PHYSICAL REVIEW E VOLUME 56, NUMBER 4 OCTOBER 1997
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In many areas of physics, time evolution equations for moments of distributions are expressed in terms of
higher-order moments. Closure approximations are then introducedad hocfashion to reduce the higher-
order moments to functions of the lower-order ones. Herein, the time-structure invariance of the Poisson
bracket as manifested through the Jacobi identity is used to derive constraint relationships on these approxi-
mations. These constraints severely limit the allowable functionality of general closures and help to define the
boundaries within which future investigations should concentf&®063-651X97)10410-X

PACS numbds): 05.70.Ln, 05.60+w, 51.10+y

INTRODUCTION factor,D the rotational diffusivity, and (*)/Dt the material
derivative of*. The quantitied® andQ are defined as
In many areas of physics, time evolution equations for
probability distributions are typically expressed in terms of
moments averaged over the probability space. These areas Ef 3 Ef 3
include polymer dynamickl], quantum field theor}2], sus- Pap PaPat &P Qupye PaPsPyPet 07,
pension and colloid fluid mechani€s,4], kinetics of phase @
transitions and spinodal decompositid 6], the mechanics
of turbulence[7-9], liquid-crystalline dynamicg1,6], the  p being the unit vector pointing in the direction of the major
fluid mechanics of immiscible blend40,11], and statistical axijs of a given particle ang(p,x,t) the probability density
mechanicg12,13. These moment evolution equations arefunction. With these definitions, normalization of the distri-
much simpler to solve computationally than the full prob- pytion function at any positiox and timet requires that
ability distribution evolution equation, but typically involve p_ =1 andQ,qy. =P, -
higher-order moments appearing in the equations for the Equation (1) would be a straightforward expression to
lower-order moments. Closure approximations are then insplve, even under general circumstances, were it not for the
troduced in order to reduce the moments of higher order ifourth moment of the distributio® appearing on its right-
terms of lower-order ones, but, in many cases, very littlenand side. Similarly to the procedure outlined above, an evo-
physical guidance is used in the construction of these closungtion equation for the fourth moment can also be derived,
approximations, with the result that many of those used dispyt it turns out to depend upon the sixth moment and so on,
play aphysical behavior under certain circumstances. Furad infinitum Thus, in order to gain any practical advantages
thermore, with the few genuine restrictions on the a”owablqrom Eq(l) itis necessary to devise a closure approximation
functional forms of these approximations currently in use, arfgr the fourth moment in terms of the second.
infinite variety of them are available, each of which must be  Another tangible example of the use of closure approxi-
tested indiVidua”y, which is an even more Computationa||Ymati0ns is provided by the Doi-Ohta theory of incompress_
intensive process than solving the full evolution equation fofiple, immiscible blendg10]. In this theory, the droplets of

the prObablllty distribution itself, e.g., by simulation tech- the dispersed phase are taken to have a Surface{pﬂ'eanit
niques[14]. The magnitude of literature devoted to testingyolume Q given by

closure approximations is voluminous and testifies not only
to the importance of the issue, but also to the lack of physical
guidance that is available for their construction.

As a specific example of the use of closures in the me-
chanics of a suspension of particles in an incompressible
Newtonian fluid, the evolution equation for the second mo- . . .
ment of the probability density functioR(x,t) is given by wheren is the outwardly directed unit vector normal to the

Q=j f(n,x,t)d%n, 3)

[4] droplet interface. The conservative dynamics of the second
moment of the interphase density functibriollow an evo-
DP.s , ) lution equation of the form
Dt =3(Vyu,= V0, )P,s+3(V,ug=Vgv,)P,,
+%)\(Vyva+vavv)P7ﬁ+%)‘(Vvvﬂ'l'VBUV)PaV MZ—NMVBU),—NMVavy-i-ZaBysVyvs, (4)

Dt
_2)\Qaﬂ’ysv‘yv£+2D(5aﬁ_3Paﬁ)! (1)

