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Front form and velocity in a one-dimensional autocatalyticA+B—2A reaction

J. Mai* I. M. Sokolov; V. N. Kuzovkov} and A. Blumen
Theoretische Polymerphysik, Universifareiburg, RheinstraRe 12, D-79104 Freiburg im Breisgau, Germany
(Received 28 May 1997

We consider the general irreversibhet B—2A autocatalytic reaction in one dimension, for which the
corresponding diffusion constanis, andDg may differ. Contrary to mean-field-type predictions, the Monte
Carlo simulations show that, as long Bg>0, only a unique, stable front propagates with constant velocity.
WhenD ,= 0 the behavior changes drastically: both the front's position and its characteristic width grow with
t2. These findings are adequately described within a Smoluchowski-type approach.
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I. INTROUCTION numerical studies. Note that a microscopic description of the
front structure requires a knowledge of the local ordering of

Reaction kinetics in low dimensions were extensively in-the A and theB particles near the front.
vestigated in the past two decades, since they differ signifi- In Ref.[10] only the caséD ,=Dg was considered. Then
cantly from the situation in high-dimensional spaces, andhe particles are mathematically equivalent, and the whole
thus violate strongly the classical kinetics schemes based amaction consists solely in the renamingBfparticles toA
the mass-action layl,2]. Remarkably, such violations did on encounter. This introduces an additional, rather unrealistic
not find much attention in the society of scientists dealingsymmetry into the problem; here we consider the general
with front propagation in autocatalytic reactions. The auto-situation of physically differentparticles, and let the diffu-
catalytic A+ B+« 2A conversion(where both the direct and sion coefficients of thé and theB particles differ. We show
the back reaction follow the bimolecular scherean be de- that as long a®,>0 we recover the previously found re-
scribed in the mean-field limit by the quadratic Fisher equasult, namely, that there exists only one stable velocity of
tion [Eq. (11.31) of Ref. [3]], whose solution fronts may propagation; furthermore, the velocity is proportionaltg,
propagate with different velocities; here the initial condi- and the front form is universdlndependent oD ,).
tions determine whether a certain velocity is attaif@dWe In our simulations we start from a one-dimensional lattice
note that a mean-field-type description is not appropriate if lengthL=10* (with lattice constanti=1), which is ini-
low dimensions(d=1 and 2 where the reaction term de- tially randomly filled withB particles whose concentration is
pends strongly on particle correlatiofé—7]. The reaction ¢,. We take excluded-volume interactions into account: any
A+B<2A was investigated analytically and via Monte |attice site can be occupied by only one particle. The
Carlo simulations in Refg8, 9], where, based on ensemble- excluded-volume condition is not important Brparticles at
averaged quantities, in one and two dimensions strong devidgew concentrations, but it is crucial when the diffusion coef-
tions from the mean-field-type behavior were detected. Aficient of theA particles tends to zero. At the left end of the
detailed study of thdrreversible autocatalytic reactiorA  system we place aA particle. All particles perform random
+B—2A in one dimension was provided in RgflO] for  walks on the lattice, and the particle to move next is chosen
equal diffusion constant® ,=Dg. This reaction is the sim- at random. Whenever ah particle meets & particle sitting
plest model for infection spreading, by whi¢hreversibly  on a neighboring site, the reaction takes place immediately,
infected A particles infect at first encounter healtBypar-  and theB patrticle is relabeled. In this way the front propa-
ticles. Here we analyze the situation for genégalandDyg . gates.

In fact, the question of the front structure falls into the  The random motion of the particles is characterized by the
class of spontaneous local ordering phenomena, which hawiffusion coefficientsD, and Dg of single, freeA and B
found much attention in connection with the+ A—0, A particles (in the absence of excluded-volume interactjons
+A—A, and A+B—0 reactions[11-22. Especially the To reduce the number of free parameters weBg# Dy
last reaction showsdue to fluctuations effectsnontrivial =1. The simulation procedure is as follows: One first draws
large-scale spatial structurdslusters; these findings lay at random a particle which will attempt the next move. In our
outside the classical kinetics scheme, and for their undersimulations we also distinguish wheth&,=Dg or Dg4
standing need much more elaborated theories and extensiveDg holds. For the sake of simplicity we discuss tbg

