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Structure factors and their distributions in driven two-species models
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Center for Stochastic Processes in Science and Engineering and Department of Physics, Virginia Polytechnic Institute

and State University, Blacksburg, Virginia 24061-0435
~Received 13 June 1997!

We study spatial correlations and structure factors in a three-state stochastic lattice gas, consisting of holes
and two oppositely ‘‘charged’’ species of particles, subject to an ‘‘electric’’ field at zero total charge. The
dynamics consists of two nearest-neighbor exchange processes, occurring on different times scales, namely,
particle-hole and particle-particle exchanges. Using both Langevin equations and Monte Carlo simulations, we
study the steady-state structure factors and correlation functions in thedisorderedphase, where density profiles
are homogeneous. In contrast to equilibrium systems, theaveragestructure factors here show a discontinuity
singularity at the origin. The associated spatial correlation functions exhibit intricate crossovers between
exponential decays and power laws of different kinds. The full probability distributions of the structure factors
areuniversalasymmetric exponential distributions.@S1063-651X~97!09910-8#

PACS number~s!: 64.60.Cn, 66.30.Hs, 82.20.Mj
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I. INTRODUCTION

The study of correlations and structure factors provide
sensitive probe into the characteristics of collective beha
in many-particle systems. For example, in a system w
short-range microscopic interactions, maintained in ther
equilibrium, spatial correlations will in general decay exp
nentially. Long-range spatial correlations, characterized
power laws, are observed only if the system is at a criti
point. In contrast, when such systems are driven into n
equilibrium steady states, long-range correlations are o
present in large regions of the phase diagram@1#. A model
system in which such anomalous correlations are easily
served and studied is thedriven Ising lattice gas~the ‘‘stan-
dard model’’! @2,3#. The drive~‘‘external field’’! biases par-
ticle jumps along a specific lattice axis, thus forcing t
system into a nonequilibrium steady state. One of the m
intriguing and unexpected features of this system is the p
ence of long-range spatial correlationsat all temperatures
above criticality, due to the breakdown of the tradition
fluctuation-dissipation relations@4# in conjunction with a
conservation law for the particle density. In momentu
space, the structure factor develops a discontinuity singu
ity at the origin@5#.

In experiments, correlations are typically studied by ph
ton, electron, or neutron beam scattering techniques.
scattering intensity is closely related to the structure fac
Depending on the actual physical system, this quantity is
Fourier transform of the ‘‘density-density’’ correlation
where, e.g., in a ferromagnetic system ‘‘density’’ stands
the local magnetization. Even in the stationary case,
when the averages are not expected to be time dependen
densities themselves are fluctuating quantities in bothspace
and time. Thus, when data are taken, it is crucial to comp
the time scale of these fluctuations to the duration of a ty
cal ‘‘snapshot.’’ If the former is much shorter than the sa
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pling time interval, then even one measurement practic
results in a temporal average. In this case, the scattering
tensity is a direct measure of theaveragestructure factor. In
the opposite scenario each individual snapshot appears
random pattern of speckles. The collection of many sn
shots, however, represents the full distribution of the fluc
ating density-density products. This phenomenon has l
been known in laser scattering experiments and the statis
properties of the random speckles are well established@6#.
Using Monte Carlo simulations, it is particularly easy
probe fluctuating quantities in terms of their distribution
each measurement corresponds to one configuration at a
tain instant of time so that there are no ‘‘experimental’’ d
ficulties in achieving fine sampling. Since driven lattic
gases exhibit generically singular density-density corre
tions, a study of the associated distributions is expected to
particularly interesting.

In this paper, we will focus on a generalization of th
standard model, similar in spirit to the one leading from t
Ising model to spin-1@7# or Potts@8# models. Instead of jus
a single species of particles, we now consider two~labeled as
1 and 2), which are driven in opposite directions, subje
to periodic boundary conditions. Empty lattice sites are
ferred to as holes. This generalization is motivated by a
riety of physical systems, ranging from fast ionic conducto
with several mobile ion species@9# and water droplets in
microemulsions with distinct charges@10# to gel electro-
phoresis@11# and traffic flow@12#. For simplicity, we neglect
the usual Ising nearest-neighbor interaction and re
‘‘only’’ the excluded volume constraint. The model thus co
responds to the high-temperature, large-drive limit of a m
complicated interacting system.

This multispecies model, in both one and two dimensio
has been studied in detail@12–18#. In its simplest version,
particles are allowed to exchange with holes only. Mon
Carlo simulations@13# in two dimensions and mean-fiel
studies@14,15# show that there is a transition, controlled b
particle density and drive, from a spatially homogeneo
~disordered! phase to a charge segregated one, where
excluded volume constraint leads to the mutual blocking
In-
4072 © 1997 The American Physical Society
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56 4073STRUCTURE FACTORS AND THEIR DISTRIBUTIONS . . .
particles. In this paper we extend our previous studies
structure factors@19# and their distributions@20# to the more
general case where the particles are also allowed to exch
among themselves: we ‘‘soften’’ the excluded volume co
straint by allowing exchanges of nearest-neighbor, op
sitely charged particles on a time scaleg that is distinct from
that of the particle-hole exchange@16#. Here, the blocking
transition still occurs, as part of a more complex phase d
gram @16#. A particularly interesting case emerges when
two time scales are chosen to be equal, i.e.,g51: here,
equal charges are completely uncorrelated~up to trivial
finite-size effects! while ‘‘hidden,’’ nontrivial correlations
survive betweenoppositecharges. We add that this model
one dimension, at infinite drive and for arbitraryg, has been
solved exactly by Godre`che and Sandow@18#.

We will focus on the disordered phase of the syste
where we have a sound analytic understanding of the dyn
ics in terms of Langevin equations. We will study not on
the averages but also the full distributions of the steady-s
structure factors, using Monte Carlo simulations and a c
tinuum field theory. Finding excellent agreement betwe
our simulations and analytic results, we can trace the c
acteristics of the distributions back to the structure of
underlying Langevin equations. Given these relations, m
surements of structure factor distributions in real syste
should provide considerable information about the associ
dynamics.

