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Cellular automata models of single-lane traffic
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The jamming transition in the stochastic cellular automation model„Nagel-Schreckenberg model@J. Phys.
~France! I 2, 2221~1992!#… of highway traffic is analyzed in detail by studying the relaxation time, a mapping
to surface growth problems, and the investigation of correlation functions. Three different classes of behavior
can be distinguished depending on the speed limitvmax. For vmax51 the model is closely related to the
Kardar-Parisi-Zhang class of surface growth. For 1,vmax,` the relaxation time has a well-defined peak at a
density of carsr somewhat lower than the position of the maximum in the fundamental diagram: This density
can be identified with the jamming point. At the jamming point the properties of the correlations also change
significantly. In thevmax5` limit the model undergoes a first-order transition atr→0. It seems that in the
relevant cases 1,vmax,` the jamming transition is under the influence of a second-order phase transition in
the deterministic model and a first-order transition forvmax5`. @S1063-651X~97!10810-8#

PACS number~s!: 05.40.1j
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I. INTRODUCTION

The breakthrough in statistical physics due to the und
standing of critical phenomena and the related developm
of methods has initiated vivid interdisciplinary research
tivity. The successful application of these methods dem
strates that the validity of the concepts to handle the prob
of many interacting units reaches far beyond the traditio
scope of statistical physics.

Vehicular traffic represents, from the point of view
statistical physics, a far-from-equilibrium driven syste
where a combination of the highway code and individu
driving strategies replaces the usual physical interactions
tween particles. Of course, the approach of a physicis
quite different from that of a traffic engineer: We would lik
to model the typical behavior as simply as possible while
essence of some phenomena should remain unaltered, th
it is not our aim to describe specific traffic situations. Ne
ertheless, one can hope for a twofold gain from these typ
studies: First, they could help us to understand far-fro
equilibrium systems and, second, we strongly believe
the concepts developed in physics can contribute to the
derstanding of the complex phenomena related to vehic
traffic. Obvious analogies to problems of physics such
kinetic theory or granular flow have motivated physicists
work in this field. In fact, natural scientists’ contributions
the understanding of traffic problems already have a lo
history @1,2#.

Numerous articles have been published in the past few
years investigating discrete models of highway traffic flo
@3–7#. It was suggested that very simple probabilistic mod
based on cellular automata can reproduce features of
traffic, including a supposed transition from low-dens
laminar flow to a high-density phase, where start-stop wa
are dominant. The behavior of these simple models is v
complex near this transition and up to now is still not w
understood.

The paper is organized as follows. In the next section
summarize the model and the method of simulation. In S
561063-651X/97/56~4!/4104~7!/$10.00
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III the relaxation-time analysis is presented. Section IV de
with the relation of traffic models to surface growth. Th
correlation functions are analyzed in Sec. V. The special c
of no speed limit is discussed in Sec. VI. The paper c
cludes in Sec. VII.

II. MODEL AND SIMULATION

In this paper we consider the cellular automata introdu
by Nagel and Schreckenberg to describe single-lane tra
@3#. The model consists of a one-dimensional array ofL cells
with periodic boundary conditions. Every cell hasvmax12
states: It can be empty or it can contain a car with veloc
v50,1,...,vmax. The density of cars isr. We perform the
following steps in parallel for all cars: ~a! acceleration, in-
creasev by 1 if possible;~b! deceleration, decreasev to
avoid a crash with the car in front,~c! randomization, de-
creasev by 1 with probabilityp if possible, and~d! move-
ment, move forwardv sites.

Despite its simplicity, this model captures several aspe
of highway traffic including the free-flow–jamming trans
tion. The parametervmax can be considered as a speed lim
and a usual value for it is 5. We would like to stress t
importance of the third step. The fact that the model u
braking noise characterized by probabilityp is crucial. One
could equally introduce random accelerations, but it can
shown that these types of perturbations die out very quic
see@8#. An initial condition is needed to specify the mod
completely.

