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Relativistic nonlinear dynamics of a driven constant-period oscillator
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The nonlinear dynamics of the constant-period oscill&@lativistic oscillator whose period is independent
of energy driven by a time-periodic external force is studied. It is shown that the oscillator displays nonlinear
resonances and chaos when the driving force is sufficiently strong. Such nonlinear behavior arises from the fact
that the frequency of the oscillator is shifted from its natural value and becomes energy dependent in the
presence of an external force. Theoretical analysis of the resonances is given using the second-order canonical
perturbation theory{S1063-651X97)10210-Q

PACS numbdss): 05.45+b, 03.30+p

I. INTRODUCTION motion is independent of energy in the entire energy range,
both nonrelativistic and relativistic. The CPO can thus be

Recently, we reported on fundamental mathematical andonsidered as a generalized version of the SHO whose period
physical properties of a relativistic oscillator whose period isof motion is independent of energy only in the nonrelativistic
independent of energy, which we refer to as the constantregion.
period oscillator(CPO [1]. In this work we study classical ~ Mathematically, a constant period means that the action
dynamics of the CPO driven by a time-periodic force. variable! varies linearly with energy, i.e.,

The CPO is a relativistic counterpart of the simple har-
monic oscillator(SHO) in the sense that both SHO and CPO

: : ; 1 2 (b

are characterized by an energy-independent period of mo- |= _— fﬁ pdg= _J VIE+mE—V(q)]?-m2c’dq
tion. The period of the SHO is constant as long as one re- 2m mCJo
mains in the nonrelativistic regime, and this is essentially
why the SHO, even when driven by a time-varying external  _— lE' (1)
force, is entirely free of chaos. As one enters the relativistic 2m
regime, however, the period of the SHO is no longer inde-
pendent of energy, which gives rise to the generation of nonwhere V(q), assumed to be symmetric abayt 0, repre-
linear resonances and eventually to chaos when a sufficientents the potential that yields the energy-independent period,
strong external force is presef®]. It can then be immedi- b is the amplitude of oscillation at given enery andT is
ately suggested that, when relativistic effects are taken intghe constant period of motion. From E(d), one can obtain,
account, the system that is most resistant to the generation g&ing the technique of Laplace transform,
nonlinear resonances and to chaotic behavior would be the
CPO, a direct motivation for this study.

As reported in this paper, however, the driven CPO is not Joce—)\EV—l(E)dE: cT 1
entirely free of chaos. Our numerical calculations show that 4mc? )\ZemczKl()\mcz)’
nonlinear resonances are generated and, when these reso-

nances overlap, chaotic behavior occurs. The origin for sucmlhereKl denotes the modified Bessel function of order 1.
chaotic behavior of the driven CPO lies in the fact that theEquation(Z) in principle, allows one to determiré™ L, the

period of the CPO is no longer constant in the presence of ; : .
external force. This is what differentiates the CPO from thﬁ?werse function oW/, and thusv(q). No analytic expression

SHO. The period of the nonrelativistic SHO is still given by ![?]ete;g::nct)i;mg\;m functions, however, has been found for

its natural period even when an external force is present ; . I P
: : . : . '’ The behavior ofV(q) in the vicinity of q=0 is deter-
while the period of the CPO is shifted from its natural Valuemined by the motion of the CPO in the nonrelativistic limit.

and becomes energy dependent upon application of an exteg- " .. : .
e ; " By utilizing the asymptotic expansion &f; for largeAmc?,
nal force. The shift in the period can be properly dealt W|th(1ne obtains from Eq2)

only when one goes beyond the lowest order in the canonica
perturbation theory. The dynamics of the driven CPO is
unique in the sense that the lowest-order perturbation theory V(q)= Em(zﬂ) 3)
fails completely and challenges one to go to higher orders or 2 T

use a more elaborate theory. Here, results of our study based

on the second-order perturbation theory are reported. which indicates tha¥/(q) approaches the harmonic potential

as q—0. The potentialV(q) diverges asq approaches

+cT/4. The behavior oV/(q) nearq=*cT/4 can be deter-
We first present a brief review of the CH®|. The CPO mined by utilizing the power series expansion f for

is characterized by the unique property that its period osmallAmc?, and is given by