=Dg case only. Then, if ai\ particle is drawn, it attempts
to step to the left or to the right with probability. The step
*Electronic address: jmai@tpoly.physik.uni-freiburg.de is accepted if the corresponding neighboring site is empty,
TAlso at P. N. Lebedev Physical Institute of the Academy of Sci-otherwise theA particle keeps its position. If B particle is
ences of Russia, Leninsky Prospekt 53, Moscow 117924, Russia.drawn, it makes an attempt to step to the (eftto the righ}
*Also at Institute of Theoretical Physics, University of Latvia, with probability Dg/2D , (again, this step is accepted if the
Rainis Boulevard 19, Riga, Latvia. corresponding neighboring site is empoy does not attempt
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0.10 , another mean-field approximation; that, however, accounts
for the formation of a depletion zone in one dimension. The
procedure follows Smoluchowski’'s approach to classical ki-
netics[23,24], which is based on a two-particle approxima-
tion, and which leads in low-dimensional space- to time-
0.05F i dependent reaction coefficierkét).

Note first that with excluded-volume interactions in one
dimension the front moves due to the reaction of the leftmost
B particle with the rightmos®\, whose actual position we

denote byx;. Let Dg=D,+Dg be the relative diffusion

v(DL)

0.00 . coefficient of theA-B pair, andy their mutual distance. Let
0.0 0.5 1.0 us fix the coordinate system at the rightméstin an un-
D coupled scheme the density(y,t) of the B particles obeys
A
gcg  — d%cg

FIG. 1. The front's velocityy as a function of the diffusion (2
coefficientD , for c,=0.1. The circles give the results of the simu-
lations, and the error bars are the standard deviation. The slope %fn

the full line is 0.11, corresponding t@=1.1 in Eq.(6).

Tt Peyz

d the boundary condition is5(0,t)=0. Now the front's
motion between two reaction corresponds to the diffusive
displacement of the rightmost particle (say, thenth one.
After a reaction act, the number Afs increases by one, and
the front moves from thath to the i+ 1)st A In a mean-
field approximation the displacement of the front can be
viewed in the laboratory frame as an overall drift with aver-
age velocityv superimposed on the random, diffusive mo-
tion considered. In the coordinate system moving together
with the front, we hence hawe=x—-vt and

to make a step, with probability 4Dg/D,. One Monte
Carlo stepMCS) is completed wheN drawings of particles
(corresponding to their total numbeake place. Normally,
the time associated with one MCS isAt
=a?[2 maxD,,Dg)] tin natural units, witha being the lat-
tice spacingwe havea®=1).

During the simulations we monitor the position of the
front (i.e., the position of the rightmo# particle and the
distributionspaa andpag Of the distances from tha at the dcg  dcg — d°cg
front to its left and right nearest neighbors. The results were ——v —=Dg—>. (39
averaged over 1000 realizations of the process. The initial
concentration of particles is chosen to &ig=0.1. For this  \ye note that a similar equation governs the densityAof
value ofco we checked foD,=Dg that under excluded- particles left of the front:
volume conditions the front’s velocity and form do not differ

(within the error bars of our simulations, see Figfrbm the dcp  dCp — d°Cp
free case(without excluded-volume conditiohseported in ot Y WZDA e (3b)
Ref. [10].

In the standard Fisher approximation #ar-B—2A, the  where now the effective diffusion coefficient is given by
evolution of the particles’ concentrations is based onp ,=2D,. We now turn to two distinct cases, namely,
reaction-diffusion equations. For example, f@¥,=Dg >0 andD,=0.
=D, one has, for th& particles,

Il. CASE OF MOBILE A PARTICLES

5 ce=DAcg—kcacg=DAcg—keg(c—cp). (D) In this case there exist stationafyme independentso-
lutions of Egs.(3a and (3b). These solutions of Eq43)

Here we used,+ Cg=c=const, which also impliesc, /gt ~ Satisfy the equation

= —Jcg/dt. Equation(1) leads to a stable front propagation, 42 d
as long as the front's velocity exceeds the valug — Cap(X)=— LY (X) (4)
. . . . > CAB AB

=2kD. However, irreversible reactions on contact require, Dag dx
in one dimension, strict segregation of theandB particles,
which cannot result from Eq1) except in the physically not to the left (right) of the boundary. The solution farg(X)
meaningful limit k—c. In the Fisher picture this would Which satisfiexcg(0)=0 andcg(+>)=c, is given by
mean that no stable propagation is possible, clearly in con- —
tradiction to our numerical findings. Ca(X) =Co(1—e"Ps), )

