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Structure factors and their distributions in driven two-species models
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We study spatial correlations and structure factors in a three-state stochastic lattice gas, consisting of holes
and two oppositely “charged” species of particles, subject to an “electric” field at zero total charge. The
dynamics consists of two nearest-neighbor exchange processes, occurring on different times scales, namely,
particle-hole and particle-particle exchanges. Using both Langevin equations and Monte Carlo simulations, we
study the steady-state structure factors and correlation functions disiieleredphase, where density profiles
are homogeneous. In contrast to equilibrium systemsateeagestructure factors here show a discontinuity
singularity at the origin. The associated spatial correlation functions exhibit intricate crossovers between
exponential decays and power laws of different kinds. The full probability distributions of the structure factors
are universalasymmetric exponential distributions$1063-651X%97)09910-§

PACS numbs(s): 64.60.Cn, 66.30.Hs, 82.20.Mj

[. INTRODUCTION pling time interval, then even one measurement practically
results in a temporal average. In this case, the scattering in-
The study of correlations and structure factors provides &ensity is a direct measure of tlaweragestructure factor. In
sensitive probe into the characteristics of collective behaviothe opposite scenario each individual snapshot appears as a
in many-particle systems. For example, in a system witrandom pattern of speckles. The collection of many snap
short-range microscopic interactions, maintained in thermashots, however, represents the full distribution of the fluctu-
equilibrium, spatial correlations will in general decay expo-ating density-density products. This phenomenon has long
nentially. Long-range spatial correlations, characterized byeen known in laser scattering experiments and the statistical
power laws, are observed only if the system is at a criticaproperties of the random speckles are well establidlééd
point. In contrast, when such systems are driven into nondsing Monte Carlo simulations, it is particularly easy to
equilibrium steady states, long-range correlations are ofteprobe fluctuating quantities in terms of their distributions:
present in large regions of the phase diagfdi A model  each measurement corresponds to one configuration at a cer-
system in which such anomalous correlations are easily oltain instant of time so that there are no “experimental” dif-
served and studied is thdriven Ising lattice gadthe “stan-  ficulties in achieving fine sampling. Since driven lattice
dard model’) [2,3]. The drive(“external field”) biases par- gases exhibit generically singular density-density correla-
ticle jumps along a specific lattice axis, thus forcing thetions, a study of the associated distributions is expected to be
system into a nonequilibrium steady state. One of the mogparticularly interesting.
intriguing and unexpected features of this system is the pres- In this paper, we will focus on a generalization of the
ence of long-range spatial correlatioas all temperatures  standard model, similar in spirit to the one leading from the
above criticality, due to the breakdown of the traditional Ising model to spin-17] or Potts[8] models. Instead of just
fluctuation-dissipation relationf4] in conjunction with a a single species of particles, we now consider ({labeled as
conservation law for the particle density. In momentum+ and —), which are driven in opposite directions, subject
space, the structure factor develops a discontinuity singulato periodic boundary conditions. Empty lattice sites are re-
ity at the origin[5]. ferred to as holes. This generalization is motivated by a va-
In experiments, correlations are typically studied by pho-riety of physical systems, ranging from fast ionic conductors
ton, electron, or neutron beam scattering techniques. Theith several mobile ion specid®] and water droplets in
scattering intensity is closely related to the structure factormicroemulsions with distinct charggd0] to gel electro-
Depending on the actual physical system, this quantity is thphoresid 11] and traffic flow[12]. For simplicity, we neglect
Fourier transform of the “density-density” correlations, the usual Ising nearest-neighbor interaction and retain
where, e.g., in a ferromagnetic system “density” stands for“only” the excluded volume constraint. The model thus cor-
the local magnetization. Even in the stationary case, i.eresponds to the high-temperature, large-drive limit of a more
when the averages are not expected to be time dependent, tbemplicated interacting system.
densities themselves are fluctuating quantities in Ilspifice This multispecies model, in both one and two dimensions,
and time Thus, when data are taken, it is crucial to comparehas been studied in detdil2—-18. In its simplest version,
the time scale of these fluctuations to the duration of a typiparticles are allowed to exchange with holes only. Monte
cal “snapshot.” If the former is much shorter than the sam-Carlo simulations[13] in two dimensions and mean-field
studies[14,15 show that there is a transition, controlled by
particle density and drive, from a spatially homogeneous
*Permanent address: Supercomputer Computations Research lglisorderedl phase to a charge segregated one, where the
stitute, Florida State University, Tallahassee, FL 32306-4052.  excluded volume constraint leads to the mutual blocking of
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particles. In this paper we extend our previous studies omelected at random. If a particle-hole pair is encountered, an
structure factor$19] and their distribution$20] to the more  exchange takes place with probability

general case where the particles are also allowed to exchange

among themselves: we “soften” the excluded volume con- Wor=Tminf 1.exd a ESx 2
straint by allowing exchanges of nearest-neighbor, oppo- ph {L.exqBox)}, @
sitely charged p.art|cles on a time scal¢hat is distinct frqm whereq= 1 is the charge of the particle a==1,0 is

that of the particle-hole exchangé6]. Here, the blocking he change of thex) coordinate of the particle due to the
transition still occurs, as part of a more complex phase dlafump_ Similarly, if the neighboring sites are occupied by op-

