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Time-structure invariance criteria for closure approximations

Brian J. Edwards and Hans Christian O¨ ttinger
Department of Materials, ETH Zu¨rich, Institute of Polymers, Swiss Federal Institute of Technology Rheocenter,

CH-8092 Zu¨rich, Switzerland
~Received 21 April 1997!

In many areas of physics, time evolution equations for moments of distributions are expressed in terms of
higher-order moments. Closure approximations are then introduced in anad hocfashion to reduce the higher-
order moments to functions of the lower-order ones. Herein, the time-structure invariance of the Poisson
bracket as manifested through the Jacobi identity is used to derive constraint relationships on these approxi-
mations. These constraints severely limit the allowable functionality of general closures and help to define the
boundaries within which future investigations should concentrate.@S1063-651X~97!10410-X#

PACS number~s!: 05.70.Ln, 05.60.1w, 51.10.1y
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INTRODUCTION

In many areas of physics, time evolution equations
probability distributions are typically expressed in terms
moments averaged over the probability space. These a
include polymer dynamics@1#, quantum field theory@2#, sus-
pension and colloid fluid mechanics@3,4#, kinetics of phase
transitions and spinodal decomposition@5,6#, the mechanics
of turbulence@7–9#, liquid-crystalline dynamics@1,6#, the
fluid mechanics of immiscible blends@10,11#, and statistical
mechanics@12,13#. These moment evolution equations a
much simpler to solve computationally than the full pro
ability distribution evolution equation, but typically involv
higher-order moments appearing in the equations for
lower-order moments. Closure approximations are then
troduced in order to reduce the moments of higher orde
terms of lower-order ones, but, in many cases, very li
physical guidance is used in the construction of these clo
approximations, with the result that many of those used
play aphysical behavior under certain circumstances. F
thermore, with the few genuine restrictions on the allowa
functional forms of these approximations currently in use,
infinite variety of them are available, each of which must
tested individually, which is an even more computationa
intensive process than solving the full evolution equation
the probability distribution itself, e.g., by simulation tec
niques@14#. The magnitude of literature devoted to testi
closure approximations is voluminous and testifies not o
to the importance of the issue, but also to the lack of phys
guidance that is available for their construction.

As a specific example of the use of closures in the m
chanics of a suspension of particles in an incompress
Newtonian fluid, the evolution equation for the second m
ment of the probability density functionP(x,t) is given by
@4#

DPab

Dt
5 1

2 ~¹gva2¹avg!Pgb1 1
2 ~¹gvb2¹bvg!Pag

1 1
2 l~¹gva1¹avg!Pgb1 1

2 l~¹gvb1¹bvg!Pag

22lQabg«¹gv«12D~dab23Pab!, ~1!

¹v being the velocity gradient tensor,l the particle shape
561063-651X/97/56~4!/4097~7!/$10.00
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factor,D the rotational diffusivity, andD(* )/Dt the material
derivative of* . The quantitiesP andQ are defined as

Pab[E papbc d3p, Qabg«[E papbpgp«c d3p,

~2!

p being the unit vector pointing in the direction of the maj
axis of a given particle andc(p,x,t) the probability density
function. With these definitions, normalization of the dist
bution function at any positionx and time t requires that
Paa51 andQaag«5Pg« .

Equation ~1! would be a straightforward expression
solve, even under general circumstances, were it not for
fourth moment of the distributionQ appearing on its right-
hand side. Similarly to the procedure outlined above, an e
lution equation for the fourth moment can also be deriv
but it turns out to depend upon the sixth moment and so
ad infinitum. Thus, in order to gain any practical advantag
from Eq.~1! it is necessary to devise a closure approximat
for the fourth moment in terms of the second.

Another tangible example of the use of closure appro
mations is provided by the Doi-Ohta theory of incompre
ible, immiscible blends@10#. In this theory, the droplets o
the dispersed phase are taken to have a surface area~per unit
volume! Q given by

Q5E f ~n,x,t !d3n, ~3!

wheren is the outwardly directed unit vector normal to th
droplet interface. The conservative dynamics of the sec
moment of the interphase density functionf follow an evo-
lution equation of the form

DNab

Dt
52Nag¹bvg2Nbg¹avg1Zabg«¹gv« , ~4!

where
4097 © 1997 The American Physical Society
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Nab[E nanb f ~n,x,t !d3n,

Zabg«[E nanbngn« f ~n,x,t !d3n. ~5!