This paper is organized as follows. In the next section,
define the microscopic model and give some details of
simulations. In Sec. III, we introduce the underlying Lang
vin equations and calculate the average structure factors
corresponding spatial correlations, and the theoretical di
butions of the structure factors. In Sec. IV, we discuss
results and conclude with a brief summary.

II. THE MICROSCOPIC MODEL

We consider a two-dimensional fully periodic lattice wi
L3L sites, each of which can be empty or occupied b
single particle. To account for the presence of two spec
we introduce two occupation numbersnx

1 and nx
2 , with n

being 0 or 1, depending on whether a positive or a nega
particle is present at sitex. The excluded volume constrain
implies nx

1nx
250, for any x. To model the system at zer

total charge, we choose(x@nx
12nx

2#50; i.e., the average
densities of positive and negative particles are the same

r̄ 5
1

L2(x
nx

15
1

L2(x
nx

2 , ~1!

Since the dynamics conserves both densities separately,r̄ is
a constant. In the absence of the drive, the two specie
particles are distinguished only by their label: both types h
randomly to nearest-neighbor empty sites, with the same
G. In addition, nearest-neighbor pairs of opposite char
exchange with a rategG. The external drive is directed alon
a specific lattice axis, labeled as the1xi direction. Reminis-
cent of a uniform ‘‘electric’’ fieldE, it exponentially sup-
presses jumpsagainst the force. Specifically, during on
Monte Carlo step~MCS! 2L2 nearest-neighbor bonds a
n
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selected at random. If a particle-hole pair is encountered
exchange takes place with probability

Wph5Gmin$1,exp~qEdxi!%, ~2!

whereq561 is the charge of the particle anddxi561,0 is
the change of thexi coordinate of the particle due to th
jump. Similarly, if the neighboring sites are occupied by o
posite charges, a particle-particle exchange~or charge trans-
fer! is attempted with probability

Wpp5gGmin$1,exp~Edxi!%, ~3!

where nowdxi is the change in thexi coordinate of the
positiveparticle due to the jump. Note that we do not intr
duce a factor of 2 in the exponential here, as one might h
expected for a real electric field. This choice leads to a s
pler Langevin equation without significantly affecting th
phase diagram. Needless to say, it is irrelevant whether
change takes place or not, if both sites carry identical c
tent.

For our simulations, we setG51, so the control param
eters arer̄ , E, andg. On lattices withL ranging from 30 to
100, the system is initialized with random configurations
various particle densities. Runs last from 2.53105 to 53105

MCS. The first 62 500 MCS are discarded to allow the s
tem to settle into steady state. Then, we measure the Fo
transforms ofnx

6 every 125 MCS, defining them in the usu
way:

nk
65(

x
e2 ik•xnx

6 . ~4!

In the following, we will investigateequal-time density-
density operators in momentum space, considering both t
full distributions as well as their~ensemble or time! aver-
ages. In the literature, the term ‘‘structure factor’’ typical
refers to the averages, i.e.,

Sab~k![
1

V
^nk

an2k
b &, ~5!

where a,b51,2; k5(2p/L)(m' ,mi)Þ0 and V5L2 is
the volume. Occasionally, especially when discussing
full distributions, we will use the word ‘‘structure factor’’ for
the fluctuating two-point operator itself. In the disorder
phase,Sab is the Fourier transform of the usual equal-tim
correlation function

Gab~x![^nx
an

0
b&2^nx

a&^n
0
b&. ~6!

Thus, if G is even inx, S will be real, so that an imaginary
part of S signals a part ofG that is odd inx. By charge
symmetry, we expectG115G22. Clearly, both must be
even inx, so that the associatedS’s are real. On the othe
hand, we have

G12~x,E!5G12~x' ,2xi ,2E! ~7!
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4074 56G. KORNISS AND B. SCHMITTMANN
in the presence of the drive so thatS12 may have an imagi-
nary part ~which must be odd in E). Finally,
G21(x)5G12(2x) follows from Eq.~6! by translation in-
variance. Turning to the full distributions, these can be co
structed from the time series ofnk

1n2k
1 /V, Re@nk

1n2k
2 #/V,

and Im@nk
1n2k

2 #/V in the steady state. Exploiting symmetries
again, we note thatnk

1n2k
1 /V and nk

2n2k
2 /V are distributed

identically, so that we need to consider only the former. Fu
ther, onlynk

1n2k
1 /V andnk

2n2k
2 /V are necessarily real, while

nk
1n2k

2 /V will generically be complex.
We simulate systems withg ranging from 0 to 1. For

smallg ’s we chooseE and the densityr̄ in such a way that
the system is in the homogeneous phase. For largerg ’s
(g.gc.0.62) the charge exchange mechanism suppres
the ordered phase entirely@16# so we can pick arbitrarily
large fields at any density. A particularly interesting cas
occurs for g51. Here, the rates for particle-hole and
particle-particle exchanges become equal, i.e.,Wpp5Wph ,
so that a positive~negative! particle can no longer distin-
guish a negative~positive! one from a hole. Thus, a positive
~negative! particle experiences biased diffusion, slowed onl
by encounters with other positive~negative! particles, just as
in the case of a single, noninteracting species, whose stea
state probability distribution of configurations~i.e., the
steady-state solution of the associated master equation! is
exactly known to be uniform@21#. For our case, this implies
that themarginal distribution of the occupation numbers of

FIG. 1. Steady-state structure factors~a! S11(k), ~b!
Re$S12(k)%, and ~c! Im$S12(k)% for an L5100 system at

g50.02, E50.279, and r̄ 50.175. Structure factors are plotted
against the integermi5kiL/2p, while m'5k'L/2p is taken as a
parameter. Lines are representing the fitted theoretical curves.
-

-

es

e

dy-

one species is uniform, i.e.,P@$nx
6%#5($nx

7%P@$nx
1 ,nx

2%#

}1. Thus, we expect questions regarding only one specie
particles to have trivial answers, e.g.,G11(x) must vanish
for xÞ0 in an infinite system or yield the finite-size fluctua
tions in a finite one. On the other hand, the two-point fun
tion between opposite charges can display interesting st
tures, e.g., long-range correlations, as a result of the
distributionP@$nx

1 ,nx
2%# not being uniform. We note briefly

that a completely ‘‘flat’’ steady state,P@$nx
1 ,nx

2%#}1, is
obtained forg52, as in the one-dimensional version of o
model @18#.

