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The jamming transition in the stochastic cellular automation m@dabel-Schreckenberg model. Phys.
(France | 2, 2221(1992)) of highway traffic is analyzed in detail by studying the relaxation time, a mapping
to surface growth problems, and the investigation of correlation functions. Three different classes of behavior
can be distinguished depending on the speed limit,. For v,=1 the model is closely related to the
Kardar-Parisi-Zhang class of surface growth. Ferdl,,< the relaxation time has a well-defined peak at a
density of cargp somewhat lower than the position of the maximum in the fundamental diagram: This density
can be identified with the jamming point. At the jamming point the properties of the correlations also change
significantly. In thev =2 limit the model undergoes a first-order transitionpat:0. It seems that in the
relevant cases<4v < the jamming transition is under the influence of a second-order phase transition in
the deterministic model and a first-order transition dgf,,=~. [S1063-651X97)10810-9

PACS numbe(s): 05.40:+j

I. INTRODUCTION Il the relaxation-time analysis is presented. Section IV deals
with the relation of traffic models to surface growth. The
The breakthrough in statistical physics due to the underecorrelation functions are analyzed in Sec. V. The special case
standing of critical phenomena and the related developmer@f no speed limit is discussed in Sec. VI. The paper con-
of methods has initiated vivid interdisciplinary research ac-cludes in Sec. VII.
tivity. The successful application of these methods demon-

strates that the validity of the concepts to handle the problem 1. MODEL AND SIMULATION
of many interacting units reaches far beyond the traditional
scope of statistical physics. In this paper we consider the cellular automata introduced

Vehicular traffic represents, from the point of view of by Nagel and Schreckenberg to describe single-lane traffic
statistical physics, a far-from-equilibrium driven system[3]. The model consists of a one-dimensional array aells
where a combination of the highway code and individualwith periodic boundary conditions. Every cell hag,+2
driving strategies replaces the usual physical interactions betates: It can be empty or it can contain a car with velocity
tween particles. Of course, the approach of a physicist i® =0,1,...0nax. The density of cars igp. We perform the
quite different from that of a traffic engineer: We would like following steps in parallel for all cars:(a) acceleration, in-
to model the typical behavior as simply as possible while thecreasev by 1 if possible;(b) deceleration, decrease to
essence of some phenomena should remain unaltered, thoug¥oid a crash with the car in frontg) randomization, de-
it is not our aim to describe specific traffic situations. Nev-creasev by 1 with probabilityp if possible, andd) move-
ertheless, one can hope for a twofold gain from these type afhent, move forward sites.
studies: First, they could help us to understand far-from- Despite its simplicity, this model captures several aspects
equilibrium systems and, second, we strongly believe thaof highway traffic including the free-flow—jamming transi-
the concepts developed in physics can contribute to the uriion. The parametew o, can be considered as a speed limit
derstanding of the complex phenomena related to vehiculaand a usual value for it is 5. We would like to stress the
traffic. Obvious analogies to problems of physics such asmportance of the third step. The fact that the model uses
kinetic theory or granular flow have motivated physicists tobraking noise characterized by probabilgyis crucial. One
work in this field. In fact, natural scientists’ contributions to could equally introduce random accelerations, but it can be
the understanding of traffic problems already have a longhown that these types of perturbations die out very quickly;
history[1,2]. see[8]. An initial condition is needed to specify the model

Numerous articles have been published in the past few ofompletely.
years investigating discrete models of highway traffic flow A convenient way to investigate the model is to draw a
[3-7]. It was suggested that very simple probabilistic modelsdiagram of flow versus density, the so-call@thdamental
based on cellular automata can reproduce features of redlagram It is a curve with a well-defined maximum at a
traffic, including a supposed transition from low-density densityp.. The occurrence of density waves is related to the
laminar flow to a high-density phase, where start-stop wavesonlinearity of the fundamental diagram and it is expected
are dominant. The behavior of these simple models is verghat the jamming transition will occur somewhere near the
complex near this transition and up to now is still not well maximum. At low densities the flow is “free” with very few
understood. waves due to fluctuatiorfstep(c)] which die out quickly; at

The paper is organized as follows. In the next section weéhigh densities above the maximum start-stop waves domi-
summarize the model and the method of simulation. In Semate the system, which is in the “jammed” state.
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TABLE I. Simulations performed for the relaxation-time analy-  TABLE Il. Simulations performed for the relaxation-time analy-

sis for v ma=1. sis for v ma,=2.