Again, one is faced with obtaining an approximation for t
fourth moment appearing in Eq.~4! in terms of the second
moment; however, this time the normalization condition
quires thatNaa5Q, so that we no longer have a constra
upon the first invariant~i.e., the trace! of the second moment

Unfortunately, there is very little physical guidance ava
able to use when motivating a particular closure. Typica
one would like the closureR to be approximately equal toQ
or Z in arbitrary flow fields. SinceR5 f (A) ~with A denot-
ing eitherP or N!, it is expected thatR should possess som
of the inherent symmetries ofQ or Z, say,

Rabg«5Rg«ab5Rbag«5Rab«g , ~6!

for example. Another typical requirement ensures the cor
normalization,Raag«5Ag« . These two restrictions, in mos
studies, represent most of the physical information tha
brought to bear upon the choice of the closure. In soph
cated studies, such as that of Hinch and Leal@4#, limiting
forms of the equations are examined, where the closures
be fitted exactly.Ad hoc interpolations are then constructe
for intermediate circumstances.

More recent investigations@15,16# are beginning to pro-
vide adequate approximations for the majority of the fe
simple, homogeneous flow fields examined. In these stud
very general approximations are written down in terms
arbitrary scalar functions of the invariants of the second m
ment @17# and these functions are evaluated by fitting t
approximation to the exact solution involving the distributi
function for a few well-defined flow problems. However, n
other physical guidance is available to aid in the selection
these functions and their evaluation based upon obtaining
distribution function is, although on a much more limite
scale, solving the problem one was trying to avoid in the fi
place. Furthermore, whether or not, and to what extent, th
closures will work in inhomogeneous flow fields should be
major concern.

Although the future development of closure approxim
tions will probably, by necessity, follow along the lines ou
lined in the preceding paragraph, the work effort may
significantly reduced if one has ana priori idea, based upon
some meaningful physical guidance, as to what the allowa
forms of the arbitrary functionals are in order to ensure t
the overall dynamical structure of the total system of eq
tions is preserved. Clearly, more physical criteria are nee
to filter the excessive functionality imbedded in the ma
ematical nature of closure approximations. In this article
offer assistance in this regard by formulating general gui
lines for the selection of these closures based upon the t
structure invariance inherent to the reversible dynamics
physical systems. The application of this technique will
illustrated for the examples cited above, which are repres
tative of similar equations in other areas of physics. For s
plicity in the following analysis, we shall set the partic
shape factorl equal to unity, corresponding to very lon
-
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thin particles in the first example. The first step, however
to formulate and explain time-structure invariance.

TIME-STRUCTURE INVARIANCE

The principle of time-structure invariance is imbedded
the Poisson bracket of Hamiltonian mechanics. In this fram
work, the reversible dynamics of an arbitrary functionalF
are governed by the expression

dF

dt
5$F,H%, ~7!

where$,% denotes the Poisson bracket andH is another func-
tional, typically called the Hamiltonian, which acts to gene
ate the system dynamics. The Poisson bracket is antisym
ric, $F,H%52$H,F%, so that identifying the Hamiltonian
with the total system energy then requires thatdH/dt
5$H,H%50, thus guaranteeing the conservation of ener
Another key feature of the Poisson bracket is that any rev
ible dynamics, generated byH, will preserve the structure o
the bracket for all timest. If Ft is defined as the time
dependentF, which is the solution of

dFt

dt
5$Ft,H%, ~8!

then the structure of the Poisson bracket is preserved for
arbitrary functionals when

$F,G% t5$Ft ,Gt%. ~9!

Taking the time derivative of this expression according
Eq. ~8!,

ˆ$F,G% t ,H‰5ˆ$Ft ,H%,Gt‰1ˆFt ,$Gt ,H%‰, ~10!

and then substituting Eq.~9! into this expression, after rear
rangement, one obtains

ˆ$Gt ,Ft%,H‰1ˆ$Ft ,H%,Gt‰1ˆ$H,Gt%,Ft‰50. ~11!