In Fig. 1, we present the results for the three independ
S’s found in the 1003100 system at a small value ofg and
note the discontinuity singularity of these objects at the o
gin. In Fig. 2, we show the same quantities forg51 and
draw special attention to the fact that, whileS11 does not
depend onk at all,S12 exhibits a highly nontrivialk depen-
dence. Figures 3 and 4 present the structure factor distr
tions for the smallest longitudinal and transverse wave v
tors, respectively. Before discussing the data in detail,
will first present the theoretical framework within which the
can be understood. In particular, we will focus on two poin
namely first, the emergence of discontinuity singularities
the structure factors atk50, and their consequences fo
long-range correlations in real space, and second, the o
of the asymmetric exponential form of the distributions. Th
will then be followed by a comparison between our theor
ical predictions and the simulations.

FIG. 2. Steady-state structure factors~a! S11(k), ~b!
Re$S12(k)%, and ~c! Im$S12(k)% for an L5100 system at

g51.00,E5`, and r̄ 50.25. Structure factors are plotted again
the integermi5kiL/2p, while m'5k'L/2p is taken as a param
eter. Lines are representing the fitted theoretical curves.
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III. COARSE-GRAINED DESCRIPTION

To extract the behavior at large distances~or small k in
momentum space!, a continuum field theory for the slow
variables of the model is most appropriate. To find suc
description, we must~i! identify the slow variables of the
theory, and~ii ! obtain a set of equations of motion for the
quantities, corresponding to a coarse-grained version of
microscopic dynamics. For generality, we consider
d-dimensional case whenxi is directed along the electri
field andx' is in the (d21)-dimensional subspace, perpe
dicular to the field. Time is denoted byt. Then, the slow
variables are easily identified as the conserved densi
r6(x,t), of the two species. The most systematic way
arrive at their equations of motion is to perform anV expan-
sion @22,23#: after partitioning the whole system into suffi
ciently large blocks of sizeV, one splits the particle densitie
associated with the block centered atx into a macroscopic
part (r6) and a fluctuating one (x6):

1

V (
x8Pb~x!

n
x8
6

5r6~x,t !1V21/2x6~x,t !. ~8!

This decomposition is inserted into the microscopic mas
equation, followed by a systematic expansion inV. At lead-

FIG. 3. Histograms representing the distributions of t
k5(2p/L)(0,1) structure factors for ~a! nk

1n2k
1 /V, ~b!

Re@nk
1n2k

2 #/V, and~c! Im@nk
1n2k

2 #/V. L5100,g50.02,E50.279,

and r̄ 50.175. Theoretical distributions~a! P11(s11;k), ~b!
Pr

12(sr
12 ;k), and~c! Pi

12(si
12 ;k) are plotted with solid lines on

the same graphs.
a

he
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r

ing order, we find a set of mean-field equations of motion
the local densities that reads, after taking a naive continu
limit,

] tr
652¹G$@r6¹I~12r12r2!6« x̂ir

6~12r12r2!#

1g@r6¹Ir76« x̂ir
6r7#%, ~9!

where

G5S G' 0

0 G i
D ~10!

is the diffusion matrix.G' is diagonal and isotropic in the
(d21)-dimensional subspace, thus characterized by a n
berG' . ¹I is the asymmetric gradient operator, acting on a
two functionsf andg according tof ¹Ig5 f ¹g2g¹f . « is the
coarse-grained bias andx̂i is the unit vector along thexi
direction. Note that at the mean-field level we also obt
explicit expressions for the diffusion matrix and the bi
@23#: G'51, G i5(11e2uEu)/2, and «52tanh(E/2). Of
course, these may be modified by renormalization.

The continuity equation~9! admits both homogeneou
and inhomogeneoust-independent solutions, associated w
the disordered and the blocked phases. The former is
focus here. To ease comparison with simulation data,

FIG. 4. Histograms representing the distributions of t
k5(2p/L)(1,0) structure factors for ~a! nk

1n2k
1 /V, ~b!

Re@nk
1n2k

2 #/V, and~c! Im@nk
1n2k

2 #/V. L5100,g50.02,E50.279,

and r̄ 50.175. Theoretical distributions~a! P11(s11;k), ~b!
Pr

12(sr
12 ;k), and~c! Pi

12(si
12 ;k) are plotted with solid lines on

the same graphs.
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choose equal densities for both species:r6(x,t)5 r̄ . This
solution describes the steady state at the mean-field leve

At the next order in theV expansion, we find a Fokker
Planck equation for the fluctuating partx6. For our pur-
poses, the equivalent Langevin equation is more transpa
At this order, its deterministic part is linear and the~con-
served! noise is Gaussian. After defining the ‘‘reduced’’ a
e

e
o

e

e
el
di
es

o

h

e

ily
n

nt.

erage densityr̃ [(12g) r̄ andd[(32g)/(12g), and fo-
cusing on the fluctuations about the homogeneous phase
result is

] tx
a~x,t !5Lab~¹!xb~x,t !2¹•ha~x,t !, ~11!

where the drift matrix is given by
@Lab~¹!#5S ~12 r̃ !¹G¹2~12d r̃ !«G i] i r̃ ¹G¹1 r̃ «G i] i

r̃ ¹G¹2 r̃ «G i] i ~12 r̃ !¹G¹1~12d r̃ !«G i] i
D ~12!
-

and summation over repeated indices is implied in Eq.~11!
and in the following. Theh6(x,t) are Gaussian white nois
terms, with average and second moment

^h i
a~x,t !&50,

^h i
a~x,t !h j

b~x8,t8!&52s i j
abd~x2x8!d~ t2t8!, ~13!

wherea,b51,2; i , j 51,2, . . . ,d. Due to the bias, the nois
matrices (s i j

ab)5sab are diagonal but not proportional t
the unit matrix:

sab5S s'
ab 0

0 s i
abD . ~14!