A convenient way to investigate the model is to draw
diagram of flow versus density, the so-calledfundamental
diagram. It is a curve with a well-defined maximum at
densityrc . The occurrence of density waves is related to
nonlinearity of the fundamental diagram and it is expec
that the jamming transition will occur somewhere near
maximum. At low densities the flow is ‘‘free’’ with very few
waves due to fluctuations@step~c!# which die out quickly; at
high densities above the maximum start-stop waves do
nate the system, which is in the ‘‘jammed’’ state.
4104 © 1997 The American Physical Society
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56 4105CELLULAR AUTOMATA MODELS OF SINGLE-LANE TRAFFIC
What is the nature of this transition? It has been sugge
@9# that, with increasing density, the jammed regions grow
space and time and at the jamming point they form a
11)-dimensional interconnected infinite network. Th
would point to a percolation-type picture for the proce
However, the percolation transition depends on the geom
of the clusters, i.e., on the microscopic definition of jam
which introduces some ambiguity. Moreover, it was dem
strated in@10# that an appropriate choice of the paramet
leads, for any reasonable jam definition, to a percolat
transition at densities much higher than the region wh
jams become dominant. In order to resolve this problem
to avoid the ambiguity related to the definition of the jams,
@10# another definition of the jamming transition point w
given without explicitly referring to the density waves.
was found that the relaxation time of the average veloc
has a maximum at a well-defined densityrp and the value of
the maximum increases with growing system sizes. This p
nomenon was interpreted in@10# as a critical slowing down
and the critical point in the infinite-size limit was identifie
with the jamming transition, which turned out to be som
what below the density at the maximum in the fundamen
diagram (rc.rp).

The interpretation of the jamming transition as a seco
order nonequilibrium phase transition raises the question
the order parameter. One suggestion has been@11# to take the
density of jammed cars as an order parameter that sho
rapid increase numerically at the same density where
relaxation time has its maximum. In addition to the abov
mentioned problem with the definition of the jam, this ‘‘o
der parameter’’ has the disadvantage that, due to the ran
braking events, there are small jams for any nonzero
density, i.e., the order parameter would not entirely van
even below the transition.

The present paper is devoted to a detailed investigatio
the jamming transition. We have studied the model w
three different values ofvmax, namely, 1, 2, and̀ . Because
of the boundary conditions thevmax5` case meansvmax
5L. It is widely believed that thevmax51 and 1,vmax,`
cases differ qualitatively@6# and we have found that the cas
without a speed limit shows interesting and unusual featu
With the upper choice of thevmax parameters we can com
pare the three classes of models.

The stationary state of thevmax51 model is analytically
exactly solvable@6#. In addition, the model has a car-ho
symmetry that connects that stationary state atr with the
stationary state at 12r. In thevmax.1 cases this symmetr
does not exist because everyv.1 step corresponds to th
common movement of several holes. Due to its relations
with other nonequilibrium models, thevmax51 model is not
expected to exhibit a ‘‘phase transition’’ at a specific dens
while this is assumed forvmax.1.

TABLE I. Simulations performed for the relaxation-time anal
sis for vmax51.

System sizeL Number of runs

2000 10 000
4000 5000
8000 2000
ed
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For this reason we made simulations for the differe
cases and methods. We usedp50.5 for the braking probabil-
ity throughout the paper. For thevmax51 and ` cases we
used an algorithm with position and velocity coding, stori
the velocities and positions of the cars in two arrays. For
vmax52 case we used a multispin coding algorithm where
stored the lanevmax11 times havingL bits for every velocity
according to the system size. In the lane labeled byv the i th
bit is 1 when there is a car with velocityv at site i and bit
zero otherwise. This algorithm is faster because we can
bitwise operations. When calculating velocity correlati
functions, we used the multispin coding algorithm only f
reaching the stationary state and then switched to the p
tion coding technique that was more appropriate for the c
culations afterward.

III. RELAXATION-TIME ANALYSIS

First we measured the average car velocityv̄
5(1/N)( iv i as a function of time. As an initial condition w
used uniformly distributed cars withv i50 for all cars and
averaged over several runs. The performed simulations
listed in Tables I and II.

We used the samet definition as introduced in@10#,
namely,

t5E
0

`

@min„v* ~ t !,^v`&…2^v̄~ t !&#dt, ~1!

where v* (t) is the velocity-time function of cars withou
interaction andv` is the average velocity at the stationa
state. As in@10#, we found a peak int as a function of the
density. For thevmax52 casetm , the maximum of this peak
is at rp'0.15, which is smaller thanrc50.25 ~Figs. 1 and

FIG. 1. Relaxation times versus density measured for thevmax

52 case for different system sizes. The maxima of the peaks a
the densityrp'0.15 and have nearly the same half-widths.

TABLE II. Simulations performed for the relaxation-time anal
sis for vmax52.