System sizel Number of runs System sizd. Number of runs
2000 10 000 2048 10 000
4000 5000 4096 5000
8000 2000 16 384 1000

32768 500

What is the nature of this transition? It has been suggested
[9] that, with increasing density, the jammed regions grow in  For this reason we made simulations for the different
space and time and at the jamming point they form a (1lcases and methods. We uged 0.5 for the braking probabil-
+1)-dimensional interconnected infinite network. Thisity throughout the paper. For the,,~=1 and« cases we
would point to a percolation-type picture for the process.used an algorithm with position and velocity coding, storing
However, the percolation transition depends on the geometnhe velocities and positions of the cars in two arrays. For the
of the clusters, i.e., on the microscopic definition of jams,y .. =2 case we used a multispin coding algorithm where we
which introduces some ambiguity. Moreover, it was demon-stored the lane .+ 1 times having. bits for every velocity
strated in[10] that an appropriate choice of the parametersaccording to the system size. In the lane labelea biyeith
leads, for any reasonable jam definition, to a percolationit is 1 when there is a car with velocity at sitei and bit
transition at densities much higher than the region whergerg otherwise. This algorithm is faster because we can use
jams become dominant. In order to resolve this problem an@jtwise operations. When calculating velocity correlation
to avoid the ambiguity related to the definition of the jams, infunctions, we used the multispin coding algorithm only for
[10] another definition of the jamming transition point was reaching the stationary state and then switched to the posi-

given without explicitly referring to the density waves. It tion coding technique that was more appropriate for the cal-
was found that the relaxation time of the average velocitycylations afterward.

has a maximum at a well-defined densityand the value of

the maximum increases with growing system sizes. This phe-

nomenon was interpreted [10] as a critical slowing down

and the critical point in the infinite-size limit was identified  First we measured the average car velocity

with the jamming transition, which turned out to be some-=(1/N)Z;v; as a function of time. As an initial condition we

what below the density at the maximum in the fundamentalised uniformly distributed cars with;=0 for all cars and

diagram p.>pp). averaged over several runs. The performed simulations are
The interpretation of the jamming transition as a secondtfisted in Tables | and Il.

order nonequilibrium phase transition raises the question of We used the same definition as introduced irf10],

the order parameter. One suggestion has begto take the  namely,

density of jammed cars as an order parameter that shows a

rapid increase numerically at the same density where the e —

relaxation time has its maximum. In addition to the above- ™ fo [min@* (1) {v-)) = v (D)]dt, @

mentioned problem with the definition of the jam, this “or-

der parameter” has the disadvantage that, due to the randojghere v* (t) is the velocity-time function of cars without

braking events, there are small jams for any nonzero Cahteraction andv., is the average velocity at the stationary

density, i.e., the order parameter would not entirely vanishstate. As in[10], we found a peak irr as a function of the

even below the transition. density. For the),,=2 casery,, the maximum of this peak,

The present paper is devoted to a detailed investigation qf at p ~0.15, which is smaller thap.=0.25 (Figs. 1 and
the jamming transition. We have studied the model with P

Ill. RELAXATION-TIME ANALYSIS

three different values af ,,,,, Namely, 1, 2, ande. Because 40.0
of the boundary conditions the,,=% case mean® .y , % L=2048
=L. It is widely believed that the ;=1 and 1<v ,<® 30.0 O L=4096 |
cases differ qualitativel}6] and we have found that the case X L=16384
without a speed limit shows interesting and unusual features. _ 20.0 - +L=32768
With the upper choice of the,,, parameters we can com- e 1
pare the three classes of models. 10.0 8
The stationary state of the,,,,=1 model is analytically 1
exactly solvabld6]. In addition, the model has a car-hole 0.0 % &
symmetry that connects that stationary state atith the 1
stationary state at-2p. In thev,,>1 cases this symmetry -10-00_0 "0z o4 o8 os 10

does not exist because evary-1 step corresponds to the
common movement of several holes. Due to its relationship
with other nonequilibrium models, thg,,,=1 model is not FIG. 1. Relaxation times versus density measured forthg
expected to exhibit a “phase transition” at a specific density,=2 case for different system sizes. The maxima of the peaks are at
while this is assumed fay p,q,>1. the densityp,~0.15 and have nearly the same half-widths.
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FIG. 2. Fundamental diagram for the,,,=2 model measured
for L=2048. The maximum of the diagram is @t=0.25.

