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Chaotic dynamics in an elastic medium with surface disorder
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We investigate the dynamics of an elastic medium described by a two-dimensional network of nodes of
equal mass connected by springs whose force constants are equal inside the network and chosen at random at
its surface. The system can be considered a billiard in the sense that the network is ordered all throughout its
bulk. Being an eigenvalue problem its complexity is manifested in a frequency statistics which, in most of the
spectrum, can be described by the Wigner-Dyson distribution. At low frequencies the dispersion relation is
linear in the wave number and the network shows regular behévamuency statistics according to Poisson
distribution. We study the dynamical behavior of this model by investigating how the system escapes from a
normal mode of the ordered network, and calculate the Lyapunov expanendifferent frequency regions.
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[. INTRODUCTION derived from the disorder introduced at its surface. Being an
eigenvalue problem its complexity will result in a frequency
Quantum analogs of classical systems which show chaotigtatistics of the Wigner-Dyson type in most of the spectrum
behavior have spectra whose short-range statistical propertiégee below. In the quantum limit, this model can be re-
are adequately described by random matrix théary4]. If garded as the phonon counterpart of the electron Hamil-
the system is rotationally invariant and has time reversafonian investigated ii5]. The model presented here is an
symmetry, some of the features of its spectrum are closelinteresting system to investigate chaotic dynamics as its be-
simulated by random matrices of the Gaussian orthogondiavior significantly varies through the band of normal
ensemble(GOE). In particular, their nearest-level spacings modes. In fact, at low frequencies the velocity is dispersion-
are distributed according to the Wigner-Dyson distribution./l€ss, and a more regular behavior is expected in this fre-
Many quantum systems which satisfy this pict{ite?] have  quency region. The study of the dynamics is carried out by
already been identified. investigating how the system escapes from a normal mode of
We have recently proposed a model of quantum chaoti¢he ordered network8,9]. This allows us to calculate the
billiards in two and three dimensiofi§,6] which consists of ~Lyapunov exponent.
a tight-binding Hamiltonian in which the energies of the
atomic orbitals at the surface sites are chosen at random.
This model, in contrast with the more standard geometric
billiards [1], has two length scales: the system dizand the The model whose dynamics will be investigated in this
lattice constana. In the macroscopic limitl{/a— %) micro-  work is characterized by the same type of parameters as the
scopic roughness remains and affects quantum particles, i.&lectron Hamiltonian discussed in Rg5]. The energies of
particles characterized by a wavelength of the ordex.dfs  the atomic levels at the boundary sites in the tight-binding
a consequence, in the macroscopic limit all levels are distribHamiltonian[5] and the surface force constants in the elastic
uted according to Wigner-Dyson statisticg. network are random variables which are used to describe
In this work we investigate the dynamics of a two- surface disordeeither topological or compositionalin the
dimensional2D) network of nodes of equal mass connectedformer case the disorder is diagonal whereas in the model
among themselves by springs that have the same force copresented here it is nondiagonal. We do not expect, however,
stant within the bulk of the network, and to rigid walls that this should imply any significant difference in their be-
through springs whose force constants are chosen at randohmaviors. In fact, we have recently checked that, if the surface
Like the model Hamiltonian described above, this systerrhopping integrals in the tight-binding Hamiltonian, instead
can be considered a billiard as it is ordered throughout it®f the energies of the surface atomic orbitals, are chosen at
bulk, whereas complefchaotig behavior is expected to be random, the behavior of the system is essentially the same.
Both the electron Hamiltonian and the elastic network are
billiards in the sense that their bulks are completely ordered,
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of w. Finally, N(w) is obtained by integrating the averaged
density of states from the bottom of the frequency band up
| 1o w.

’ The dynamics of this system is studied by investigating
i how the system escapes from a normal mode of the ordered
82 I ) network. Specifically, we launcliat t=0) the disordered
network into a normal mode of the orderen) (hetwork and
calculate the correlation function of the displacement field as

Ly | a function of time. We further assume that the velocity of the
nodes at=0 is zero. The displacement vectortatO of a
05 ; 5 P nodei of the disordered system is then given by
FREQUENCY s
(0)=ul, = .
FIG. 1. Density of state¢DOS) in a surface disordered spring Ui (0)=uig ;1 AiaCap @)

network of sizeL =40, as a function of frequency for the model
investigated in this worksee text The force constants at the sur- whereA;, are the amplitude&/ecto) of the normal modes

face were randomly chosen in the range 0.0-2.0. In the calculationgf the disordered network am:iaﬁ are constants which are
an imaginary part, equal to the average intermode spacing, waghtained from

added to the frequency.