System sizeL Number of runs

2048 10 000
4096 5000

16 384 1000
32 768 500
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4106 56MÁRTON SASVÁRI AND JÁNOS KERTÉSZ
2!. We see in Fig. 3 that the reason for the appearanc
negative relaxation times in Fig. 1 is that in this dens
region the average velocity functionv̄(t) has a maximum
after a fast increase for short times and it relaxes from
maximum to the stationary state. Every time step during
relaxation gives a negative contribution tot.

Assuming that

tm~L !;Lz, ~2!

we can fitz'0.28660.012. On the other hand,s(L), the
half-width of thet peaks, is roughly the same. Therefore,
contrast to our earlier study withvmax55, we have here no
implication to assume a

s~L !;L21/n ~3!

scaling form and we could not do any finite-size scaling.
In the vmax51 caserc50.5, as is well known, andrp

'0.35 ~Fig. 4!. The curves seem to be more similar than
the vmax52 case and they seem to have the same form
different system sizes. The value of thez exponent isz
50.2760.02. This value seems to be universal for all t
vmax parameters taking notice of@10# too. However, in the
vmax51 case this behavior is not bound torp , but it can be
obtained in a broad range of the density.

Looking for a different definition of a relaxation time w
tried to fit a

FIG. 2. Fundamental diagram for thevmax52 model measured
for L52048. The maximum of the diagram is atrc50.25.

FIG. 3. Average velocity versus time graph forvmax52, L
52048, andr50.3125.
of

is
is

r

v~ t !5v`F12bt2x expS 2
t

t D G ~4!

function on the measuredv̄(t) functions. Herev` is the av-
erage velocity in the stationary state andb, x, and t are
fitting parameters. We began the fit after the first increas
regime, which consists of 3–10 steps, because then the
movements are nearly independent and therefore thev̄(t)
graph is roughly a straight line.

For every fit the value oft turned out to be larger than th
corresponding system size. The exponent was vague t
and had a great error because its effect falls in the regim
the fluctuations aroundv`(r), the stationary value ofv̄(t).
In the vmax52 case we could fit only in a restricted densi
region because of the shape ofv̄(t) described above.

In thevmax51 case the values of thex exponent obtained
were the same within errors. Their value is 0.6260.09. This
value is near23 . This value can be interpreted in terms of
mapping to the Kardar-Parisi-Zhang~KPZ! surface growth
problem~see the next section!.

In the vmax52 case the value of thex exponent increase
from 0.6 to 1.5 in the measured density region~Fig. 5!. We
have an upper density limit for the fits because of the eme
ing maximum inv̄(t) ~Fig. 3!.

IV. RELATION TO SURFACE GROWTH

With an appropriate conversion, this traffic model can
transformed into a surface growth model@12#. The transfor-

FIG. 4. Relaxation times versus density graph measured
vmax51. We see similar curves for different system sizes.

FIG. 5. x exponent versus density graph forvmax52.
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FIG. 6. Determination of the correspondin
surface growth model to the traffic model.
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mation is as follows. We go along the lane from left to rig
and order a slant line to every lattice site whose length is&
times the lattice spacing and bevels with an anglea from the
lane. At every step we order a line with a slope ofa545° to
a car and a line with a slope ofa5245° to a hole. We
always continue this emerging zigzag line at the end of it a
we make a step upward or downward according to whe
we find a hole or a car. After every update of the traf
model we get a surface in this model. The update of
traffic model determines the update of the surface gro
model ~Fig. 6!. If the density rÞ0.5 the surface has
density-dependent average steepness of (2r21)& because
the difference of the two ends of the surface is&(2r
21)L.

In the vmax51 case the surface growth picture corr
sponds to a deposition model in which we drop squares w
their corner downward in every local valley with probabili
12p as we go from left to right. The squares have an ed
of & times the lattice spacing. The deposition of a squ
corresponds to a step with velocityv51 in the traffic model.
This simple deposition picture does not hold for thevmax
52 case because there arev52 steps too, which would cor
respond to the deposition of a rectangle or correlated de
sition of squares.

In our simulations we measured the time dependenc
the average surface width

w2~ t !5^@h~ i ,t !2h̄~ t !#2& i , ~5!

whereh( i ,t) is the height at sitei , ^ & i means averaging ove
the sites, andh̄(t) is the average height function

h̄5^h~ i ,t !& i .

In a broad class of growth modelsw(t) behaves according to
the KPZ theory@13#, that is,

w;tb if t!Lz ~6!

and

w;La if t@Lz. ~7!

TABLE III. Simulations performed for the measurement
w2(t) for vmax51.