2

Il. CONSTANT-PERIOD OSCILLATOR
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FIG. 1. Poincarephase-space
maps for the driven CPO a®)
Fo=2, (b) Fy=5, (c) Fy=9, and
(d) Fp=13 (in arbitrary unit3.
The parameters are m=1,
c=1,w=1 andwy=2m (in arbi-

trary unitg.
mc2 1 Both Egs.(5) and (6) satisfy Eq.(3) in the limit g—0, but
Vg =me+ — ———. (4)  neither is consistent with Ed4) in the limit g— £cT/4.
V2 V1-4[qlicT Nevertheless, the two approximate formulas have been found

In the immediate vicinity ofgq=*cT/4, V(q) is almost a to yield a constant period to within 0.2% of fractional error
vertical line. This can be undgrstooa because. in the ulln both the nonrelativistic and relativistic energy regions.
trarelativistic limit, the velocity of the oscillator is=c and ~ YWhen high accuracy is required, the ex&(g) can be ob-

changes little with respect to energy. If the period of oscil-t@ined numerically, as described in Rél].' The potential
lation is still to remain independent of energy, the amplitude¥(d) generally has a bell-shaped curve; it behaves like a

of oscillation should remain constant regardless of energy@rmonic potential in the vicinity of§=0, but the slope of
which reguiresv(q) to be a vertical line. the potential curve increases gsmoves from zero toward

Although no exact analytic formula exists for the potential =€ T/4, until it becomes virtually a vertical line at
V(q), some approximate formulas were found that closelyd= *cT/a.
reproduce the exact potential for the entire rangeqof

—cT/4<g<cT/4. Two examples are given below: Ill. POINCARE MAPS
Vi(@) = mc2m? _(4a 2 71’4_ 1 ©) We now consider the CPO driven by a time-periodic force
1 2 cT ' and present in this section results of our numerical computa-

tion of Poincarephase-space maps. The Hamiltonian for the
driven CPO is

1
2
me COS%—ZO(ZWQ/CT)

V =— -1]. 6
2(q) 0.3 co3(2mqlcT) © H=p?c?+m?c*+V(q) + qFycoant, (7)
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o FIG. 3. Trajectory § vs time initiated at the elliptic fixed point
of the 7:1 resonance. The parameters mrel,c=1,w=1, and
Wo=27r (in arbitrary units.
T T 1 Fo=9, these fixed points are located further away from the
1.0 15 central fixed point and a second resonance with the elliptic
© and hyperbolic fixed points atgE&E —0.0870p=0) and
(g=—0.1772p=0) is generated. Finally, &,=13, a con-
siderable portion of the phase space is occupied by a chaotic
o sea.

IV. RESONANCE ANALYSIS

' j ! In this section we analyze the motion of the driven CPO

' using the second-order perturbation theory. In order to apply

J the canonical perturbtion theory, it is convenient first to go to
the action-angle space. The Hamiltonian is written in terms

FIG. 2. Frequency of oscillatiof) vs the action variable) of the action-angle variabldsé as

obtained theoretically using ER2) (solid curve$ and numerically
from the Poincaramaps(circles at (a) Fo=2, (b) Fo=5, and(c)
Fo=9 (in arbitrary unit3. The parameters am=1,c=1,w=1, H=wl +€eFo>, An(l)comné coswt, 9)
andwgy= 27 (in arbitrary units. n

whereV(q) is the constant period potential described in theWhere the parameter is introduced to identify the driving

previous section. In our numerical computation, both the polcorce term as the perturbation and will be set1 at the end

tential numerically obtained and the approximate analytic expf the calculation, and\,(1)’s are defined as

pressions of Egs(5) and (6) were used and found to give

virtually identical mapsV(q) was chosen such that the natu- q= 2 A, (1)comd. (10)
ral period of the CPO i =1, i.e., the frequency of oscilla- n

tion in the absence of an external forcenig= 2, andm, c, , ) ) o )
andw were taken to ben=1, c=1, w=1. With w, andw A(1)’s vanish for evem if the potential is symmetric, and
as chosen above, the resonance condition approach the SHO limit