Note thatsab is symmetric and due to charge symmetry, w
also haves115s22. Similar to G' , s'

ab is diagonal and
isotropic in the (d21)-dimensional subspace, characteriz
by a numbers'

ab . In the absence of the drive, our mod
reduces to an equilibrium system, so that the fluctuation
sipation theorem~FDT! holds. In our case, this guarante
sab}G, or, more specifically,

s115@ r̄ ~122 r̄ !1g r̄ 2#G,

s125@2g r̄ 2#G ~15!

@23#. However, when driven, this proportionality does n
hold in generic ranges ofg and r̄ , in that the diffusion and
noise matrices are renormalized differently by the drive«,
similar to the situation in the driven single species case@24#.
Finally, we point out that there is a correlation betweenh1

andh2 due to the fact that charge exchange is allowed. T
effect is captured by the matrixs12, which is expected to
be proportional tog and negative definite for nonzero driv
as well.

A. Steady-state structure factors

Equations~11!–~14! are linear equations that are eas
solved in Fourier space. Introducing the Fourier compone
for the fluctuations
d

s-

t

is

ts

x6~k,v!5E dt ddx x6~x,t !e2 i ~vt1k–x!, ~16!

and similar ones for the noise, so that

^h i
a~k,v!&50,

^h i
a~k,v!h j

b~k8,v8!&52s i j
ab@~2p!d11d~k1k8!d~v1v8!#

~17!

the solution to Eq.~11! is simply

xa~k,v!5~L21!abik–hb~k,v!, ~18!

where

Lab~k,v![Lab~ ik!2 ivdab. ~19!

Note that, in k space, (L11,L22) and (L12,L21) are
complex conjugate pairs.

Not surprisingly,^x6(k,v)&50, consistent with the de
composition~8!. The two-point correlations ofx6(k,v) are
just thedynamicstructure factors, defined as

Sab~k,v!@~2p!d11d~k1k8!d~v1v8!#

[^xa~k,v!xb~k8,v8!&. ~20!

Using Eqs.~18! and ~17!, the two independentS’s follow:

S11~k,v!5
2ks11k

udet~L !u2
~ uL22u21uL12u2!

2
2ks12k

udet~L !u2
2 Re$L22L21%, ~21!



dy
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S12~k,v!52
2ks11k

udet~L !u2
L12@~L11!* 1L22#

1
2ks12k

udet~L !u2
@~L11!* L221~L12!2#.

To compare directly with simulations, we need the stea
state structure factors

Sab~k!@~2p!dd~k1k8!#[^xa~k,t !xb~k8,t !&, ~22!

which are easily obtained from Eq.~21! by an integration
over v, using the residue theorem and noting that the t
zeros of det(L) simply correspond to the two stable eige
values ofL:

v1,252 i
Tr~L!

2
6Adet~L!2S Tr~L!

2 D 2

. ~23!
-

o

To ensure that the system is within the linear stability reg
of the disordered phase, we must have Imv1,2.0. Since

2 1
2 Tr(L)5(12 r̃ )kGk is automatically positive definite

we only require det(L).0 for all kÞ0. Collecting, we find

S11~k!5
ks11k

2
1

2
Tr~L!

uL22u2

det~L!
2

ks12k

2
1

2
Tr~L!

Re$L22L21%

det~L!
,

S12~k!52
ks11k

2
1

2
Tr~L!

L22L12

det~L!

1
ks12k

2
1

2
Tr~L!

L22Re$L22%1 iL12Im$L12%

det~L!
,

~24!

so that, with the help of Eq.~12!, we finally obtain
ar
s. In
S11~k!5
~12 r̃ !

~122 r̃ !

ks11k

kGk

~kGk!21@~12d r̃ !2/~12 r̃ !2#«2G i
2ki

2

~kGk!214m2G iki
2

2
r̃

~122 r̃ !

ks12k

kGk

~kGk!21@~12d r̃ !/~12 r̃ !#«2G i
2ki

2

~kGk!214m2G iki
2

,

Re$S12~k!%52
r̃

~122 r̃ !

ks11k

kGk

~kGk!22@~12d r̃ !/~12 r̃ !#«2G i
2ki

2

~kGk!214m2G iki
2

1
~12 r̃ !

~122 r̃ !

ks12k

kGk

~kGk!22@ r̃ 2/~12 r̃ !2#«2G i
2ki

2

~kGk!214m2G iki
2

,

~25!

Im$S12~k!%5
r̃ @22~11d! r̃ #

~12 r̃ !~122 r̃ !

~ks11k!«G iki

~kGk!214m2G iki
2

2
~12 r̃ !~12d r̃ !1 r̃ 2

~12 r̃ !~122 r̃ !

~ks12k!«G iki

~kGk!214m2G iki
2

.

To simplify the notation, we have defined a ‘‘mass’’~in the field theory sense! m via

4m2[
~12d r̃ !22 r̃ 2

122 r̃
«2G i5

~122 r̄ !@12~22g!2 r̄ #

12~12g!2 r̄
«2G i . ~26!

Its role is to mark the linear stability boundary, which, in the limit«L→`, is given precisely bym250. Otherwise, forfinite

«L, the system does not reach the stability limit as long as («L/2p)2,@12(12g)2 r̄ #/(122 r̄ )@(22g)2 r̄ 21# is satisfied
@16#. Thus, it is sufficient to imposem2.0, i.e., r̄ ,1/2(22g), to keep the system in the homogeneous phase.