Vv being the velocity gradient tensax, the particle shape where
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5 thin particles in the first example. The first step, however, is
NaBEJ’ nyngf(n,x,t)d>n, to formulate and explain time-structure invariance.
3 TIME-STRUCTURE INVARIANCE
Zogye= | Ngngn,n f(n,x,t)d>n. (5)

The principle of time-structure invariance is imbedded in
the Poisson bracket of Hamiltonian mechanics. In this frame-
work, the reversible dynamics of an arbitrary functiofal
are governed by the expression

Again, one is faced with obtaining an approximation for the

fourth moment appearing in E@4) in terms of the second

moment; however, this time the normalization condition re-

quires thatN,,=Q, so that we no longer have a constraint dF

upon the first invarianti.e., the traceof the second moment. — ={F,H}, @)
Unfortunately, there is very little physical guidance avail- dt

able to use when motivating a particular closure. Typically,

one would like the closur® to be approximately equal @  where{,} denotes the Poisson bracket dtds another func-

or Z in arbitrary flow fields. SincdR=f(A) (with A denot- tional, typically called the Hamiltonian, which acts to gener-

ing eitherP or N), it is expected thalR should possess some ate the system dynamics. The Poisson bracket is antisymmet-

of the inherent symmetries @ or Z, say, ric, {F,H}=—{H,F}, so that identifying the Hamiltonian
with the total system energy then requires thiHt/dt
Ragye=Ryeap=Rgaye=Ragey: (6) ={H,H}=0, thus guaranteeing the conservation of energy.

Another key feature of the Poisson bracket is that any revers-
for example. Another typical requirement ensures the corredble dynamics, generated by, will preserve the structure of
normalization,R,,,.=A,. . These two restrictions, in most the bracket for all timed. If F, is defined as the time-
studies, represent most of the physical information that islependent, which is the solution of
brought to bear upon the choice of the closure. In sophisti-
cated studies, such as that of Hinch and Led) limiting dF,
forms of the equations are examined, where the closures can H:{Fth}r (8)
be fitted exactlyAd hocinterpolations are then constructed
for intermediate circumstances.

More recent investigationgl5,16 are beginning to pro-
vide adequate approximations for the majority of the few,
simple, homogeneous flow fields examined. In these studies,
very general approximations are written down in terms of
arbitrary scalar functions of the invariants of the second mo-_ . : L . . .
ment[17] and these functions are evaluated by fitting theTakmg the time derivative of this expression according to
approximation to the exact solution involving the distribution Eq. (8),
function for a few well-defined flow problems. However, no
other physical guidance is available to aid in the selection of {F.Gl . H}={{F¢ .H}.G3+{F .{G.H}}, (10
these functions and their evaluation based upon obtaining the o ) _ )
distribution function is, although on a much more limited @nd then substituting Eq9) into this expression, after rear-
scale, solving the problem one was trying to avoid in the first@ngement, one obtains
place. Furthermore, whether or not, and to what extent, these
closures will work in inhomogeneous flow fields should be a {G Fh HH{{F HELGH{{H,G},F3=0. (11
major concern.

Although the future development of closure approxima-This expression is known as tlacobi identity More details
tions will probably, by necessity, follow along the lines out- concerning Poisson brackets and their properties may be
lined in the preceding paragraph, the work effort may befound in any textbook on classical mechanics.
significantly reduced if one has anpriori idea, based upon The Poisson bracket plays a central role in the dynamics
some meaningful physical guidance, as to what the allowablef all physical systems. Although it can only describe the
forms of the arbitrary functionals are in order to ensure thateversible dynamics, it still contributes to dissipative systems
the overall dynamical structure of the total system of equawhen these are expressed in Hamiltonian form. This expres-
tions is preserved. Clearly, more physical criteria are needeslion of dissipative dynamics in Hamiltonian form allows the
to filter the excessive functionality imbedded in the math-extension of many of the benefits of classical Hamiltonian
ematical nature of closure approximations. In this article wemechanics to real systems and thus this idea has attracted
offer assistance in this regard by formulating general guidemuch attention in recent years. The product of this attention
lines for the selection of these closures based upon the timés the emergence of elegant and powerful formalisms for the
structure invariance inherent to the reversible dynamics oflescription of dissipative systemi$8—20. For the present
physical systems. The application of this technique will beanalysis, it must be realized that once one expresses the re-
illustrated for the examples cited above, which are represensersible dynamics of any system in the form of a bracket
tative of similar equations in other areas of physics. For simstructure, it is required that this bracket possess the proper-
plicity in the following analysis, we shall set the particle ties inherent to a Poisson bracket, i.e., antisymmetry and
shape factoi equal to unity, corresponding to very long, satisfaction of the Jacobi identity.