This expression is known as theJacobi identity. More details
concerning Poisson brackets and their properties may
found in any textbook on classical mechanics.

The Poisson bracket plays a central role in the dynam
of all physical systems. Although it can only describe t
reversible dynamics, it still contributes to dissipative syste
when these are expressed in Hamiltonian form. This exp
sion of dissipative dynamics in Hamiltonian form allows th
extension of many of the benefits of classical Hamilton
mechanics to real systems and thus this idea has attra
much attention in recent years. The product of this attent
is the emergence of elegant and powerful formalisms for
description of dissipative systems@18–20#. For the present
analysis, it must be realized that once one expresses th
versible dynamics of any system in the form of a brac
structure, it is required that this bracket possess the pro
ties inherent to a Poisson bracket, i.e., antisymmetry
satisfaction of the Jacobi identity.
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APPLICATION OF TIME-STRUCTURE INVARIANCE
TO DYNAMIC PROBLEMS

In order to apply time-structure invariance to a particu
problem, one must first recast it in Hamiltonian form. T
accomplish this, one must determine the Poisson bracket
responding to the reversible dynamics of the system un
consideration, with reference to the antisymmetry prope
This is not, in principle, difficult to do, as many forms o
Poisson brackets for various physical systems have alre
been worked out@11,21–26#. Constraint equations may the
be obtained by requiring satisfaction of the Jacobi iden
~11!.

In the following analysis, only the two examples me
tioned above are considered, which are representativ
many such constructions encountered in the various subfi
of physics @27#. The Poisson bracket corresponding to t
reversible dynamics@28# of the first example~suspension
fluid mechanics! for two functionalsF@v,P# andH@v,P# is

$F,H%52E @Fvg
Hvb

¹bvg2Hvg
Fvb

¹bvg

1FPab
Hvg

¹gPab2HPab
Fvg

¹gPab

1PgbHPab
¹gFva

2PgbFPab
¹gHva

1PgaHPab
¹gFvb

2PgaFPab
¹gHvb

12FPab
Rabg«¹«Hvg

22HPab
Rabg«¹«Fvg

#d3x.

~12!

For the second example,

$F,H%52E @Fvg
Hvb

¹bvg2Hvg
Fvb

¹bvg

1FNab
Hvg

¹gNab2HNab
Fvg

¹gNab

1NgbFNab
¹aHvg

2NgbHNab
¹aFvg

1NgaFNab
¹bHvg

2NgaHNab
¹bFvg

1HNab
Rabg«¹«Fvg

2FNab
Rabg«¹«Hvg

#d3x,

~13!

where the functionalsF andH now depend onv andN. For
the present analysis, there is no need to specify the funct
als F and H, except to recognize the Hamiltonian asH,
which is the proper generator for the system dynamics~and
hencedH/dt50!, and to define the Volterra derivatives a
pearing in Eqs.~12! and ~13! in the proper manner@18#:

Fvg
[

dF

dvg
, FPab

[
dF

dPab
, FNab

[
dF

dNab
. ~14!

WhenR50 in Eq. ~12!, that expression reduces to the Po
son bracket for a contravariant deformation tensor, wh
was discovered by Grmela@23# and derived from Hamilton’s
principle by Edwards and Beris@26#. Through the method o
its derivation, it should retain both of the properties of
Poisson bracket, and this has been verified by direct su
tutions @23,24#. When R50 in Eq. ~13!, there results the
r

or-
er
.

dy

y

of
ds

n-

-
h

ti-

Poisson bracket for a covariant deformation tensor, wh
was discovered in@24# and derived from Hamilton’s prin-
ciple in @18#. It too should satisfy the properties of a Poiss
bracket through its construction, and this has been veri
directly @24#.

The brackets~12! and ~13! were obtained by extending
known results@11,18,23,24,26# to the present cases, whereR
is a function ofP or N, as consistent with the antisymmetr
property of a Poisson bracket. This extension is unique
explicitly required for all of the reversible dynamics of th
system to be described by a Poisson bracket. It may be v
fied that these brackets do indeed generate the evolu
equations for the second moments~1! and ~4! for a proto-
typical Hamiltonian@18#

H@v,A#5E S 1

2
rvgvg1h0~A! Dd3x. ~15!