2). We see in Fig. 3 that the reason for the appearance of
negative relaxation times in Fig. 1 is that in this density

region the average velocity functian(t) has a maximum
after a fast increase for short times and it relaxes from thi
maximum to the stationary state. Every time step during thi
relaxation gives a negative contribution to

Assuming that

Tm(L)~L7 2

we can fitz~=0.286-0.012. On the other handx(L), the
half-width of the r peaks, is roughly the same. Therefore, in
contrast to our earlier study with,,,,,=5, we have here no
implication to assume a

o(L)~L~ (3)
scaling form and we could not do any finite-size scaling.

In the va=1 casep.=0.5, as is well known, ang,
~0.35(Fig. 4). The curves seem to be more similar than in
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FIG. 4. Relaxation times versus density graph measured for
Umax=1. We see similar curves for different system sizes.

el

v(t)=v. 4

junction on the measured(t) functions. Herev., is the av-

erage velocity in the stationary state abdx, and r are
fitting parameters. We began the fit after the first increasing
regime, which consists of 3—10 steps, because then the car
movements are nearly independent and thereforev (i
graph is roughly a straight line.

For every fit the value of turned out to be larger than the
corresponding system size. The exponent was vague to fit
and had a great error because its effect falls in the regime of
the fluctuations around..(p), the stationary value af(t).

In the v,,,=2 case we could fit only in a restricted density
region because of the shapeudit) described above.

In thev =1 case the values of theexponent obtained
were the same within errors. Their value is Gt8209. This
value is nea. This value can be interpreted in terms of a
mapping to the Kardar-Parisi-Zhan§PZ2) surface growth
problem(see the next sectipn

In thev =2 case the value of the exponent increases

the vma,=2 case and they seem to have the same form fof,om 0.6 to 1.5 in the measured density regi@ig. 5). We

different system sizes. The value of tlzeexponent isz

have an upper density limit for the fits because of the emerg-

=0.27+0.02. This value seems to be universal for all thejng maximum inv (t) (Fig. 3.

Umax Parameters taking notice ¢10] too. However, in the
Umax=1 case this behavior is not bound g, but it can be
obtained in a broad range of the density.

Looking for a different definition of a relaxation time we
tried to fit a
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FIG. 3. Average velocity versus time graph fop,=2, L
=2048, andp=0.3125.

IV. RELATION TO SURFACE GROWTH

With an appropriate conversion, this traffic model can be
transformed into a surface growth mod&P]. The transfor-
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FIG. 5. x exponent versus density graph fog,,=2.
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FIG. 6. Determination of the corresponding
surface growth model to the traffic model.

mation is as follows. We go along the lane from left to right The simple deposition model corresponding to thg,=1
and order a slant line to every lattice site whose leng#2is case is known to belong to this universality cla&g].
times the lattice spacing and bevels with an angfeom the As an initial condition we used equally distributed cars.
lane. At every step we order a line with a slopeasf 45° to  For the uniformly distributed initial condition we received
a car and a line with a slope af=—45° to a hole. We large fluctuations and have not seen any regularity. In that
always continue this emerging zigzag line at the end of it andase we saw the same behavior as in the system with an
we make a step upward or downward according to whetheequally distributed initial condition after relaxation. We sub-
we find a hole or a car. After every update of the traffictracted the average steepness from the surface height in order
model we get a surface in this model. The update of théo calculatew?(t). The simulations performed are listed in
traffic model determines the update of the surface growtfTables Il and IV.
model (Fig. 6). If the density p#0.5 the surface has a In the v,,,x=1 case in the whole density region we see
density-dependent average steepness pf{2)v2 because KPZ-like behavior(Fig. 7) and we obtain B2=0.63+0.04
the difference of the two ends of the surfacevid(2p and 2¢=0.99+0.06, which should be compared to the KPZ
—1)L. valuesB= 3 anda=3. This KPZ-like behavior explains the

In the vma=1 case the surface growth picture corre-value of thex exponent close tg obtained from the relax-
sponds to a deposition model in which we drop squares witlation time analysi$4) because the velocity of the cars
their corner downward in every local valley with probability