then the structure of the Poisson bracket is preserved for two
arbitrary functionals when

{F.G}i={F,G}. 9
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APPLICATION OF TIME-STRUCTURE INVARIANCE Poisson bracket for a covariant deformation tensor, which
TO DYNAMIC PROBLEMS was discovered i24] and derived from Hamilton’s prin-
In order to apply time-structure invariance to a particularCiple in[18]. It too should satigfy the properties of a Poissgn
i o Lo bracket through its construction, and this has been verified
problem, one must first recast it in Hamiltonian form. To directly [24]

accomplish this, one must determine the Poisson bracket cor- The brackets(12) and (13) were obtained by extending

requnding to th.e reversible dynamics .Of the system undq{nown result§11,18,23,24,2pto the present cases, whdRe
consideration, with reference to the antisymmetry propertyls a function ofP or N, as consistent with the antisymmetry

-lgglizslcs)nng::e\::rllert)grmlglrpl/zriglflcu'r: tgici?’sa:txgi;?/;maslrg; (_Property of a Poisson bracket. This extension is unique and
phy y é’xplicitly required for all of the reversible dynamics of the

been WQrKEd oulill,z_l_—26. Constraint equations may then system to be described by a Poisson bracket. It may be veri-
be obtained by requiring satisfaction of the Jacobi Identltyfied that these brackets do indeed generate the evolution

(11). :
. . _equations for the second momerits and (4) for a proto-
In the following analysis, only the two examples men é¥pical Hamiltonian[18]

tioned above are considered, which are representative

many such constructions encountered in the various subfields _ f (E 3
of physics[27]. The Poisson bracket corresponding to the HIV.A] 2 P yHo(A) Jd7. (19
reversible dynamic$28] of the first example(suspension Through the antisymmetry property of the Poisson

fluid mechanicsfor two functionalsF[v,P] andH[Vv,P] is  pracket, we find an immediate relationship between the evo-
lution equation for the second moment and the reversible

{F’H}:_f [F, H, Vgu,—H, F, Vv contributions to the kinematic properties of the fluids. By
L 7 v B 7 evaluating the evolution equation for the velocity vector field
YFo H VP .~Ho E V.P from each bracket, one can obtain explicit relationships for
Pap vy v @B T TPag vy Tyt af the reversible contributions to the extra stress tensor field
_ involving R:
+PogHp, Vo F,, —PysFe, Vo H,, olving

a’aﬂ:ZPﬂyH Pya_ 2RysaﬁH p%,
+PyaHp, VoF,,~PyaFp YV H

Y Up
+2Fp RugeVeH, —2Hp Rup, V.F, 1d%. o Tapm TN Ry (16
ok Y p v whereo is defined from the momentum equation
(12) v
p Wz_pvﬁvﬁva_vap_’_vﬁo-aﬁl (17)
For the second example, , . . . .
p being the isotropic pressure apdhe fluid mass density.
Hence any closure approximation that is chosen for a par-
{F.H}= —f [Fy Ho Vevy=Hy Fy Vv, ticular second moment evolution equation must be incorpo-
rated into the stress tensor, according to expressions such as
+ FNaBHvyvaaB_ HNaBF%VyNaﬁ Eq. (16), in order to obtain an internally consistent prediction
of kinematical properties.
+NygFn,VaHy = NygHn VoF, It thus remains to examine the full forms of E¢$2) and
(13) to find under what conditions the Jacobi identity is sat-
+NyaFn,VHo = NyoHn, VsFo isfied for each bracket via a direct substitution and subse-