Similar to the driven lattice gas@2,3# and the two-species model studied earlier@20#, these structure factors are all singul
at the origin. The singularity takes the form of a discontinuity, in either the function itself or one of its derivative
particular, bothS11 and Re$S12% are discontinuous, so that the ratios

lim
ki→0

S11~0,ki!

lim
k'→0

S11~k',0!
5

122 r̃

~12d r̃ !22 r̃ 2

~12d r̃ !2

~12 r̃ !2

s i
11/G i2@ r̃ /~12d r̃ !#s i

12/G i

s'
11/G'2@ r̃ /~12 r̃ !#s'

12/G'

~27!

and
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lim
ki→0

Re$S12~0,ki!%

lim
k'→0

Re$S12~k',0!%
52

122 r̃

~12d r̃ !22 r̃ 2

12d r̃

12 r̃

s i
11/G i2@ r̃ /~12d r̃ !#s i

12/G i

s'
11/G'2@~12 r̃ !/ r̃ #s'

12/G'

~28!
-
e

er

rs

ti-
it

s
-

o
t

nt

uc

irst,
e
t ge-
re
the
out

sed
are in general different from unity. In contrast, Im$S12(k)%
vanishes fork→0 in any direction. Here, discontinuities oc
cur in higher derivatives. Unlike in the driven Ising lattic
gas, these singularities do not simply originate in the gen
FDT-breaking relations i

ab/G iÞs'
ab/G' , but also in the

specifics of this particular driven system, reflected in the fi
factor on the right-hand side of Eqs.~27! and ~28!. It is a
monotonically increasing function ofr̄ , reaching ` at
r̄ 51/2(22g). As a result, the amplitudes of the discon
nuities diverge as the system approaches the stability lim
the homogeneous phase.

B. Equal-time spatial correlations

The equal-time correlation function
Gab(x)[^xa(x81x,t)xb(x8,t)& are just the Fourier trans
forms of the structure factors

Gab~x!5E ddk

~2p!d
Sab~k!eik•x, ~29!

independent ofx8 by virtue of translational invariance. T
simplify the transforms, we introduce some changes in no
tion. First, we rescale the lengths and mome
x'→x' /G'

1/2, xi→xi /G i
1/2; k'→G'

1/2k' ,ki→G i
1/2ki so that

G becomes the unit matrix. Further, we lets'
ab→s'

ab/G' ,
s i

ab→s i
ab/G i . After some algebra, we can recast the str

ture factors in much more compact form

S11~k!5
ks1k

k2
2~ks2k!

k2

k414m2ki
2

,

Re$S12~k!%5
ks3k

k2
2~ks4k!

k2

k414m2ki
2

, ~30!

Im$S12~k!%5~ks5k!
«G i

1/2ki

k414m2ki
2

,

wherek5uku and

s15
~12d r̃ !2

~12 r̃ !@~12d r̃ !22 r̃ 2#
s112

2
~12 r̃ ! r̃

~12 r̃ !@~12d r̃ !22 r̃ 2#2 r̃2
s12, ~31!
ic

t

of

a-
a

-

s25F ~12d r̃ !2~122 r̃ !

~12 r̃ !2@~12d r̃ !22 r̃ 2#
21G ~12 r̃ !

~122 r̃ !
s11

2F ~12d r̃ !~122 r̃ !

~12 r̃ !@~12d r̃ !22 r̃ 2#
21G r̃

~122 r̃ !
s12,

s35
~12 r̃ ! r̃

~12 r̃ !@~12d r̃ !22 r̃ 2#
s11

2
r̃ 2

~12 r̃ !@~12d r̃ !22 r̃ 2#
s12,

s45F ~12d r̃ !~122 r̃ !

~12 r̃ !@~12d r̃ !22 r̃ 2#
11G r̃

~122 r̃ !
s11

2F r̃ 2~122 r̃ !

~12 r̃ !2@~12d r̃ !22 r̃ 2#
11G ~12 r̃ !

~122 r̃ !
s12,

s55
r̃ @22~11d! r̃ #

~12 r̃ !~122 r̃ !
s112

~12 r̃ !~12d r̃ !1 r̃ 2

~12 r̃ !~122 r̃ !
s12.

For the following, only two major properties of thes’s,
rather than their detailed expressions, are important. F
they are all positive definite within the stability limit of th
homogeneous phase, and second, they are diagonal bu
nerically not proportional to the unit matrix, since they a
related to the noise matrices. Now, referring the details of
integrations to Appendix A, the transforms can be carried
exactly. Writingr[uxu, r'[ux'u, andr i[uxiu, we define

E~x![
G~d/221!

4pd/2

1

r d22
,

F1~x![
cosh~mxi!

~2p!d/2 S m

r D ~d22!/2

K ~d22!/2~mr!, ~32!

F2~x![
sinh~mxi!

~2p!d/2 S m

r D ~d22!/2

K ~d22!/2~mr!,

whereG(z) is the Gamma function andKn(z) is the modi-
fied Bessel function. The correlations can then be expres
in terms of these three functions

G11~x!52¹s1¹E~x!1¹s2¹F1~x!, ~33!

Ge
12~x!52¹s3¹E~x!1¹s4¹F1~x!, ~34!
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Go
12~x!5

«G i
1/2

2m
¹s5¹F2~x!, ~35!

whereGe,o
12 are the parts ofG12 even or odd inxi , corre-

sponding to the transforms of the real and imaginary part
S12. The full correlation is, of course,G12(x)5
Ge

12(x)1Go
12(x), reflecting the symmetry~7! of the sys-

tem in the presence of the field.
Leaving the detailed asymptotic expansions of Eqs.~33!–

~35! to Appendix B, we only indicate the main features he
Clearly, the discontinuity singularities of the structure facto
translate into power-law decays of the correlation functio
In particular, the first terms in Eqs.~33! and~34! exhibit the
well-known r 2d decay @25#, which is associated with the
breaking of the FDT in the presence of conservation la
@5#. In contrast, a discontinuity singularity in higher deriv
tives is not sufficient to produce ther 2d power, as illustrated
by the form ofGo

12 , Eq.~35!. The second terms in Eqs.~33!
and~34! and the only one in Eq.~35! are more subtle, since
the exponentials of the hyperbolic and Bessel functions c
pete. Summarizing our results asmr→`, we find for r'

Þ0:

G11~x!}
s i

12s'
1

r d F r'
2 2~d21!r i

2

r 2 G1•••,

G12~x!.Ge
12~x!}

s i
32s'

3

r d F r'
2 2~d21!r i

2

r 2 G1•••,

~36!

Go
12~x!}•••,

where the ellipses represent exponentially decaying pa
Here, all three key components of the characteristic none
librium power-law decays are displayed, namely, the nec
sity of FDT violation,s i /G iÞs' /G' , the dipole amplitude
associated with strong anisotropy in the presence of a c
servation law, and ther 2d itself. We emphasize again tha
the odd part of the cross correlations,Go

12(x), is purely
short ranged.