Through the antisymmetry property of the Poiss
bracket, we find an immediate relationship between the e
lution equation for the second moment and the revers
contributions to the kinematic properties of the fluids. B
evaluating the evolution equation for the velocity vector fie
from each bracket, one can obtain explicit relationships
the reversible contributions to the extra stress tensor fi
involving R:

sab52PbgHPga
22Rg«abHPg«

,

sab522NagHNgb
1Rg«abHNg«

, ~16!

wheres is defined from the momentum equation

r
]va

]t
52rvb¹bva2¹ap1¹bsab , ~17!

p being the isotropic pressure andr the fluid mass density
Hence any closure approximation that is chosen for a p
ticular second moment evolution equation must be incor
rated into the stress tensor, according to expressions suc
Eq. ~16!, in order to obtain an internally consistent predictio
of kinematical properties.

It thus remains to examine the full forms of Eqs.~12! and
~13! to find under what conditions the Jacobi identity is s
isfied for each bracket via a direct substitution and sub
quent elimination. Although this method is straightforwar
it is quite tedious. The results of this calculation are tw
constraint equations, for each bracket, which place sev
restrictions on the functionality ofR. These constraint equa
tions are

Rabg«5Phz

]Rabg«

]Phz
, ~18!

Rzbh«dga2R«bgzdah1Razh«dbg2Ra«gzdhb1Rabhzd«g

2Rabg«dzh1P«r

]Rabgz

]Phr
2Pzr

]Rabh«

]Pgr
1Pr«

]Rabgz

]Prh

2Prz

]Rabh«

]Prg
12Rurgz

]Rabh«

]Pur
22Rurh«

]Rabgz

]Pur
50

~19!

for the first bracket~12! and Eq.~18!, with N replacingP,
and
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Rabhzdg«2Rabg«dhz1Rhbgzda«2Rgbh«daz1Rahgzdb«

2Ragh«dbz1Ngr

]Rabh«

]Nzr
2Nhr

]Rabgz

]N«r
1Nrg

]Rabh«

]Nrz

2Nrh

]Rabgz

]Nr«
1Rurh«

]Rabgz

]Nur
2Rurgz

]Rabh«

]Nur
50 ~20!

for the second one~13!.
The constraint relationship of Eq.~18! definesR as a

homogeneous function ofN or P of degree one, with all of
the associated properties of such functions. This fact is
-
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tentially very useful for the illumination of restrictions on th
form of R in general circumstances, as will be explored b
low. Expressions~18!–~20! are the fundamental results o
this paper; in essence, by expressingR in a form compatible
with these constraints, one can satisfy the time-structure
variance criterion of the reversible dynamics. Furthermo
any R that does not meet these requirements should be
garded with caution and as possibly being ill-formulat
physically.

Now that the constraint equations have been obtained,
can apply them to the general form of a closure approxim
tion, which is consistent with the Cayley-Hamilton theore
Rabg«5b11dabdg«1b12dagdb«1b13da«dbg1b21dabAg«1b22dg«Aab1b23db«Aag1b24dagAb«1b25dbgAa«

1b26da«Abg1b31AabAg«1b32AagAb«1b33Aa«Abg1b41dabAg«
2 1b42dg«Aab

2 1b43db«Aag
2 1b44dagAb«

2

1b45dbgAa«
2 1b46da«Abg

2 1b51AabAg«
2 1b52Ag«Aab

2 1b53Ab«Aag
2 1b54AagAb«

2 1b55AbgAa«
2

1b56Aa«Abg
2 1b61Aab

2 Ag«
2 1b62Aag

2 Ab«
2 1b63Aa«

2 Ab«
2 , ~21!
sed
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with Ag«
2 [AghAh« . In this expression, theb i j ’s are scalar

functions of the invariants ofA. Various degrees of symme
trization imply various equalities between theb i j ’s appear-
ing in Eq. ~21!. For example, if one enforces full symmetr
then it is clear that all of theb i j ’s are equal to each other fo
each given value ofi 51, . . . ,6, Inthis case, there are onl
six arbitrary functions and the natural closure approximat
of Verleye and Dupret@15# is obtained.