3 quent elimination. Although this method is straightforward,

VSFUY_FNa;;RaﬁwVSHvy]d X, it is quite tedious. The results of this calculation are two
(13 constraint equations, for each bracket, which place severe

restrictions on the functionality dR. These constraint equa-

+Hn, Ragye

where the functional& andH now depend ow andN. For

the present analysis, there is no need to specify the functior;“-OnS are

als F and H, except to recognize the Hamiltonian bk IR gy

which is the proper generator for the system dynarfécs Rupye=Pue —p (18
hencedH/dt=0), and to define the Volterra derivatives ap- 7

pearing in Eqs(12) and(13) in the proper manngr8]:
oF oF

P =50, TP op,,

RipneOya™ RepyiOant Ragne0py~ Raeyi0ypt Rapydey

Fy =— . (14 JR JR JR
a6 6N, “R .8 +P aBye_ @Bne  p  TaByl
B aByeOin™ Fep P, p FE e P

WhenR=0 in Eqg. (12), that expression reduces to the Pois- JR JR JR

son bracket for a contravariant deformation tensor, which ~ _p %87 4 op  _ eBie_op @BYe _
was discovered by Grme[23] and derived from Hamilton’s e aP,, PYE 9Py, PIE 9Py,
principle by Edwards and Ber[26]. Through the method of (19)
its derivation, it should retain both of the properties of a

Poisson bracket, and this has been verified by direct substfer the first bracke{(12) and Eq.(18), with N replacingP,
tutions [23,24. When R=0 in Eq. (13), there results the and
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Rupne®ye = RapyeOnet RypyiOue— RypreOar T RayyeOpe tentially very useful for_ the illumination of restrictions on the
form of R in general circumstances, as will be explored be-

R 5. 4N IR g e IR gy IR ye low. Expressiong18)—(20) are the fundamental results of

T Rayye0pr TNy Ny, ” 9N, PY ON,, this paper; in essence, by expressign a form compatible

P with these constraints, one can satisfy the time-structure in-

IR gy IR gy IR e B variance criterion of the reversible dynamics. Furthermore,
“Nen THN Opne "N, 0¥ TN =0 (20 any R that does not meet these requirements should be re-

pe Op Op . . . . .
garded with caution and as possibly being ill-formulated
for the second onél3). physically.

The constraint relationship of Eq18) definesR as a Now that the constraint equations have been obtained, one

homogeneous function df or P of degree one, with all of can apply them to the general form of a closure approxima-
the associated properties of such functions. This fact is pation, which is consistent with the Cayley-Hamilton theorem,

J
Ragye = B110a50ye T B1200y0ps T B130ae Oy B210apPye T B220yePap™ B230 g PAayt B240aryPpe+ B250g,Aae
+ B260a:ApyT Ba1PapPys T B3P oy Ags T B3PasPp,+ B415aﬁAis + 342575Ai,6 + ﬂ43§,88Aiy+ 5445017A;2;5
+ BasOpy A+ BasPacP gyt BstAapAs T B oA st BssAseAy T BoaayAfs + BssAs,Ans
+ ﬁ596‘asAf§y+ BelAiBAzya + ﬁGZAzzyyAE’s + BG3A1218AZBS' (21)

with AiszAWAm. In this expression, th@;;’s are scalar each other. As for the various closures that have been used

functions of the invariants oA. Various degrees of symme- during investigation of the two examples, one can draw some

trization imply various equalities between tj#g’s appear- ~ definite conclusion$30].