Along the field direction, the behavior of the correlatio
is more complex. Here, a novel power,r i

2(d11)/2, emerges,
which will dominate over the ‘‘FDT-violating’’r 2d, for all
d.1. Thus, forr'50 we have

G11~0,xi!,Ge
12~0,xi!}2r i

2~d11!/2

1O~max$r i
2d ,r i

2~d13!/2%!,

Go
12~0,xi!}2sgn~«xi!r i

2~d11!/21O~r i
2~d13!/2!. ~37!

In the parentheses, we have indicated thenext-leadingterm
in the asymptotic expansion ofK (d22)/2. Surprisingly, in
d.3 even this power is still more relevant than the mo
familiar r 2d. We also emphasize that in Eq.~37! all propor-
tionality constants are positive. Thus, the explicit factors
(21) carry information about the structure of particle clu
of

.
s
.

s

-

ts.
i-

s-

n-

f
-

ters in this model. In particular, the sign ofGo
12(0,xi) shows

that negative charges prefer to be located ‘‘downfield
rather than ‘‘upfield,’’ from positive ones, as a precursor
the blocking transition. In conclusion, the spatial correlatio
are dominated by the expectedr 2d power law, except along
the field, where a novelr i

2(d11)/2 decay takes over. Simila
behavior is found if charge exchange is not allowed (g50)
@19#. Thus, this new power law appears to be a generic f
ture of driven two-species models, associated with the
cluded volume constraint and the opposite bias. We sho
note, however, that it can only be generated in the prese
of at least one transverse dimension, i.e., ind.1.

C. The g51 case

All expressions simplify considerably when we setg51,
yet they still capture the essence of this two-species mo
namely, the nontrivial correlations between opposite char

S11~k!5
ks11k

k2
,

Re$S12~k!%5~ks12k!
k2

k414m2ki
2

, ~38!

Im$S12~k!%5~ks12k!
2sgn~«! 2mki

k414m2ki
2

,

where now 4m25(122 r̄ )2«2G i . No instabilities can occur
here: even forr̄ 51/2 where the ‘‘mass’’m2 vanishes, ho-
mogeneous configurations prevail since the model reduce
a driven one-species model. For generic densities, we
that the form of the11 structure factor is the same as in th
one-species model, due to the fact that1 ’s cannot distin-
guish between2 ’s and holes at the microscopic level. Th
key question is, of course, whether thes’s ~especiallys11)
are proportional to the unit matrix or not. Unfortunately,
the absence of a renormalization group analysis we hav
rely on simulations to answer these questions. Based on
results of the previous subsection, it is clear that o
S11(k) could possibly produce ther 2d power law. How-
ever, our simulation results indicate that the internal symm
try of the system, at this particular value ofg, restores FDT
for either species, i.e., the first equation in~15!. This is en-
tirely consistent with the fact that the microscopic stead
state distribution of either species is uniform, as mention
in Sec. II. Thus, correlations will be short ranged, given b
d function for identical species and exponential decays
opposite charges,except in the field direction, between o
posite species, where

G12~0,xi!.2 Q~«xi!s'
12

Ap/2

~2p!d/2H d21

2m S m

r i
D ~d11!/2

1OS 1

r i
~d13!/2D J . ~39!



n

n

a-
-

g
n

e

e
n

or
x-
ar
r,
it

ti

-

ed,

ex-
e.
ays
ill

ts.
-

are
ts,
ose
ing
re-

e
are
the

the

.

On

d

ith

y

io-
eld

d

4080 56G. KORNISS AND B. SCHMITTMANN
HereQ(x) is the step function ands'
12 is always negative.

Thus, the novelr i
2(d11)/2 power law, a key feature of this

two-species model, survives in the cross correlation, eve
this simplified case.

D. Distribution of structure factors

So far, we have focused entirely on theaver-
ages of density-density operators. In this final sectio
we will construct the full probability distributions for
these fluctuating quantities, i.e.,x1(k,t)x1(2k,t)/V,
Re@x1(k,t)x2(2k,t)#/V, and Im@x1(k,t)x2(2k,t)#/V,
following the method of Ref.@26#. Representing these oper
tors by s11, sr

12, andsi
12 , we seek their marginal distri

butions, for eachk vector separately:

P11~s11;k!5 K dS x1~k,t !x1* ~k,t !

V
2s11D L ,

Pr
12~sr

12 ;k!5 K dS Re@x1~k,t !x2* ~k,t !#

V
2sr

12D L ,

~40!

Pi
12~si

12 ;k!5 K dS Im@x1~k,t !x2* ~k,t !#

V
2si

12D L .

Here, we have usedx6(2k,t)5x6* (k,t), since the densi-
ties x6(r ,t) are real. Also, we have normalized byV in
order to obtain a well-defined thermodynamic limit, notin
that (2p)dd(k50)5V. In principle, these distributions ca
be computed explicitly, by inserting the solutionx6(k,t) of
the Langevin equation~11! into ~40! and averaging over the
noise, associated with Eq.~13!. However, given that thes
distributions are universal@20#, depending only on the lin-
earity of the Langevin equation and the Gaussian natur
the noise, rather than on the specific forms of diffusion a
noise matrices, Eqs.~12! and ~14!, a detailed calculation is
not necessary. Instead, we can refer to the distributions f
simpler case@20#, namely, the model without charge e
change, since their forms will be identical to the ones we
seeking here. However, some brief comments are in orde
put the results into perspective. For technical reasons,
simpler to compute the characteristic functions~i.e., Fourier
transforms! of Eq. ~40! first. Denoting these byP̃ab(V), we
find that P̃11(V) has a single pole in the lower halfV
plane, so that the inverse transform yields an exponen
distribution for the non-negative variables11:

P11~s11;k!5H 1

S11~k!
e2s11/S11~k! if s11>0

0 if s11,0.
~41!