System sizeL Number of runs

1024 500
2048 200
4096 50
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The simple deposition model corresponding to thevmax51
case is known to belong to this universality class@12#.

As an initial condition we used equally distributed ca
For the uniformly distributed initial condition we receive
large fluctuations and have not seen any regularity. In t
case we saw the same behavior as in the system with
equally distributed initial condition after relaxation. We su
tracted the average steepness from the surface height in o
to calculatew2(t). The simulations performed are listed
Tables III and IV.

In the vmax51 case in the whole density region we s
KPZ-like behavior~Fig. 7! and we obtain 2b50.6360.04
and 2a50.9960.06, which should be compared to the KP
valuesb5 1

3 anda5 1
2 . This KPZ-like behavior explains the

value of thex exponent close to23 obtained from the relax-
ation time analysis~4! because the velocity of the cars

v̄~ t11!5
1

2 (
i 51

L

@h~ i ,t11!2h~ i ,t !#5
L

2
@ h̄~ t11!2h̄~ t !#,

~8!

that is,

2

L
v̄~ t !5

dh̄

dt
[vs~L,t !. ~9!

According to@14#,

Dvs~L,t !5vs~L,t !2vs
0;t2a' for t!Lz, ~10!

where vs
0 is vs(L,t) for t,L→`. The exponenta' corre-

sponds to ourx exponent and is in one dimensionx5a'

5 2
3 .
In the vmax52 case the shape of thew2(t) curves is also

KPZ-like. We measured 2a to be 2a5160.05. In contrast
to thevmax51 case, theb exponent depends on the densit
as seen in Fig. 8, and it is not uniform as in thevmax51 case.

V. CORRELATION FUNCTIONS

Finally, we studied the velocity correlation function in th
space of car series with the definition

TABLE IV. Simulations performed for the measurement
w2(t) for vmax52.

System sizeL Number of runs

512 20 000
1024 10 000
2048 5000
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C~ i ,t !5^@v~ j ,t8!2 v̄~ t8!#@v~ j 1 i ,t81t !2 v̄~ t81t !#& j
~11!

or

C8~ i ,t !5^v~ j ,t8!v~ j 1 i ,t81t !& j , ~12!

where v( j ,t) is the velocity of thej th car at timet, ^ & j
means averaging over all cars, andt8 is a time when the
system is in the steady state. SinceC( i ,t) is in the stationary
state it is independent oft8.

If we consider the functionC( i ,t) at a constant timet as
a function ofi , we find a peak centered at the value

i ~ t !5max
j

C~ j ,t !. ~13!

The maximum of the peak decreases with increasingt ~Fig.
9!. i (0)50 because that is the autocorrelation function,
for greater times it appears at other car indices. Conside
the i (t) versust graph, we can fit on thei (t) values a straight
line whose steepness depends on the density. This stee
defines a velocity in the car series space with which the p
spreads. Except for the peak, theC( i ,t) function fluctuates
around a constant value and it forms a plateau.

From the definition ofC( i ,t) it follows that the jammed
cars do not contribute toC( i ,t) since they are staying. Th

FIG. 7. Square of the average surface widths versus time g
for the vmax51 case for different densities. The system size isL
52048 and the curves correspond to the densitiesr50.125 (N
5256), r50.25 (N5512), r50.5 (N51024), r50.75 (N
51536), andr50.968 75 (N51984). On the log-log plot the
KPZ-like behavior is apparent.

FIG. 8. 2b exponent measured in thevmax52 model for differ-
ent densities.
t
g

ess
ak

cars already accelerated nearvmax contribute to the plateau o
C( i ,t). Those cars contribute to the peak which accelerat
a correlated manner because a car accelerating makes
for the car behind to accelerate. These are the cars com
out of a jam. Therefore, the long-term existence of the p
and its velocity characterizes the traffic jams in the syste

In the vmax51 case theV1(r) velocity of the peak in-
creases without any sign of criticality from zero to its val
at r51, wherev(r→1)512p. This value follows from the
motion of a single hole~Fig. 10!.

However, in thevmax52 case we can see a bending at t
V2(r) function at the densityrk50.125 where the function
shows a steep increase~Fig. 11!. This implies emerging traf-
fic jams. The smallV2(r) values of the function belowrk
come from the small fugitive jams being in the system. It
tempting to interpret the bending inV2(r) as the appearanc
of a new phase atrk , since the behavior of the peak veloci
is reminiscent to an order parameter of second order ph
transitions. However, the velocity does not go to zero at
bending point and—in contrast to what is expected for s
ond order transitions—we could not observe any finite s
scaling.