ing in Eq.(21). For example, if one enforces full symmetry,  For the suspension example, Advani and Tuckgt]

then it is clear that all of thg;;'s are equal to each other for present seven different closures for Efj in tabular form,

each given value of=1, .. .,6, Inthis case, there are only ranging from the closures of Hari@] and Hinch and Leal

six arbitrary functions and the natural closure approximatiori4] to their own hybrid form. Rather than repeat this table

of Verleye and Dupref15] is obtained. here, the reader is referred[t8l], p. 373. Only the quadratic
The application of constrairtL8) to the closurg21) im-  (S1) closure satisfies both constrairfis8) and (19). In the

plies that one can immediately write down the allowed func-few homogeneous flow fields tested thus far, only the qua-

tionality of the 8;;’s for any valid closure, dratic closure and one othdthe Advani-Tucker hybrid
have never displayed an aphysical beha\i®t]. Thus it
B1j=11f1j(X.y),  Boj=TFa5(x,y), seems plausible that the more sophisticated investigations

involving fitted approximationd15,16 would benefit by

1 1 consideration of the constraints imposed upon the closure by
ﬁaj_i f3i(x.y), ﬁ4j_ﬁ faj(x,y), (22 {ime-structure invariance.

The closure approximation introduced by Doi and Ohta

1 1 [10] for the fourth moment in their evolution equation for the
Bsi=12 fsi(%.y),  Bej=13 fei(x.y), second moment is
1 1
j=123 or 1...,6,where thef;;’s are arbitrary functions Ragye=—r NagNye - (23)
of x andy, I,=trA, 1,=3[(trA)2—tr(A-A)], and I 7N 7

=defA are the invariants of, andx=1,/12, y=1,/13. The
action of constrain{18) is to reduce 27 functions of three This closure satisfies both constraints imposed by the Jacobi
variablesl, 1,, andl; to 27 functions of two variables  identity and hence Eq23) is dynamically consistent with
andy. Although not particularly limiting in a strict sense, the time-structure invariance. This is in accord with our experi-
satisfaction of this constraint is straightforward to guaranteeence since it is known that this closure gives a reasonably
It is obvious that Eq919) and(20) impose severe restric- good approximation of the fourth moment and is well be-
tions on the allowable functionality of the closure. Furtherhaved physically, at least in shear flo®0]. However, it now
progress depends on the exact definition of the degree dfecomes clearer what types of extensions of &§) are
symmetrization assumed, as well as on the functionalitiesllowable in order to obtain, we hope, a more accurate ap-
chosen for thef;;’s. By substitution of the chosen form of proximation, as described below.
Eqg. (21) into the second constraintl9) or (20) and then As alluded to in[28], one must not confuse the closure
equating to zero independently the various orders with reapproximation of Eq(23), which is purely convective, with
spect to the second momdr®9], additional restrictions are a similar one, common in liquid-crystalline theories, that
realized that relate the functions appearing in E2p) to  arises through the coupling of the constant length constraint
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from the rigid objects and dissipative effects associated with 1

the rotational diffusivity[32]. This latter closure approxima- Est 2 fs— - ¥s=0, (289
tion is known to cause a suppression of the rich dynamical 1 !

behavior of liquid-crystalline materials that is inherent in the 1, Ws+(12-21,)E5=0, (28b)
evolution equation for the distribution functid®3]. How-

ever, it is evident that this suppression of dynamical behavior 1, W5+ (13—-21,)E5=0, (280
is due solely to the dissipative effects on the closure. The