Here, S11(k) is just theaveragestructure factor, and we
will refer to 1/S11(k) as the ‘‘decay factor’’ of the expo
nential. In contrast, bothP̃r

12(V) and P̃i
12(V) exhibit two

poles, one (V2) being on the negative, and one (V1) on the
positive imaginary axis,
in

,

of
d

a

e
to
is

al

V75
2i

D
~Re@S12~k!#7AD1$Re@S12~k!#%2!, ~42!

where D[uS11(k)u22uS12(k)u2.0. The inverse trans-
forms also result in exponential distributions, characteriz
however, by two distinct decay factorsuV1u and uV2u:

Pr
12~sr

12 ;k!5H 1

N
e2uV2usr

12
if sr

12>0

1

N
euV1usr

12
if sr

12,0,

~43!

with N5AD1$Re@S12(k)#%2. The distribution of
Im@x1(t)x2* (t)#/V, i.e., Pi

12 , follows from Pr
12 by just

interchanging Re@S12(k)# and Im@S12(k)# in Eqs. ~42!
and ~43!.

To summarize, all three distributions are asymmetric
ponentials, withP11 representing the most extreme cas
Due to this structure, their standard deviations are alw
greater than or equalto averages, so that fluctuations w
never be ‘‘small’’ in the usual sense@20,26#.

IV. DISCUSSION

Finally, let us turn to comparisons with simulation resul
Typically, we find that power law tails are much more diffi
cult to observe than in the single-species case@25#. Appar-
ently, their amplitudes are rather small, so that the data
obscured by either critical singularities or finite-size effec
depending on the points in the phase diagram that we cho
to investigate. Thus, we focus on the structure factors. Us
a standard least-square routine, we fitted our analytical
sults @Eqs.~37! and ~38! before rescaling# to our simulation
data. The fit was done simultaneously for the threeS’s using
the smallest 5311 nonzerok vectors. The agreement is quit
good, especially considering that the theoretical results
based on a linearized Langevin equation, but we note
following: for theg50.02 case~Fig. 1!, despite being in the
homogeneous phase, the system was relatively close to
continuous transition@16#, with m;431022 corresponding
to a correlation lengthj;25 in units of the lattice constant
In particular, ‘‘longitudinal’’ parameters, such asG i and the
s i’s, seem to suffer considerable renormalizations here.
the other hand, the ‘‘transverse’’ parameters,G' and s' ,
appear to obey Eq.~15!. In that sense, the FDT is satisfie
within the transverse subspace. To illustrate this feature, we
combine Eq.~15!, written for the transverse parameters, w
the explicit form of the structure factors~25! for ki50. This
yields the exact ‘‘finite-size’’ amplitudes, completel
independent ofk' : S11(k',0)5 r̄ (12 r̄ ) andS12(k',0)5
2 r̄ 2, in perfect agreement with the simulations. In thefull
d-dimensional space, however, the FDT is of course v
lated: as a result of the coarse-graining effect in the fi
direction, we generically founds i /G iÞs' /G' for the res-
caled ‘‘noise’’ matrices. In particular we ha
s i

1/G i50.833s'
1 /G' , predicting the typical FDT-violating

power law.
For g51.00 ~Fig. 2!, S11(k) is completely flat, as we

expected, indicating thats i
11/G i5s'

11/G' . Moreover, the
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value of this constant is justr̄ (12 r̄ ), again consistent with
Eq. ~15!. In contrast,S12(k) clearly exhibits the structure o
Eqs.~38!. Here the system is far from transitions (j;3), so
that critical fluctuations are completely avoided. Con

quently, usingm5 1
2 (122 r̄ )u«uG i

1/2 with the mean-field pa-
rameters produces a ‘‘mass’’ closely matching the one
tained from the fit.

Now, we turn to a comparison of the analytical results
the structure factor distributions with the simulations, su
marized in Figs. 3 and 4, for the two smallest wave vecto
respectively. The control parameters were the same as t
of Fig. 1. Again, the agreement between our Gaussian the
and the data is quite impresssive. The ‘‘11 ’’ histograms
show simple exponential decay@26#, while the ‘‘12 ’’ his-
tograms clearly represent asymmetric exponential distr
tions. To test the theoretical prediction, namely, that
slopes of the histograms are determined entirely by the st
ture factor averages, we simply measured the latter,
S11 , ReS12, and ImS12. We then inserted themeasured
averages into thetheoreticalrelations for the decay factors
Clearly, the ‘‘11 ’’ case is particularly simple since the de
cay factor is just the inverse ofS11 itself. For the two
‘‘ 12 ’’ distributions, the decay factorsuV7u , given by Eq.
~42!, are considerably less trivial, but the agreement is n
ertheless remarkable. Here, renormalizations can obvio
also occur, but can be absorbed into the effective parame
of the theory, leaving theform of the structure factor distri-
butions invariant. Moreover, they are automatically captu
by the measuredstructure factors, so that they do not sp
the agreement between data and theory here. However
must avoid critical fluctuations since these fall out of t
scope of a linear theory.

In summary, using both simulations and analytic tec
niques, we have examined the structure factors in a sim
model of biased diffusion of two species. We calculated
corresponding spatial correlations, finding not only the
pected power law decayr 2d, typical for nonequilibrium
steady states of conserved systems in the presence of s
anisotropy, but also a powerr i

2(d11)/2 for correlations along
the bias, characteristic for two-species models. We also
vestigated the full distribution functions for the structure fa
tors, being universal asymmetric distributions. The gene
agreement between simulations and a Gaussian field th
is surprisingly good, while we await a renormalization gro
analysis of the continuum theory of the model in order
make more detailed comparisons closer to the continu
transition.
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APPENDIX A: MOMENTUM-SPACE INTEGRALS
FOR THE CORRELATION FUNCTIONS

From Eq.~30! we see that we need three basic types
integrals. Although the first one is well known, we list it fo
completeness:
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E~x![E ddk

~2p!d

eik–x

k2
5

GS d

2
21D

4pd/2

1

r d22
, ~A1!

Then, if s is diagonal and isotropic in the
(d21)-dimensional transverse subspace but not a mult
of the unit matrix, it is easy to compute

¹s¹E~x!52s'd~x!2~s i2s'!
G~d/2!

2pd/2

r'
2 2~d21!r i

2

r d12
.

~A2!