The application of constraint~18! to the closure~21! im-
plies that one can immediately write down the allowed fun
tionality of theb i j ’s for any valid closure,

b1 j5I 1f 1 j~x,y!, b2 j5 f 2 j~x,y!,

b3 j5
1

I 1
f 3 j~x,y!, b4 j5

1

I 1
f 4 j~x,y!, ~22!

b5 j5
1

I 1
2 f 5 j~x,y!, b6 j5

1

I 1
3 f 6 j~x,y!,

j 51,2,3 or 1, . . . ,6, where thef i j ’s are arbitrary functions
of x and y, I 1[trA, I 2[ 1

2 @(trA)22tr(A•A)#, and I 3

[detA are the invariants ofA, andx[I 2 /I 1
2, y[I 3 /I 1

3. The
action of constraint~18! is to reduce 27 functions of thre
variablesI 1 , I 2 , and I 3 to 27 functions of two variablesx
andy. Although not particularly limiting in a strict sense, th
satisfaction of this constraint is straightforward to guarant

It is obvious that Eqs.~19! and~20! impose severe restric
tions on the allowable functionality of the closure. Furth
progress depends on the exact definition of the degre
symmetrization assumed, as well as on the functionali
chosen for thef i j ’s. By substitution of the chosen form o
Eq. ~21! into the second constraint~19! or ~20! and then
equating to zero independently the various orders with
spect to the second moment@29#, additional restrictions are
realized that relate the functions appearing in Eq.~22! to
n

-

e.

r
of
s

-

each other. As for the various closures that have been u
during investigation of the two examples, one can draw so
definite conclusions@30#.

For the suspension example, Advani and Tucker@31#
present seven different closures for Eq.~1! in tabular form,
ranging from the closures of Hand@3# and Hinch and Leal
@4# to their own hybrid form. Rather than repeat this tab
here, the reader is referred to@31#, p. 373. Only the quadratic
(S1) closure satisfies both constraints~18! and ~19!. In the
few homogeneous flow fields tested thus far, only the q
dratic closure and one other~the Advani-Tucker hybrid!
have never displayed an aphysical behavior@31#. Thus it
seems plausible that the more sophisticated investigat
involving fitted approximations@15,16# would benefit by
consideration of the constraints imposed upon the closure
time-structure invariance.

The closure approximation introduced by Doi and Oh
@10# for the fourth moment in their evolution equation for th
second moment is

Rabg«5
1

trN
NabNg« . ~23!

This closure satisfies both constraints imposed by the Ja
identity and hence Eq.~23! is dynamically consistent with
time-structure invariance. This is in accord with our expe
ence since it is known that this closure gives a reasona
good approximation of the fourth moment and is well b
haved physically, at least in shear flow@10#. However, it now
becomes clearer what types of extensions of Eq.~23! are
allowable in order to obtain, we hope, a more accurate
proximation, as described below.

As alluded to in@28#, one must not confuse the closu
approximation of Eq.~23!, which is purely convective, with
a similar one, common in liquid-crystalline theories, th
arises through the coupling of the constant length constr



it
-
ic
he

vio
h

wi
h
r

ur
m

c-
f

i-
of
n

ai
iou
n.

s
o

ne
n

e

d
at

he
-

s

ng
in

cal

-

za-
s,
lve
f

of

le,

the

t
ill
ns.
he
-
c-

on,

e-

int
ain-

tion
n-
,
ts

sses

-
al-

56 4101TIME-STRUCTURE INVARIANCE CRITERIA FOR . . .
from the rigid objects and dissipative effects associated w
the rotational diffusivity@32#. This latter closure approxima
tion is known to cause a suppression of the rich dynam
behavior of liquid-crystalline materials that is inherent in t
evolution equation for the distribution function@33#. How-
ever, it is evident that this suppression of dynamical beha
is due solely to the dissipative effects on the closure. T
constraints discussed herein do not apply to closures
dissipative contributions and no conclusions can be reac
concerning them in this analysis. These dissipative closu
must be addressed as discussed in@28#.