. L

1-p as we go from left to right. The squares have an edge _ 1 , . L — —
of v2 times the lattice spacing. The deposition of a squareU(tJr 1)= 2 21 [h(i,t+1)=h(i,H)]= 2 [h(t+1)—h(v)],
corresponds to a step with velocity= 1 in the traffic model. (8
This simple deposition picture does not hold for g,y
=2 case because there are 2 steps too, which would cor- that is,
respond to the deposition of a rectangle or correlated depo-
sition of squares. 2

In our simulations we measured the time dependence of LY H= E—US(L’U- ©
the average surface width

According to[14],

w?(t)=([h(i,H) —h()]?);, )
Avg(L,t)=vgL,t)—vd~t"% for t<L? (10
whereh(i,t) is the height at site, ( ); means averaging over
the sites, andi(t) is the average height function wherev? is vg(L,t) for t,L—cx. The exponenw, corre-
o sponds to ourx exponent and is in one dimensior a
h=(h(i,1));. =3

z.
In the v ma=2 case the shape of thve?(t) curves is also
In a broad class of growth modelqt) behaves according to KPZ-like. We measured®to be 2¢=1+0.05. In contrast
the KPZ theory[13], that is, to thev =1 case, theB exponent depends on the density,
as seen in Fig. 8, and it is not uniform as in thg,, =1 case.

w~t# if t<L? (6)
q V. CORRELATION FUNCTIONS
an
Finally, we studied the velocity correlation function in the
w~L? if t>L% (7) space of car series with the definition
TABLE Illl. Simulations performed for the measurement of  TABLE IV. Simulations performed for the measurement of
w(t) for v ma=1. W2(t) for v ma=2.
System sizel Number of runs System sizd. Number of runs
1024 500 512 20 000
2048 200 1024 10 000

4096 50 2048 5000
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FIG. 9. Correlation times versus car index for different times.

FIG. 7. Square of the average surface widths versus time grapjﬂhe parameters of the system are 256, p—0.5, andy,,u—2
P max— &

for the v,,,=1 case for different densities. The system sizé is

=2048 and the curves correspond to the densijtie€0.125 (N ]
=256), p=0.25 (N=512), p=0.5 (N=1024), p=0.75 (N cars already accelerated neay,, contribute to the plateau of

=1536), andp=0.968 75 (\=1984). On the log-log plot the C(i,t). Those cars contribute to the peak which accelerate in

KPZ-like behavior is apparent. a correlated manner because a car accelerating makes space
for the car behind to accelerate. These are the cars coming
C(i,t)y=(v(j,t")—v{t")]v(j +i,t’+t)—v_(t’+t)]>j out of a jam. Therefore, the long-term existence of the peak

(11) and its velocity characterizes the traffic jams in the system.
In the v,,,=1 case theV,(p) velocity of the peak in-
or creases without any sign of criticality from zero to its value
. . o atp=1, wherev(p—1)=1—p. This value follows from the
C'(i, 0=t (j+i,t"+1));, (12 motion of a single holdFig. 10.

However, in thev ,,,=2 case we can see a bending at the
V5(p) function at the density,=0.125 where the function
shows a steep increag€ig. 11). This implies emerging traf-
fic jams. The smalV,(p) values of the function belovs,
come from the small fugitive jams being in the system. It is
tempting to interpret the bending W,(p) as the appearance
of a new phase ai,, since the behavior of the peak velocity
(13) is reminiscent to an order parameter of second order phase

transitions. However, the velocity does not go to zero at the
bending point and—in contrast to what is expected for sec-
The maximum of the peak decreases with increasitfgg. ond order transitions—we could not observe any finite size
9). i(0)=0 because that is the autocorrelation function, butscaling.
for greater times it appears at other car indices. Considering
thei(t) versust graph, we can fit on thit) values a straight VI. THE V, =% CASE
line whose steepness depends on the density. This steepness
defines a velocity in the car series space with which the peak Our simulations have indicated the following(i) The

spreads. Except for the peak, tagi,t) function fluctuates behaviorvy,>1 is different fromv yg,=1. (i) For v a1
around a constant value and it forms a plateau. there is a jamming transition, but a careful study of the dif-

From the definition ofC(i,t) it follows that the jammed ferent characteristics indicated, in contrast to what was sug-
cars do not contribute t€(i,t) since they are staying. The gested in10], that there is no clear second-order phase tran-

wherev(j,t) is the velocity of thejth car at timet, ( );
means averaging over all cars, atidis a time when the
system is in the steady state. Sir€é ,t) is in the stationary
state it is independent af.