N
the following we briefly discuss the Hamiltonian used in this Caﬁ:.z Aia~Ai°,g, ©)
work and the procedures we have followed to investigate the =1

statistics of the frequencies of the normal modes and th?vhereA?B are the amplitudes of the normal mogeof the
dynamics of the model.

In all our simulations the 2D elastic medium is repre- ordered network. The,z form a distribution whose variance
sented by a square network of nodes of equal mas®n- (o) depends on the ordered normal mode on which the dis-

nected by Hookean springs. In particular, we take clusters (ﬁ;?efr(;r?}ittvgﬂﬁ ;ﬁ;aéjiggﬂggi'o-{]hcﬁ %aerlgnr?:r;\;gg?g:hna\(?iso Srec:]f-
the square lattice containifgX L nodes, joined by first and P y

. ) AT the system.
second nearest-neighbor sprigd]. The Hamiltonian is The displacement field in the disordered network is given

N N by

H=mizl Ui+ij§—:l ki jL(u—up) i 1%, ) s
' u(t)= Zl A oCopCOS 1), (4)

where N=L2. k ;=ky,k, if i andj are first and second “
nearest neighbors, respectively, and zero otherwisis.the  , being the frequencies of the normal modes. To investi-
displacement of node andr; ; is the unit vector in the-j gate how the network escapes from its initial vibrational state
direction. In these calculations we take the mass of the nodese calculate the correlation function, namely,
(m) and the force constants of the bulk springs equal to one \ S
(m=k;=k,=1), whereas the force constants of the surface )
springs (those which join the network to the rigid walls C(t):izl ui(0)~ui(t):;l CapCOS @al). ®)
were chosen at random in the rangeks e [Kin,Kmad - Cal-
culations have been carried out for network sizes up to The results presented in the next section indicate that vi-
L =80 (note that the system h&s=2L? normal modes The  prational states showing a chaotic behavior are characterized
Schwarz algorithm for symmetric matrices was used to compy a correlation function which at short times decreases as
pute the whole spectrufrL2]. Averaging sets include up to
50 000 modes. The density of statesrmal modekis illus- C(t)=cog wgt)exp(—)\t), (6)
trated in Fig. 1. The low frequency region in which the den-
sity of states is very small is characterized by a dispersionvhere\ is the Lyapunov exponent and% is the frequency
relation approximately proportional to the wave numberof the normal mode of the ordered system into which the

[11], which gives a dispersionless velocity. disordered network was launchedtatO.
To characterize the statistical properties of the spectra,
each real spectrum of frequenciesis mapped onto an un- IIl. RESULTS

folded spectrunt); throughQ;=N(w;), whereN(w) is the
average number of modes up to a frequeacyThis aver-
aged magnitude is obtained after calculating the mean den- We have first investigated the nearest-lefrebde statis-

sity of states in small frequency intervals that contain a largdics of the normalized spectra. The results are illustrated in
number of modes in spite of being small. This is alwaysFig. 2 for clusters of sizek= 50 and 80. There is a rather
possible in our model since the number of disorder realizawide frequency range where the variance is close to that of
tions can be taken as large as necessary. Thus the averag@®E matriceg0.289. The inset of Fig. 2 shows the distri-
density of states can be considered as a continuous functidrution of nearest-mode spacings in a frequency region where

A. Statistics of the frequency spectrum
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FIG. 2. Variance of the nearest-mode spacings in the whole FIG. 3. Correlation function for the displacement field of the
normalized frequency spectrum. The results correspond to 30 reatlisordered network launchedtat 0 on two different normal modes
izations of 50< 50 clustergcircles and five realizations of 8080 of the ordered network with frequencia%:1.9346,2.5842. The
clusters(triangles. Inset: Distribution of nearest-level spacings in results correspond to a single realization of a4 cluster with
50x 50 clusters for frequencies in the ranges 0.0<filéd circles surface force constants chosen at random in the range 0.0-4.0. In-
and 1.05-1.95(open circles For the sake of comparison, the set: short time behavior shown to illustrate how the oscillations of
Wigner-Dyson and the Poisson distributions are also shown. Théhe correlation function have a period which approximately corre-
force constants at the surface were randomly chosen in the ranggonds to that of the normal mode of the ordered network. Only
0.0-2.0. positive values ofC(t) are shown.