2l
%: E(m,n integers (8) An(1)= "\ m_w05”1 1D

cannot be satisfied, 2, the frequency of oscillation in the ~ 1ABLE I. The location @ valu@ of the fixed points of the

presence of an external force, is taken to(e w,, as is resonances obtained theoretically from the second-order perturba-
I} 0

usually done in the lowest-order canonical perturbationt'o.n theer and numerically from the Poincareps. For all fixed
oints listed,p=0. The parameters arm=1,c=1,w=1, and

theory. The phase-space maps shown below, however, indls — 2 (in arbitrary units
cate clearly the existence of resonances and thus the need for— <" y '
higher-order perturbation theory.

Figure 1 shows Poincaghase-space maps for our driven
CPO obtained through numerical computation FAt= 2, the

Theoretical Numerical
Fq Q:w  Elliptic  Hyperbolic  Elliptic  Hyperbolic

trajectories are seen to revolve around the central fixed poing 7:1 —-0.16 —-0.01 —-0.14 —-0.02
a normal behavior one would expect also from, for examples 7:1 —-0.19 0.02 —-0.19 0.03
a driven SHO in the nonrelativistic regime. At=5, how- 6 7:1 -0.21 0.03 -0.21 0.06
ever, a nonlinear resonance appears with the elliptic and 7:1 -0.23 0.02 -0.23 0.09
hyperbolic  fixed points located respectively atg 9:1 —0.07 ~022 ~0.09 ~0.18

(g=-0.1874p=0) and @=0.0307p=0). We see that, at



56 RELATIVISTIC NONLINEAR DYNAMICS OF A DRIVEN . .. 4093

FIG. 4. Poincarephase-space
maps for the driven CPO ag)
FOZZ, (b) F0:5, (C) F():g, and
(d) Fo=13 (in arbitrary units.
The parameters aren=1,c=1,
w=2, and wy=1 (in arbitrary
units).

15 4 B

when the oscillator energy is sufficiently nonrelativistic thatand the new Hamiltonian by

wol <mc2. In general for the CPOA,(1)’s cannot be ex-

pressed in an analytic form but were obtained numerically in S

Ref.[1] for n=1-11.A,(1)’s usually decrease fast asis K, ¢, )=H(,0,0)+—. (15
increased, and it is often sufficient to consider only the first

few. Substituting Eqs(9) and(12) into Eq.(15) and utilizing Egs.

In the canonical perturbation theof8], one seeks a ca- (13) and (14) to collect terms of the same order & we
nonical transformation from the action-angle variable®X  jpiain

to a new set of action-angle variablek ¢), which allows an
identification of the action variablé as an invariant to a

desired order of perturbation. The generating function for thex (J, ¢,t)=wyJ+ € Woﬁ_Sl + &_Sl
desired transformation is written as J0  dt

S(3,0,1)=30+€S(J,0,0) + €2S,(J,0,) +---.  (12) FES A(J)comh comt|+ & WO%ng

n J J
The relation betweeh, # andJ, ¢ is given by
dA,(J) dS;
S 981(3,6,t)  ,95,(J,6,1) TR0 3 5000 cowt - (16)
|= o =dte——+e—— —+.., (13 n

Now, S; and S, are to be chosen so as to eliminate the
= 9S_, 0800 050,60 (14  andt-dependent parts in the brackets of Ef). Straight-
ad ad aJ ' forward algebraic manipulation yields
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FIG. 5. Poincarephase-space

maps for the driven SHO at@)
Fo=2, (b) Fy=5, (c) Fy=9, and

(d) Fp=13 (in arbitrary units.
The parameters aren=1,c=1,
i w=2, andw, (natural frequency
in the nonrelativistic limit =1 (in
arbitrary units.