Next, we will outline a formal way to obtain the other tw
required momentum integrals. For a more rigorous treatm
see@23#. We defineF1 andF2 as follows:

F1~x![E ddk

~2p!d

eik•xk2

k414m2ki
2

,

F2~x![E ddk

~2p!d

eik•x~22m!ik i

k414m2ki
2

. ~A3!

It is then helpful to realize that the integrands, without t
exponential factor, are simply the convolutions of two fun
tions, i.e.,

k2

k414m2ki
2

5E ddk8

~2p!d
F~k8!C~k2k8!,

~A4!

22miki

k414m2ki
2

5E ddk8

~2p!d
F~k8!S~k2k8!,

where

F~k!5
1

k21m2
,

C~k!5
~2p!d

2
d~k'!@d~ki1 im!1d~ki2 im!#, ~A5!

S~k!5
~2p!d

2
d~k'!@d~ki1 im!2d~ki2 im!#.

The d functions with complex arguments should only b
understood in an operational sense. The Fourier inve
transforms of these functions are easily found:

F~x![F~r !5
1

~2p!d/2S m

r D ~d22!/2

K ~d22!/2~mr!,

C~x!5cosh~mxi!,
~A6!
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S~x!5sinh~mxi!.

Thus, using the convolution theorem, we trivially get

F1~x!5cosh~mxi!F~r !,
~A7!

F2~x!5sinh~mxi!F~r !.

Note thatF(r ) is the solution of

~2¹21m2!F~r !5d~x!. ~A8!

Then using some algebra and Eq.~A8!, we can translate
¹s¹ into differentiation with respect toxi :

¹s¹F1~x!52s'd~x!1s'2m] i$sinh~mxi!F~r !%

1~s i2s'!] i
2$cosh~mxi!F~r !%

52s'd~x!1s'2m] iF2~x!1~s i2s'!

3] i
2F1~x!,

¹s¹F2~x!5s'2m] i$cosh~mxi!F~r !%1~s i2s'!

3] i
2$sinh~mxi!F~r !%

5s'2m] iF1~x!1~s i2s'!] i
2F2~x!. ~A9!

These forms are particularly useful when we calculate
corresponding long-distance behavior.
e

APPENDIX B: LONG-DISTANCE ASYMPTOTIC
BEHAVIOR OF THE CORRELATION FUNCTIONS

To obtain the long-distance behavior for¹s¹E(x), we
just have to omit the first term in Eq.~A2!, which is ad
function:

¹s¹E~x!uxÞ052~s i2s'!
G~d/2!

2pd/2

r'
2 2~d21!r i

2

r d12
.

~B1!

This is the typical ‘‘FDT-violating’’ power law, provided
thats is not a simple multiple of the unit matrix. Otherwis
the amplitude of this term would be zero.

Using the ‘‘largez’’ asymptotic expansion of the modi
fied Besssel function@27#

Kn~z!.Ap

2z
e2zH 11S n22

1

4D 1

2z
1OS 1

z2D J , ~B2!

we can obtain the long-distance behavior for¹s¹F1(x) and
¹s¹F2(x) as m5const.0 and r→`. Due to the strong
anisotropies in these functions, we consider three differ
scenarios.

(i) r i50, r'→`. Combining Eq. ~A9! and the
asymptotic form ofF(r ) we find
f

] iF2~x!uxi505mF~r !uxi50.
Ap/2

~2p!d/2
e2mr'H S m

r'
D ~d21!/2

1OS 1

r'
~d11!/2D J

] i
2F1~x!uxi505m2F~r !U

xi50

1
1

r

]F~r !

]r U
xi50

.m
Ap/2

~2p!d/2
e2mr'H S m

r'
D ~d21!/2

1OS 1

r'
~d11!/2D J , ~B3!

while ] iF1(x) and] i
2F2(x) are simply zero atxi50, since they are odd functions ofxi . Thus, finally we have

¹s¹F1~x!uxi50.~s'1s i!m
Ap/2

~2p!d/2
e2mr'H S m

r'
D ~d21!/2

1OS 1

r'
~d11!/2D J ,

¹s¹F2~x!uxi5050. ~B4!

(ii) r i→`, r'Þ0. In addition to using the asymptotic form ofF(r ), we can now also write cosh(mxi).
1
2e

mri and

sinh(mxi).sgn(xi)
1
2 emri. In the following, we will keep the second leading power in 1/r in order to simplify the discussion o

case~iii !. We find
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] iF2~x!.
Ap/2

~2p!d/2

emri

2
e2mrH S 12

r i

r D S m

r D ~d21!/2

1
d21

8m2 S ~d23!2~d11!
r i

r D S m

r D ~d11!/2

1OS 1

r ~d13!/2D J ,

] i
2F1~x!.m

Ap/2

~2p!d/2

emri

2
e2mrH S 12

r i

r D 2S m

r D ~d21!/2

1
d11

8m2 S ~d25!22~d21!
r i

r
1~d13!

r i
2

r 2D S m

r D ~d11!/2

1OS 1

r ~d13!/2D J ,

~B5!

] iF1~x!.sgn~xi!] iF2~x!,

] i
2F2~x!.sgn~xi!] i

2F1~x!.

Thus, forr'Þ0 we have in leading order

¹s¹F1~x!.m
Ap/2

~2p!d/2

emri

2
e2mrH S ~s'1s i!22s i

r i

r
1~s i2s'!

r i
2

r 2D S m

r D ~d21!/2

1OS 1

r ~d11!/2D J , ~B6!

¹s¹F2~x!.sgn~xi!¹s¹F1~x!.

(iii) r i→`, r'50. Note that Eq.~B5! was obtained exploiting onlyr i→`. Settingr'50 has two important consequence
since nowr 5r i , the exponential decays cancel and, further, the amplitude of the (1/r )(d21)/2 term will vanish. Invoking the
next-to-leading terms in Eq.~B5! yields

¹s¹F1~x!ur'50.2s'

Ap/2

~2p!d/2H d21

2m S m

r i
D ~d11!/2

1OS 1

r i
~d13!/2D J ,

¹s¹F2~x!ur'50.sgn~xi!¹s¹F1~x!ur'50 , ~B7!

which are the desired results.
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