the variance is=0.286. As expected, the results closely fol- the present case. Thus it is likely that in the thermodynamic

low the Wigner-Dyson distribution. limit the Wigner-Dyson statistics should apply in the whole
As already found in the quantum cd$d, we observe the  frequency band.

existence of quasi-ideal states near the band edges: modesyye finally note that, in the quantum limit, and due to the

that are similar to those found in the ordered network and d@ctual linear relationship between energies and frequencies,

therefore follow the Poisson distribution, see inset of Fig. Zquantum energy levels will also be distributed according to
It has to be remarked that the results for frequency regiongyigner-Dyson statistics.

close to the band edges may not be so accurate due to the
very low density of states in that regideee Fig. 1 In the
present case there is a rather wide frequency range close to
the bottom of the band, where the variance is very different The correlation functiorC(t) for the displacement field
from the Wigner-Dyson value. We have checked that thisobtained by launching the disordered networktat0 into
result is very robust and depends only slightly on the degre&vo different modes of the ordered network are depicted in
of disorder, for the system sizésreached in this work. The Fig. 3[only positive values o€(t) are showh As expected,
reason for this behavior was already noted in the precedinf€y show an oscillatory behavior, which, at short times, is
section, and in fact it is a consequence of the nearly lineafnodulated by an exponentigd]. The frequency of the oscil-
dispersion relation in that frequency region: a linear disperlations is very similar to that of the ordered state into which
sion relation gives an almost constant veloditydependent the disordered system was launcheda0 (w3). This is
of the wave numbgr Elastic waves having such a dispersion further illustrated in Fig. 4 where the numerical results for
relation propagate at a velocity which does not depend on C(t) are plotted along with the function given in E6). The
and thus average out any surface disorder. agreement for short times is remarkable. The frequency of
A point of remarkable relevance is the dependence ofhe oscillation can actually be shifted in an amount which
these results on the size of the systemin the case of the depends on the actual normal mode of the ordered state into
electron Hamiltonian, numerical resul§] and qualitative ~which the system was launchésee Table)l These results
arguments based upon perturbation the@iyindicated that, are in line with those reported in Reff9] for correlation
in the macroscopic limit, all energy levels should be distrib-functions in geometric chaotic billiards.
uted according to the Wigner-Dyson statistics, no matter the At longer times the numerical results f@(t) deviate
degree of disorder. Although in the present case the larggrom the simple behavior of Eq6) as can be clearly seen in
size of the matrices makes a reliable numerical study diffiFig. 4 fort beyond 30. The time interval in which E¢)
cult, a similar qualitative argument should also be valid inholds strongly depends on the frequem&. The Lyapunov

B. Dynamical behavior of the elastic medium
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FIG. 4. Short time behavior of the correlation functitfilled FIG. 5. Long time behavior of the correlation function for the
diamonds$ for the displacement field of the disordered network displacement field of the disordered network launcheid=d1 on a
launched at=0 on a normal mode of the ordered network with normal mode of the ordered network with frequency=1.9346.
frequencyw%:1.9346. The results correspond to>480 clusters  The results correspond to #@l0 clusters with surface force con-
with surface force constants chosen at random in thestants chosen at random in the range 0.0-4.0.

range 0.0-4.0. The continuous curve corresponds to o ]
C(t)=cos(1.9346 exp(—0.02%). finite alternating with others where it is very small. It is

interesting to note that a behavior like that of E§). should
pave only been expected for dllif the distribution of
weights ¢,z in Eq. (3), or, alternatively, the Fourier
transform of C(t), had a Lorentzian shapeS(w)
=M 7N+ (w— w%)2].