Here, the bracket ) denotes a quantity averaged oveand
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1( )= 22 n(J) W W NWo—W t;i.e.,

7

and a somewhat more complex expressionSarEquation
(16) then becomes

K(J,d,t)=wWoJ+ eK,(J) + €2K,(J) + €K 5(J, )+ - - -,
(18

where

Ky(J)= < Fo, Aq(J)com 0coswt> =0, (19)

dA (J) 9S
KZ(J)=< 02 ) %cosn Hcoswt>
d[An(I)]? n’wo

84 dJ  (nwy+w)(nWo—w) "

(20

17T 1 2m
(f(J,&,t)>=?J0thJO dof(3,6.0). (2D

The frequency of oscillation in the presence of the external
force is given, to second order of perturbation, by

K d’[AL(D]?
Q3= =y ; [dJ(Z)]

nw,
(nwp+w)(nwy—w)
(22)

where we seg=1.

Equation (22) indicates that the frequency of the CPO
becomes energy dependent when an external force is present.
Substituting Eq.(22) into Eg. (8), one can now determine
whether and where th@:m resonance corresponding to
Q:w=n:m exists. In Fig. 2 we show)(J) as a function of
J at different values of, obtained theoretically using Eq.
(22) with A, (J) determined numerically as well as numeri-
cally from the Poincarenaps. It is seen that the second-order
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FIG. 6. Poincarephase-space
415 10 -05 00 05 10 15 maps for the driven square-well
oscillator at(a) Fo=2, (b) F4=5,

T T T T T T 30 (C) F0:9, and(d) F0:13 (in ar-
bitrary unity. The parameters are
m=1,c=1,w=2, andw, (natural

4 204 4

frequency in the ultrarelativistic
limit) =1 (in arbitrary units.

-10 4

-20

1 -304 .

perturbation theory on which Eq22) is based yields values For the elliptic or hyperbolic fixed point of the 7:1 or 9:1

of Q) in good agreement with the exact numerical values. Weesonance of Fig.(t), the appropriate value dof is 0 or 7,

note, in particular, that the maximum value @Qfis greater which corresponds t@=0. With | and # determined as
than 7 atFy,=5 but less than 7 aFy=2. The resonance above,q can be obtained from Eq10). The locations of the
condition, Eq.(8), can thus be satisfied with=1 andn=7  fixed points evaluated as above are shown in Table | along
at Fy=5, but not atF;=2. This suggests that the resonancewith those determined numerically from the phase-space
that appears dy=>5 but is missing aF,=2, as observed plots. The agreement between the two sets is seen to be
from Fig. 1, is the 7:1 resonance. That this is indeed the caseasonably good, which gives an added confirmation that the
is confirmed by our numerical calculation of the trajectorysecond-order perturbation theory provides a reasonably accu-
initiated at the elliptic fixed pointd=—0.1874p=0) of the  rate description of the dynamics of the CPO being consid-
resonance shown in Fig. 3. We observe also from Fig. 2 thagred.

the maximum value of) is greater than 9 & ,=9, indicat-

ing that the second resonance seen in Fig) Is the 9:1
resonance.

The location of each fixed point of the resonances can be
approximately determined by straightforward algebra. For a Further physical insights into the dynamics of the driven
given value ofF, we first solve Eq(22) to obtain the value CPO can be gained by comparing the behavior of the driven
of J that yields(} corresponding to the resonance being con-CPO with that of the driven SHO and the driven square-well
sidered, say) =7 if a fixed point of the 7:1 resonance is to oscillator. For that purpose we present in Figs. 4—6 Poincare
be determined. We then use the relation of @) to deter-  phase-space maps for relativistic oscillators in the constant
mine| corresponding to the fixed point from this valuedpf  period potential, harmonic potential, and square-well poten-
taking t=2mn/w and assigning an appropriate value éf tial, respectively. For convenience of comparison, we have