The classical kinetic scheme is a preaveraged approach
which neglects ordering on length scales comparable to th©n the other hand one has=const, which is the only
interparticle distance an@s stated abovyeloes not apply in ~ solution satisfyingca(—)<e°.
one dimension, where the structure of the depletion zones Now we invoke the equality of the particle fluxes to the
near the fronts is of great importance. Therefore the overaleft (j_=vc,) and to the righ{j . =Dg(d/dx)cg(+0)] of
assumption of a time-independent reaction fatdoes not the boundary. This requirement is fulfilled only ¢h=cy,
hold in low dimensions; see Rdfl]. Therefore we consider but it does not fixv, the front’'s propagation velocity. This
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- In order to have a further, more stringent test for the va-
e e R e lidity of the independent pair approximation used in the deri-
107 s . .j,?;'f"" L vation of Egs.(3), we now evaluate analytically the mean
- AB distance at the front’s positiofwhich, a priori, depends
Py on interparticle correlationand we compare it to the results
Py of simulations.
P ] A simple mean-field expression for theB distance at the
P front can be obtained by taking th# particles to be inde-
iy pendent of each other. Le{x) describe the probability to
g find aB particle atx. Dividing thex axis from the rightmost
0.0 : A particle into partitions of lengtiAx, one hasc(x;)Ax as
10 20 the probability to find aB particle within theith partition,
£ wherex; denotes the center of the partition. The probability
to find the leftmostB inside thekth partition is given by
FIG. 2. Front formsg(£) for D4=0.2 (triangles andD,=0.8  P(X) = Cc(x) AXIT_g[1—c(x;)Ax], which corresponds to
(circles; the dashed lines represent the theoretical expressiothe probability to find aB particle within thekth partition
g(¢&)=1—exp(vé/cDg), whereDg=1 andv is taken from the and not to find anyB-particles in each of previous partitions.
simulations. Using the fact that IT’K=3[1—c(x))Ax]=exd=dn(1
—c(xi)Ax)]wex;[—Z!‘;&c(xi)Ax], and changing from a sum to
parallels our findings in the special ca3g=Dg [10]. Asin  an integral in the exponent, one obtains the probability den-
this special case, the continuous-medium picture does not figity to find the leftmosB at the distancey measured from
the value of the front’s velocity: in order to determine  the rightmostA:
one has to take the discrete aspect of the prolitéen pres-
ence of particlesinto account. y oo,
Next we include discreteness arguments into the analyti- p(y)=c(y)ex;< B fo c(x")dx ) @)
cal model. As we proceed to show, this then determines
unambiguously. Let us consider the situation immediatelyynich is an extension of Hertz's formuas,26 valid in one
after the reaction: Twé particles are now occupying neigh- gimension for arx-dependent concentration. This gives, e.g.,
boring places on the lattice. The numerical results show thag, the mearAB distance
the front’s form is stable, and that no shock-wave-type struc-
ture is formed(leading to a higher concentration &fs on w o X
the front than far to its left Thus we are justified in assum- LAB=f xp(x)dx=J dx xo(x)exp( —J c(x’)dx’).
ing that the newly formed\-A pair separates on average at 0 0 0
least by the distande~c ™! during the timer required by the (8)
nextB particle to reach the front. Heneeequalsj ;1, where
j +<Dg[dcg(0)/9x] is the flux of B particles toward the\
(within the Smoluchowski approximati@nThis consider- o X
Lag= jo dx exp( - fo c(x’)dx’).

g(¢)

0.5

Partial integration leads to

ation leads t@™ = /D o7 \/2D o /cv, from which it follows C)

that

Using Eq.(5) we obtain
v=acyD,, (6)