The results discussed above allow us to enter into a ques-
tion of remarkable interest, namely, whether the Lyapunov
exponent is or is not related to the variance of the distribu-
tion of the weights of the modes of the disordered network.
Had this distribution been a Lorentzian, such as that written
The variance of the distribution of disordered eigenmodgys the above, its variance would have completely determined the

average frequency()), and the number of modas;, within that decay ofC(t). However, our results indicate that this is_ not
energy(variance is also given. The results have been grouped acthe case of the present modske Table)l In fact, there is

exponent was obtained through a fitting of the numerical
results in that intervalsee Table)l The long time behavior
is in fact very complex as shown in Fig. €(t) shows the
typical features of chaotic systems with regions in which it is

TABLE I. Lyapunov exponentX) and time interval (@g) over
which it was calculated, for a disordered network of dize40 and
surface force constants in the range 0.0—4.0, launchéd @tinto
several eigenmodes of the ordered network with frequenefps

cording too. no correlation between the Lyapunov exponent and the vari-
ance of the distribution of weights. On the other hand, this is
oy (w) o Np, A to consistent with the long time behavior 6f(t), which is a
consequence of the non-Lorentzian charactes(af). As the
0.3053 0.3053 0.0622 10 >010° 5000 density of states has also a significant dependence on fre-
1.9467 1.9467 0.0657 250 0.0076 460 quency(see Fig. }, it is also important to check whether the
2.7733 2.7782  0.0625 80 0.0037 450  Lyapunov exponent has some correlation with the average
number of modedN,, participating in the construction of a
0.5820 0.6002  0.1021 30 0.0001 1200 given ordered mode. The results My, reported in Table |
1.9682 1.9836  0.1023 460 0.0064 250 do also indicate that there is no correlation betwbgnand
2.5417 2.5567 0.1023 270 0.0223 100 \. This conclusion is in accordance with recent results for
the tight-binding Hamiltonian which indicate that the
0.6458 0.6641 0.1110 35 0.0009 1200 Lyapunov exponent and the variangescale with the size of
1.9927 2.0092 0.1109 440 0.0007 2800 the system in a significantly different way, namely, ak 1/
2.5794 2.5970 0.1108 220 0.0308 50 and 1LY2 respectively[13].
The results reported in Table | are in line with those of
0.8645 0.8966 0.1414 50 0.0041 660 Fig. 2. In fact, at low frequencies the Lyapunov exponent is
1.8642 1.8942 0.1409 345 0.0087 300 very small or even negligible(see the results for
2.1501 2.1839 0.1414 160 0.0053 230 w%=0.3053), illustrating the regular behavior expected in

this frequency region. The conclusion of this analysis is that
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the nature of the normal mode¢éwhether chaotic or regular  was launched at=0. On the other hand, the decaying expo-
is in fact the key factor in determining the dynamics of thenential gives the Lyapunov exponent. At longer tin@&g)

system. shows a very complex behavior. The results for the
Lyapunov exponent indicate that the behavior of this system
IV. CONCLUDING REMARKS strongly depends on the frequency of the ordered normal
) ] ) ] mode, and, in particular, no exponential decay of the corre-

In this work we have investigated the properties of anation function is observed in the lower part of the spectrum.
elastic network with surface disorder. The model can be conTjs s ascribed to the fact that in this frequency region the
sidered a billiard in the sense that all scattering centers alequency is proportional to the wave number and thus the
located at its surface. The system has a frequency spectru@|ocity is dispersionless. It is also shown that the dynamical
characterized by nearest-mode spacings distributed accorganavior cannot be completely understood in terms of the

ing to the Wigner-Dyson distribution. It is widely accepted yariance of the distribution of the weights of the disordered
that this behavior is a clear hallmark of quantum ChaOt'Ceigenstates needed to build up an ordered one.

behavior. The reason the present system shows this feature is
the fact that it is also an eigenvalue problem.

We have also investigated its dynamical behavior by
studying how the system escapes from a normal mode of the This work was supported in part by the Spanish CICYT
ordered network. At short times the correlation function(Grant No. MAT94-0058 and DGICYT (Grant No. PB93-
shows oscillations modulated by an exponential. The fre1125. S.-Z.Z. is grateful to the Ministerio de Educaciy
quency of these oscillations almost coincides with that of theCiencia(Spain and E.C. to the FundaaioCultural Privada
normal mode of the ordered network into which the systemEsteban Romero for partial financial support.
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