V. COMPARISON WITH SIMPLE HARMONIC
OSCILLATOR AND SQUARE-WELL OSCILLATOR
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chosen the driving frequeney=2 and the natural frequency fact easily show that, by substituting Ed.1) into Eq. (22),

of each oscillatowg=1 while m=1 andc=1 as before. Q=wy, i.e., the frequency of the SHO in the presence of an
Here the natural frequency of the SHO is defined as that irxternal force is identical to that in the absence of an external
the nonrelativistic limit {<<c), while the natural frequency force. The nonrelativistic SHO seems unique in this respect.
of the oscillator in the square-well potential is defined as thall other systems including the CPO suffer a shift in the
in the ultrarelativistic limit ¢=c). Thus, wog=1 for the oscillation frequency when an external force is applied. The
square well means that the half width of the welbhis w/2.  analogy between the CPO and the nonrelativistic SHO does
Comparing Figs. 4—6, we first note that the square-well monot go much beyond that they both have a constant fre-
tion is most easily chaotic. This is because the low-energyuency of motion in the absence of an external force. It has
region of the square-well potential is occupied densely withalready been found that quantum energy eigenvalues of the
high-period resonances that overlap easily upon applicatio®©PO are not equally spacédi].

of even a weak external force. At relatively high values of Throughout this paper we have implicitly assumed that
Fo, the phase-space maps of the square well and CPO réie external force may vary in time but is independent of
semble each other, which reflects the fact that the CPO in thgpatial coordinates. Although an analysis similar to the one
ultrarelativistic limit behaves like a particle in a square well. described in Sec. IV can still be applied to the case when an
The SHO'’s phase-space map compared with that of the CP€xternal force varies both in time and space, some new ef-
is characterized by many primary resonances that show ufects appear. It can be shown, for example, that even the
clearly in the map. We should note, however, that the size ofrequency of the nonrelativistic SHO becomes energy depen-
the chaotic sea is smaller for the CPO than for the SHO. Fodent in the presence of a space-time varying external force
example, aF ;= 13, the chaotic sea spreads over the regiorf4]. Consequently, nonlinear resonances can be generated
betweerp= — 20 andp= 20 for the CPO, while for the SHO and when they overlap, chaos can be exhibited by a nonrel-
the range ofp spanned by the chaotic sea is three times astivistic SHO driven by a space-time varying force. This is
large. This results from the fact that the CPO with its energy-0f some practical importance in plasma physics, because the
independent period in the absence of an external force igyclotron motion of a charged particle interacting with an
more strongly resistant to generation of nonlinear resonanceglectromagnetic wave can be described by a simple harmonic

than the SHO when an external force is applied. oscillator driven by an external force that varies periodically
both in time and in spade&—8]. We expect that the second-
VI. DISCUSSION order canonical perturbation theory described in this paper

can also be used to describe the resonances and chaos occur-

A sufficient condition for nonlinear resonances to be genving in such motion. Details will be described elsewhere.
erated and consequently for chaos to be exhibited by an os-

cillator is that the oscillation frequency varies with energy.
Although the CPO has an energy-independent frequénicy
period of motion in the absence of an external force, its
frequency is shifted and becomes energy dependent when an This research was supported in part by the Ministry of
external force is applied. One can thus understand that th&cience and Technology of Kor@lOST) under the project
CPO can behave chaotically when it is driven by a suffi-“High-Performance Computing-Computational Science and
ciently strong force. One may wonder whether the oscillatiorEngineering HPC-COSE,” by the Agency for Defense De-
frequency is shifted from its natural value also for the case offelopment(ADD) of Korea, and by the Korea Science and
a nonrelativistic simple harmonic oscillator when an externaEngineering FoundatiofKOSEF under Grant No. 961-
force is present. That, however, is not the case. One can 0202-011-2.
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