE I. MeanAB distanceLAB determined theoretically@Eq.
~11!#, and through simulations.

DA LAB , simulations LAB , theory

0.2 32.861.7 31.9
0.5 23.061.5 22.0
0.8 20.461.3 18.5

FIG. 3. Front’s positionxf(t) for DA50. Note the double-
logarithmic scales. The dashed line has a slope of 1/2.
o

e-
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thatxf(t)}t1/2 may hold in the long-time asymptotic regime
although this convergence is slow.

Now, Eq. ~13! for the dimensionless variablej
5x/ADBt takes the form

g9~j!1S j

2
1ADg8~j!50, ~15!

with the following solution, which satisfies the bounda
conditionsg(0)50 andg(1`)5c0 :

g~j!5
erf~j/22A!2erf~A!

12erf~A!
. ~16!

Here erf(z) is the error function; see Eq.~7.1.1! of Ref. @28#.
Note that Eq.~12! implies thatA5c0g8(0), from which a
closed equation forA follows:

A5
c0

ApeA2
~12erf A!

. ~17!

For small concentrations one has, from Eq.~17!, A
'c0 /Ap, and therefore Eq.~16! gives, for the dimensionles
density profile,

g~j!'erf~j/2!5erfS x

2ADAt
D , ~18!

which approximation is still very good for the valuec0
50.1 used in simulations; see Fig. 4.

IV. CONCLUSIONS

We conclude by summarizing our findings: We analyz
numerically and analytically the irreversibleA1B→2A au-
tocatalytic reaction in one dimension for the general case
which DA5DB does not necessary hold. The simulatio
show that forDA.0 the front propagates with a stable v
locity v, which is proportional toDA . Analytically, the

FIG. 4. Front formcB(x) for DA50 at t510 000. The dashed
line is the theoretical approximation~18!.
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continuous-medium approximation does not fix the value
v; on the other hand,v can be found from simulations and
related to the discrete nature~particles! of the problem. Fur-
thermore, forDAÞ0, the continuous-medium approximatio
reproduces quite well several properties of the model~for
example, the form of the front and the meanAB distance at
the front’s position!, provided that v is known. In the case
DA50 both the front’s position and the front’s width gro
t.

tat

ev
fwith t1/2; in this case the position and form of the front a
well reproduced by the continuous-medium picture.
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