Lro=Ca* | "dé expl—g-M1-exp—en). (10
where « is some, until now unspecified, constant. Note that 0
in this approximation the velocity is linear iD,, so that it
vanishes foD ,=0. where ¢ is the dimensionless distance introduced above.
We turn now to the results of the simulations, and displayChanging the integration variable ta'=\"'[1—exp
in Fig. 1 the velocity of the front as a function 8,. The  (—\§)], we have
plot confirms clearly that the linear dependence @n D4,
Eq. (6), is obeyed. Moreover, the numerical results lead to a T LN T TN
prefactora very close to unity, so that=cyDa,. Lag=Co A" " JO £ lertdl=co AT YN,
In Fig. 2 we plot the front formg(£) =cg(x)/cy, as a (11)
function of the dimensionless distanée-cyx, for two val-
ues ofD,, namely, 0.2 and 0.8. The dots are the results fromiyhere v(a,X) is the incompletey function. In Table | we
the simulations, whereas the dashed lines correspond to thgsplay the theoretical values bf,g [given by Eq.(11)], and
theoretical formg(&)=1—exp(—&N\), which follows from  confront them with the results from the simulations. The
Eq. (5); here we seh=c,Dg/v, and used for the numeri- good agreement between the numerically determined values
cally obtained values from Fig. 1. The findings displayed in(obtained as an average taken for each Monte Carlg atep
Fig. 2 prove that the overall front form is reproduced quitethe calculated values shows that interparticle correlations are
well by the mean-field approximation, E). of minor importance.
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TABLE I. Mean AB distance. 55 determined theoreticalljEq. 0.15
(11)], and through simulations.
Da Lag, Simulations Lag, theory
0.10
0.2 32.8:1.7 31.9 /;
0.5 23.0:1.5 22.0 ~
0.8 20.4-1.3 18.5 ©

0.05

Ill. CASE OF IMMOBILE A PARTICLES

0.00 :

__For Do=0 we again start from Eq.3a and have now 0 1000 2000
Dz=Dg. Note that the velocity given by Eq.(6) vanishes X

for D,=0. This is due to the fact that f@,=0 no station-

ary solution of Eq(3a) for cg(x) exists. On the other hand, _ FIG- 4. Front formcg(x) for Do=0 att=10 000. The dashed
for D,=0 it is clear that the velocity of the front is governed !in€ is the theoretical approximatidds).

by the flow of B particles toward theé\ boundary, and that

the A cluster left from the boundary has a density equal to

unity. TheA cluster hence grows by the accretion of collid-

) : o thatx;(t)>t¥2 may hold in the long-time asymptotic regime,
ing B particles, and the front moves withteme-dependent () y g ymp 9

although this convergence is slow.

velocity Now, Eq. (13) for the dimensionless variablet
aca(x.) =x//Dgt takes the form
v(t)=—Dg ——— (12
X B
X;=0 g
"(E)+ —+A) "(é)=0, 15
This result suggests to extending E8a) to the form 9°(¢) 2 9'(¢) (19
dcq gcg — d%Cq with .the following solution, which satisfies the boundary
F—U(t) Y Dg - 13 conditionsg(0)=0 andg(+o=)=cy:
Furthermore, Egs(12) and (13) are closely related to trap- erf(&/2— A)—erf(A)
ping by a single sink, Refl1], and to the target problem 9(é)= T_erf(A) : (16)
[1,27], whose solutions in one dimension scale with/D gt.
We hence also assume that Here erfg) is the error function; see E¢7.1.1) of Ref.[28].
Note that Eq.(12) implies thatA=cyg’(0), from which a
( X ) closed equation foA follows:
cg(x,t)=c , 14
B( ) 09 \/D_Bt ( )
o
which automatically leads to a time dependence of the ve- A= \/—TofA' a7
locity of the formuv (t) =A/Dgt, so that the front’s position me™ (1-erfA)

X¢ goes a2 In Fig. 3 we plot the numerically found o small concentrations one has, from E(L7), A

X¢(t) vst on double logarithmic scales. The figure indicates__ co/\/m, and therefore Eq16) gives, for the dimensionless
density profile,

1.5F a
4 X
= g(§)~erf(£/2)=erf : (18)
N 2Dt
x f
° Lol 1 which approximation is still very good for the valag
o ’ , =0.1 used in simulations; see Fig. 4.
5 ,
IV. CONCLUSIONS
050— ! : ' : We conclude by summarizing our findings: We analyzed
3 4 5 numerically and analytically the irreversible+ B— 2A au-
log ; ot tocatalytic reaction in one dimension for the general case, in

which D,=Dg does not necessary hold. The simulations
FIG. 3. Front's positionx(t) for D,=0. Note the double- show that forD,>0 the front propagates with a stable ve-
logarithmic scales. The dashed line has a slope of 1/2. locity v, which is proportional toD,. Analytically, the
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continuous-medium approximation does not fix the value ofwith t*2; in this case the position and form of the front are
v; on the other hand; can be found from simulations and is well reproduced by the continuous-medium picture.

related to the discrete natu¢particles of the problem. Fur-

thermore, forD ,# 0, the continuous-medium approximation ACKNOWLEDGMENTS
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