constraints discussed herein do not apply to closures with fa+(1-2x)fs=1, (280

dissipative contributions and no conclusions can be reached. —_ . .
concerning them in this analysis. These dissipative closure¥ith all .otherfi_, Vi, Ei, and®; rqulred_ to vanish. Thgsg
must be addressed as discussef2Bi. constralnts_ define the allowed_ func_tlonahty qf the remaining
In order to examine some more general forms of closuréi’s' and since the four equations _mvolve SIX _unknowns,_ In
approximations one may concentrate on the second exam ngral they cannot be splved without addmona} physical
(the Doi-Ohta theory with constraints(18) and (20). The requirements. However, since bofh; and 5 vanish, 5
functional dependences of thg’s are now not specified andfs, according to Eq(25), cannot depend upon the de-
prior to the application of the constraints, but it is still nec- [erminant, requiring that these entities are functions ofly
essary to choose a particular degree of symmetrization fd0)- Oné would be tempted to use higher-order normaliza-
the closure of Eq(21). Three particular cases of symmetri- tion cond.|t|0ns[37] to obtain additional constraint equafuons,
zation will be examined here, ranging from a low form of thus qlos!ng the systgm, but these turn out alwayg to mvolve
symmetrization to full symmetrization. Due to the inherentY: Which is no longer included in the allowed functionality of

symmetry of the second-rank tengdr a low form of sym- the remainingi’s. Hence the net result of the application of
metry for a general closure iR.s,0=Rgaye=Rapey @ the constrain{20) to the closurg24) is the reduction of six

simple example of Eq21) for this particular case being fu_nctions of two variables to two functions of one_vgriable,
with four explicit relationships between the remainifi¢s
that must be satisfied. In fact, by taking the derivative of the
normalization constrain28d) with respect toN,z and sub-
sequently using Eq28b), it is straightforward to show that
+if 5. N2 +£f N N2 +if N2 N2 any two functions satisfying the normalization constraint will
[, 47 ye 2 150 ye T3 16 af ye automatically satisfy the remaining constraint equations.
(24) This implies that only the normalization condition affects the
values off; and f5 and that only a single additional con-
where allBj;, j#1, are taken as zeili@4]. Constraint(20)  straint condition is required in order to determine both func-
can now be applied to this closure and a set of constrairtions uniquely. In the absence of the normalization condition,
equations can be derived by equating to zero the variouthe first three constraints of Eq&8) represent the more
orders of the tensdl appearing in the resulting expression. general functionality allowed from consideration of time-
These equations give explicit relationships betweenfflee  structure invariance alone.
appearing in Eq(24). When applying this procedure, it is One can also examine two limits where the constraint
necessary to reduce to lower order all third and higher moequations reduce to a closed set, arising when either remain-
ments using the Cayley-Hamilton theorem, as mentionedhg f; is set equal to zero. Wheig=0, f5 is required to be a
above. Furthermore, since for general functions one does ngbnstant and this constant is required from the normalization
know a priori the order of the derivatives of thig’s with  condition to be unity. This is the closure approximation in-
respect toN, these must be assumed to possess a genertibduced by Doi and Ohfl0]. Whenf; is set equal to zero,

1
Raﬁys: | lflaaB5y€+f25aﬁN78+ H f3Na,BNys

form as well: fs=1/(1—2x), which is consistent with all of the constraints
. (28) imposed by the Jacobi identity.
ar —_ . The next closure approximation to be examined possesses
N5 =ViGupt EiNapt QiNe, Ny forall i.(25 4 iniermediate degree of symmetry, as dictated by(&q.

. — 1
In phese expressm_nﬂf,i = ,.anin must e_llso be evaluated Ragye=11f18058,+ T2( 84N 1o+ Nypdye) + ™ faN o N
using the constraint equations derived in the above-stated 1
manner, as well as the additional constraints 1 1
2 2
afi - +Ef4(5aﬁN’}’8+Naﬁ678)+Ef5
m N,z=0 for all i, (26) L
X (NagN3e +NGgN,e) + 73 TeNG NG, (29
1=9f+3f,+ f5+3f,(1—2x)+f5(1—2x) + fg(1—2x%)?, 1
(27)

the former arising automatically from the realization that theThis expression results from E1) by assuming that all
f;’s are functions ok andy and the latter from the normal- B;;=0, exceptB11,B31,861,821= B22: Ba1= Baz, andBs;=
ization condition[35]. Bso. Applying constraint(20) to this closure using the pro-
For the closure of Eq(24), the constraint relationships cedure described above, one can calculate that the only al-
derived are lowable nonzero functiof; is f3, which must be equal to a
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constant. Hence, in this case, the net result of applying Eghe closurg play very different roles in the evolution equa-
(20) to Eq. (29 is that six functions of two variables are tions for the components of the second moment; this implies
reduced to a single arbitrary constant. Again, the normalizaagain that full symmetry might not be a strong physical re-
tion condition can be used to assign this constant the value afuirement for the closure.
unity, for which Eq.(23) results. The problem with symmetrization and time-structure in-