In order to examine some more general forms of clos
approximations one may concentrate on the second exa
~the Doi-Ohta theory!, with constraints~18! and ~20!. The
functional dependences of thef i j ’s are now not specified
prior to the application of the constraints, but it is still ne
essary to choose a particular degree of symmetrization
the closure of Eq.~21!. Three particular cases of symmetr
zation will be examined here, ranging from a low form
symmetrization to full symmetrization. Due to the inhere
symmetry of the second-rank tensorN, a low form of sym-
metry for a general closure isRabg«5Rbag«5Rab«g, a
simple example of Eq.~21! for this particular case being

Rabg«5I 1f 1dabdg«1 f 2dabNg«1
1

I 1
f 3NabNg«

1
1

I 1
f 4dabNg«

2 1
1

I 1
2 f 5NabNg«

2 1
1

I 1
3 f 6Nab

2 Ng«
2 ,

~24!

where allb i j , j Þ1, are taken as zero@34#. Constraint~20!
can now be applied to this closure and a set of constr
equations can be derived by equating to zero the var
orders of the tensorN appearing in the resulting expressio
These equations give explicit relationships between thef i ’s
appearing in Eq.~24!. When applying this procedure, it i
necessary to reduce to lower order all third and higher m
ments using the Cayley-Hamilton theorem, as mentio
above. Furthermore, since for general functions one does
know a priori the order of the derivatives of thef i ’s with
respect toN, these must be assumed to possess a gen
form as well:

] f i

]Nab
5C idab1J iNab1V iNagNgb for all i . ~25!

In these expressions,C i , J i , andV i must also be evaluate
using the constraint equations derived in the above-st
manner, as well as the additional constraints

] f i

]Nab
Nab50 for all i , ~26!

159 f 113 f 21 f 313 f 4~122x!1 f 5~122x!1 f 6~122x!2,
~27!

the former arising automatically from the realization that t
f i ’s are functions ofx andy and the latter from the normal
ization condition@35#.

For the closure of Eq.~24!, the constraint relationship
derived are
h
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ed
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J31
2

I 1
2 f 52

1

I 1
C550, ~28a!

I 1C51~ I 1
222I 2!J550, ~28b!

I 1C31~ I 1
222I 2!J350, ~28c!

f 31~122x! f 551, ~28d!

with all other f i , C i , J i , andV i required to vanish. These
constraints define the allowed functionality of the remaini
f i ’s, and since the four equations involve six unknowns,
general they cannot be solved without additional physi
requirements. However, since bothV3 and V5 vanish, f 3
and f 5 , according to Eq.~25!, cannot depend upon the de
terminant, requiring that these entities are functions ofx only
@36#. One would be tempted to use higher-order normali
tion conditions@37# to obtain additional constraint equation
thus closing the system, but these turn out always to invo
y, which is no longer included in the allowed functionality o
the remainingf i ’s. Hence the net result of the application
the constraint~20! to the closure~24! is the reduction of six
functions of two variables to two functions of one variab
with four explicit relationships between the remainingf i ’s
that must be satisfied. In fact, by taking the derivative of
normalization constraint~28d! with respect toNab and sub-
sequently using Eq.~28b!, it is straightforward to show tha
any two functions satisfying the normalization constraint w
automatically satisfy the remaining constraint equatio
This implies that only the normalization condition affects t
values of f 3 and f 5 and that only a single additional con
straint condition is required in order to determine both fun
tions uniquely. In the absence of the normalization conditi
the first three constraints of Eqs.~28! represent the more
general functionality allowed from consideration of tim
structure invariance alone.

One can also examine two limits where the constra
equations reduce to a closed set, arising when either rem
ing f i is set equal to zero. Whenf 550, f 3 is required to be a
constant and this constant is required from the normaliza
condition to be unity. This is the closure approximation i
troduced by Doi and Ohta@10#. When f 3 is set equal to zero
f 551/(122x), which is consistent with all of the constrain
~28! imposed by the Jacobi identity.

The next closure approximation to be examined posse
an intermediate degree of symmetry, as dictated by Eq.~6!:

Rabg«5I 1f 1dabdg«1 f 2~dabNg«1Nabdg«!1
1

I 1
f 3NabNg«

1
1

I 1
f 4~dabNg«

2 1Nab
2 dg«!1

1

I 1
2 f 5

3~NabNg«
2 1Nab

2 Ng«!1
1

I 1
3 f 6Nab

2 Ng«
2 . ~29!

This expression results from Eq.~21! by assuming that all
b i j 50, exceptb11,b31,b61,b215b22, b415b42, andb515
b52. Applying constraint~20! to this closure using the pro
cedure described above, one can calculate that the only
lowable nonzero functionf i is f 3 , which must be equal to a
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constant. Hence, in this case, the net result of applying
~20! to Eq. ~29! is that six functions of two variables ar
reduced to a single arbitrary constant. Again, the normal
tion condition can be used to assign this constant the valu
unity, for which Eq.~23! results.