VI. THE Vmax5` CASE

Our simulations have indicated the following.~i! The
behaviorvmax.1 is different fromvmax51. ~ii ! For vmax.1
there is a jamming transition, but a careful study of the d
ferent characteristics indicated, in contrast to what was s
gested in@10#, that there is no clear second-order phase tr

ph
FIG. 9. Correlation times versus car index for different time

The parameters of the system areL5256,r50.5, andvmax52.

FIG. 10. Peak velocityV1(r) as a function of the density fo
vmax51.
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56 4109CELLULAR AUTOMATA MODELS OF SINGLE-LANE TRAFFIC
sition related to it.~iii ! From the present and earlier studi
@7,10,15# it is clear that the smallerp is the more pronounced
the transition.~iv! Comparing our results forvmax52 with
those forvmax55, we realize that increasingvmax also sharp-
ens the transition.

The origin of ~iii ! is clear: In thep50 model there is a
phase transition related to a singularity in the fundame
diagram. In order to see the origin of~iv! we considered the
case without a speed limit, more precisely, thevmax5L case.

The fundamental diagram of thevmax5` case shows dif-
ferent features from the cases discussed so far~Fig. 12!. The
main characteristic of its shape is a plateau value depen
on p ~Fig. 13!. The function decreases quickly to this pl
teau. The height of the plateau is independent of the sys
size; only its length changes.

Looking at the flow of the cars, we can observe that at
densities where the current of the stationary statej `(r) is
higher than thej p plateau value the cars tend to be equa
distributed, which is typical for the deterministic case@6#.
However, at the density regime of the plateau we see
jam, which characterizes this density region~Fig. 14!. For
higher densities wherej `(r) decreases with the density w
see more than one jam. Calculating the correlation func
~12! we notice that thev`(r) peak velocity in the plateau
region corresponds toj p , which also means that we hav
only one jam in the system for these densities.

Assuming that ther t value where the plateau sets in d
pends onL, like

r t;L2t, ~14!

FIG. 11. Peak velocityV2(r) as a function of the density fo
vmax52.

FIG. 12. Fundamental diagram forvmax5` for L51000.
al

ng

m

e

e

n

we obtain t'0.5. Because this point represents theNf
5r tL number of cars being in the flow between the righ
and left-hand sides of the jam, we can conclude that
density contribution of cars in the flow part scales as

r f;L2t ~15!

and therefore the density contribution of the cars being in
jam will be

r j5r2r f , ~16!

r j→r when L→`. ~17!

Thus values greater than thej p plateau value ofj `(r) ~ex-
cept the value atr50! can be considered as fluctuation e
fects. Whenr→0 we have a finite number of cars with a
infinite velocity ~one car with velocityL21!. In the thermo-
dynamic limit

j `~r→0!5
L21

L
as L→`. ~18!

FIG. 13. Plateau values for differentp braking probabilities in
the vmax.` model.

FIG. 14. One-jam phase of thevmax.` model. The horizontal
direction represents the lattice sites and the vertical direction
consecutive time steps.
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4110 56MÁRTON SASVÁRI AND JÁNOS KERTÉSZ
Therefore, we can say that in the thermodynamic limit
have a phase transition atr50 between the phases o
j `(0)51 and no jams and of thej p value with one jam.
Increasingr, the plateau ceases and there is more than
jam in the system. This result contradicts that of the me
field theory described in@6#, where the fundamental diagram
starts at ther50, j 50 point with infinite slope. For braking
probabilities smaller thanp50.001 the plateau ceases a
only a break in the graph remains.

VII. CONCLUSION

According to our comparison of the three different mod
we can conclude the following. As we summarized at
beginning of Sec. VI, there is a difference between the
havior of thevmax51 andvmax.1 models. In contrast with
Ito

o

e

ne
-

s
e
-

the vmax51 model, in thevmax52 case we see a transitio
but it is not a strict second-order transition; it seems to b
crossover transition. We found that the density at which
transition takes place is smaller than therc50.19 value men-
tioned in @16#. On the grounds of the results obtained f
vmax5`, where we found a first-order transition, we can co
clude that the increase of thevmax parameter makes the tran
sition more striking. Our results indicate that the behavior
the models labeled by differentp and vmax parameters is
guided by the transition points of the models with paramet
p50 or vmax5`.
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