The last case to examine is that of full symmetry, whichvariance overconstraining the problem may be endemic to
means thaR is invariant to any permutations of the compo- the simplicity of the casé&he Doi-Ohta equatignexamined.
nent indices. The closure approximation is now that which ig~or the more complicated case of a fluid suspension, it may
expressed by Ed21) with all the 8;;’s being equal tg3; for  turn out that the presence of a non-unit shape factor could
each value ofi=1,...,6. Inthis case, one can calculate, impart an extra degree of freedom to the analysis, thus ren-
with the aid of a symbolic manipulator, that all of tlfigs  dering feasible full compatibility with all of the constraints
must vanish. It is now apparent that as the degree of symméhat are now accepted on the functionality of the closure.
trization increases, the flexibility in the choice of the func- Hence the trade-off between normalization, degree of sym-
tionality of the f;'s decreases. This is not surprising since it metrization, and time-structure invariance may only be an
is evident that an increased degree of symmetry acts to réssue for simple systems such as the Doi-Ohta case.
strict the functionality of the general closuf2l). Any fur- The final issue to be addressed in this article is to try to
ther restrictions imposed on the system by time-structure inmake some deductions as to what are some additional equa-
variance can only do the same. Once full symmetry istions that can be used to close the set of constraints imposed
obtained, the restrictions placed upon the closure approximay normalization and the Jacobi identity. Unfortunately, this
tion (for this particular exampbeby time-structure invariance issue must remain largely unsolved, but help may be offered
become so severe as to allow no consistent closure whatsw general form. For instance, if the system is compressible,
ever. one may consider an isotropic expansidar which N is

At first glance the above-stated observation seems to comtiagonal, with all nonzero components being equal, Ne.,
tradict physical intuition and to invalidate some well-defined=1,6/3) by taking the trace of the evolution equation fér
probability distributions. For example, the fourth moment of Eq. (4), with the closure of Eq(24):
a Gaussian distribution may be expressed exactly in terms of

the second moments as N, fs
—=-2N,.V v +f3N,.V.v,+—N_ N .V v..
= at vetyZe T 130y T y0e TN yn'Nps ¥ s
Zaﬁ'ys_NaBNy8+NayNBs+NasNBy' (30) e (31)
It must be realized, however, that the fourth moment does
not enter into the intrinsic equations of motion of the systemfor an isotropic expansion, it is required that
so that the fact that all of the arbitrary functions are zero is
entirely consistent with the Gaussian distribution. N 0 N,.
For other distributions in the present example, it should be G 3 V.o, (32

recognized that the full symmetry & may need to be sac-

rificed in order to obtain a closure consistent with other )

physical requirements on the system. There seems to be ¥ich @dds another constraint to the set of equati@8s
price to be paid for reducing a fourth-rank tengwith a fot 1f=1 (33)
higher-order of symmetjyto a product of second-rank ten- 3TesT

sors(with lower-order symmetry It is not conclusively clear  This expression, coupled with the normalization condition,
at this pOint whether or not full Symmetry is more or less requires thaf5:0 andf3: 1. Of course, for an incompress-
important than the other physical requirements. However, agle fluid system this constraint on the evolution equation for
mentioned earlier when discussing the suspension examplghe second moment is not required. Perhaps other physically

many of the closures that respected other physical criterigneaningful constraints may be constructed in a similar man-
(including the symmetrigsof the fourth moment exhibited ner.

an aphysical behavior under some circumstances, whereas
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