If we consider the functioi(i,t) at a constant time as
a function ofi, we find a peak centered at the value

i(t)y=maxC(j,t).
i
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FIG. 11. Peak velocity,(p) as a function of the density for FIG. 13. Plateau values for differeptbraking probabilities in
U max=2- the v 4> model.

sition related to it(iii) From the present and earlier studieswe obtain t~0.5. Because this point represents tNe
[7,10,13 it is clear that the smallg is the more pronounced =p,L number of cars being in the flow between the right-
the transition.(iv) Comparing our results fov,,,=2 with  and left-hand sides of the jam, we can conclude that the
those forv =5, we realize that increasing,ay also sharp-  density contribution of cars in the flow part scales as
ens the transition.

The origin of (iii ) is clear: In thep=0 model there is a pe~L 7" (19
phase transition related to a singularity in the fundamental
diagram. In order to see the origin 6f) we considered the and therefore the density contribution of the cars being in the
case without a speed limit, more precisely, the,=L case. jam will be

The fundamental diagram of thg,,=% case shows dif-

ferent features from the cases discussed s¢Figr 12. The Pi=pP~ Pt (16)
main characteristic of its shape is a plateau value depending
on p (Fig. 13. The function decreases quickly to this pla- pj—p whenL—o. (17)

teau. The height of the plateau is independent of the system .
size; only its length changes. Thus values greater than thig plateau value of..(p) (ex-

Looking at the flow of the cars, we can observe that at th&€Pt the value ap=0) can be considered as fluctuation ef-
densities where the current of the stationary sfatp) is  [ects: Whenp—0 we have a finite number of cars with an
higher than the , plateau value the cars tend to be equally'nf'n'te 'vel_oc'lty(one car with velocityL — 1). In the thermo-
distributed, which is typical for the deterministic caggl.  dynamic limit
However, at the density regime of the plateau we see one L_1
jam, which characterizes this density regi@fig. 14). For j.(p—0)=—— as Lo, (18)
higher densities wherg,(p) decreases with the density we L
see more than one jam. Calculating the correlation function
(12) we notice that thev..(p) peak velocity in the plateau i
region corresponds t@,, which also means that we have

only one jam in the system for these densities. 1 FR fog
Assuming that thep; value where the plateau sets in de- ¢ S R
pends orL_, like
pr~L7 (14
1.0 % . ‘
& L=1000
08 r i

<
<><><>
<&

L PN N
0-0 ' 1 ' 1 ' 1 L 1 i
0.0 0.2 0.4 0.6 0.8 1.0

P FIG. 14. One-jam phase of thg,,>% model. The horizontal
direction represents the lattice sites and the vertical direction the
FIG. 12. Fundamental diagram fof,4,=2 for L=1000. consecutive time steps.




4110 MARTON SASVARI AND JANOS KERTESZ 56

Therefore, we can say that in the thermodynamic limit wethe v ,,,=1 model, in thev =2 case we see a transition
have a phase transition at=0 between the phases of put it is not a strict second-order transition; it seems to be a
j=(0)=1 and no jams and of thg, value with one jam. crossover transition. We found that the density at which the
Increasingp, the plateau ceases and there is more than ongansition takes place is smaller than fhe=0.19 value men-
jam in the system. This result contradicts that of the meantioned in[16]. On the grounds of the results obtained for
field theory described if6], where the fundamental diagram ;= where we found a first-order transition, we can con-
starts at thep=0, j =0 point with infinite slope. For braking clude that the increase of the,,, parameter makes the tran-
probabilities smaller thap=0.001 the plateau ceases andsition more striking. Our results indicate that the behavior of

only a break in the graph remains. the models labeled by differemt and v, parameters is
guided by the transition points of the models with parameters
VIl. CONCLUSION P=0 Or v pax=2°.

According to our comparison of the three different models
we can conclude the foIIow_mg. As we summarized at the ACKNOWLEDGMENT
beginning of Sec. VI, there is a difference between the be-
havior of thev =1 andv ,>1 models. In contrast with This work was supported by OTKA T016568.
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