The last case to examine is that of full symmetry, whi
means thatR is invariant to any permutations of the comp
nent indices. The closure approximation is now that which
expressed by Eq.~21! with all theb i j ’s being equal tob i for
each value ofi 51, . . . ,6. In this case, one can calculat
with the aid of a symbolic manipulator, that all of thef i ’s
must vanish. It is now apparent that as the degree of sym
trization increases, the flexibility in the choice of the fun
tionality of the f i ’s decreases. This is not surprising since
is evident that an increased degree of symmetry acts to
strict the functionality of the general closure~21!. Any fur-
ther restrictions imposed on the system by time-structure
variance can only do the same. Once full symmetry
obtained, the restrictions placed upon the closure approxi
tion ~for this particular example! by time-structure invariance
become so severe as to allow no consistent closure wha
ever.

At first glance the above-stated observation seems to
tradict physical intuition and to invalidate some well-defin
probability distributions. For example, the fourth moment
a Gaussian distribution may be expressed exactly in term
the second moments as

Zabg«5NabNg«1NagNb«1Na«Nbg . ~30!

It must be realized, however, that the fourth moment d
not enter into the intrinsic equations of motion of the syste
so that the fact that all of the arbitrary functions are zero
entirely consistent with the Gaussian distribution.

For other distributions in the present example, it should
recognized that the full symmetry ofR may need to be sac
rificed in order to obtain a closure consistent with oth
physical requirements on the system. There seems to
price to be paid for reducing a fourth-rank tensor~with a
higher-order of symmetry! to a product of second-rank ten
sors~with lower-order symmetry!. It is not conclusively clear
at this point whether or not full symmetry is more or le
important than the other physical requirements. However
mentioned earlier when discussing the suspension exam
many of the closures that respected other physical crit
~including the symmetries! of the fourth moment exhibited
an aphysical behavior under some circumstances, whe
the only closure that respected time-structure invariance
always well behaved@31#. This provides one crude indica
tion that respecting time-structure invariance may be
most important of the various physical requirements. F
thermore, as evident from the Doi-Ohta evolution equatio
the different components of the fourth moment~and hence
s
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the closure! play very different roles in the evolution equa
tions for the components of the second moment; this imp
again that full symmetry might not be a strong physical
quirement for the closure.

The problem with symmetrization and time-structure
variance overconstraining the problem may be endemic
the simplicity of the case~the Doi-Ohta equation! examined.
For the more complicated case of a fluid suspension, it m
turn out that the presence of a non-unit shape factor co
impart an extra degree of freedom to the analysis, thus
dering feasible full compatibility with all of the constraint
that are now accepted on the functionality of the closu
Hence the trade-off between normalization, degree of sy
metrization, and time-structure invariance may only be
issue for simple systems such as the Doi-Ohta case.

The final issue to be addressed in this article is to try
make some deductions as to what are some additional e
tions that can be used to close the set of constraints impo
by normalization and the Jacobi identity. Unfortunately, th
issue must remain largely unsolved, but help may be offe
in general form. For instance, if the system is compressi
one may consider an isotropic expansion~for which N is
diagonal, with all nonzero components being equal, i.e.N
5I 1d/3! by taking the trace of the evolution equation forN,
Eq. ~4!, with the closure of Eq.~24!:

]Naa

]t
522Ng«¹gv«1 f 3Ng«¹gv«1

f 5

Naa
NghNh«¹gv« .

~31!

For an isotropic expansion, it is required that

]Naa

]t
52

Naa

3
¹gvg , ~32!

which adds another constraint to the set of equations~28!:

f 31 1
3 f 551. ~33!

This expression, coupled with the normalization conditio
requires thatf 550 andf 351. Of course, for an incompress
ible fluid system this constraint on the evolution equation
the second moment is not required. Perhaps other physic
meaningful constraints may be constructed in a similar m
ner.
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