gram[16]. A particularly interesting case emerges when theposite charges, a particle-particle exchafigecharge trans-
two time scales are chosen to be equal, ie51: here, fer) is attempted with probability

equal charges are completely uncorrelatéap to trivial
finite-size effects while “hidden,” nontrivial correlations

survive betweemppositecharges. We add that this model in Wpp=yI'min{1,exg Eox))}, ©)
one dimension, at infinite drive and for arbitrayy has been . . .
solved exactly by Godohe and Sandod8]. where nowdx is the change in the coordinate of the

mPositiveparticle due to the jump. Note that we do not intro-
n'g_uce a factor of 2 in the exponential here, as one might have
ics in terms of Langevin equations. We will study not only expected for a real electric field. This choice leads to a sim-
the averages but also the full distributions of the steady-statglé! Langevin equation without significantly affecting the
structure factors, using Monte Carlo simulations and a conPh@se diagram. Needless to say, it is irrelevant whether ex-

tinuum field theory. Finding excellent agreement betweerfh@nge takes place or not, if both sites carry identical con-

our simulations and analytic results, we can trace the chaf€nt:

acteristics of the distributions back to the structure of the FOF our simulations, we sdt=1, so the control param-

underlying Langevin equations. Given these relations, megeters arep, E, andy. On lattices withL ranging from 30 to

surements of structure factor distributions in real systemd00, the system is initialized with random configurations of

should provide considerable information about the associate¢arious particle densities. Runs last from 2 50° to 5x 10°

dynamics. MCS. The first 62 500 MCS are discarded to allow the sys-
This paper is organized as follows. In the next section, wéem to settle into steady state. Then, we measure the Fourier

define the microscopic model and give some details of théransforms oh, every 125 MCS, defining them in the usual

simulations. In Sec. Ill, we introduce the underlying Lange-way:

vin equations and calculate the average structure factors, the

corresponding spatial correlations, and the theoretical distri-

butions of the structure factors. In Sec. IV, we discuss our ng=>, e *n: . (4)

results and conclude with a brief summary. x

We will focus on the disordered phase of the syste
where we have a sound analytic understanding of the dynal

In the following, we will investigateequal-time density-
density operators in momentum space, considering both their
We consider a two-dimensional fully periodic lattice with full distributions as well as theifensemble or timeaver-

LxL sites, each of which can be empty or occupied by eAdes. In the literature, t_he term “structure factor” typically

single particle. To account for the presence of two speciesfefers to the averages, i.e.,

we introduce two occupation numbeng andn, , with n

being 0 or 1, depending on whether a positive or a negative 1

particle is present at site The excluded volume constraint S*¥(k)= v(”?n’ﬁk), ®)

implies n;n, =0, for anyx. To model the system at zero

total charge, we choosEX[n:—nx’]zo; i.e., the average where a,8=+,—; k=(2m/L)(m, ,m))#0 and V=L2 is

densities of positive and negative particles are the same: the volume. Occasionally, especially when discussing the

full distributions, we will use the word ‘“structure factor” for
1 1 the quctua_ting two-po_int operator itself. In the disordgred
p=—> n;:_zz n, , 1) phase,S_“ﬁ is the_ Fourier transform of the usual equal-time
X L correlation function

Il. THE MICROSCOPIC MODEL

Since the dynamics conserves both densities separatesy, QB — [ @ B\ _ @\ /B
a constant. In the absence of the drive, the twg sgecies of GO0 =(nng) —{mo(ng). ©)
articles are distinguished only by their label: both types ho e . . . .
Eandomly to nearegt-neighbor)gmypty sites, with the nge rat hus, ifG IS even Inx, S will be regl, S0 that an imaginary

I'. In addition, nearest-neighbor pairs of opposite chargegart of S signals a part+ SG trla_t is odd inx. By charge
exchange with a rateI’. The external drive is directed along symm.etry, we expecG :.G - Clearly, both must be
a specific lattice axis, labeled as the direction. Reminis- ﬁ;ﬁz I\r;v)é r?:VtGhat the associatesis are real. On the other
cent of a uniform “electric” fieldE, it exponentially sup- ’

presses jumpsgainst the force. Specifically, during one

Monte Carlo step(MCS) 2L? nearest-neighbor bonds are G'" (x,E)=G"(x, »—X|,—E) (7
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FIG. 1. Steady-state structure factor® S**(k), (b) FIG. 2. Steady-state structure factor@ S""(k), (b)

Re[ST(k)!}, and (©) Im{S*~(k)} for an L=100 system at RE&S" (K)}, and (0 Im{S""(k)} for an L=100 system at
y=0.02, E=0.279, andp=0.175. Structure factors are plotted ¥=1.00,E=%, and p=0.25. Structure factors are plotted against
against the integem=kL/2m, while m, =k, L/27 is taken as a the integemm =k L/2m, while m, =k, L/2m is taken as a param-
parameter. Lines are representing the fitted theoretical curves, ~ €ter. Lines are representing the fitted theoretical curves.

. ) ) _ one species is uniform, i.eRP[{n;}]1==,7P[{n, ,n, }]
in the presence of the drive so tH&it~ may have an imagi- . X .
«1. Thus, we expect questions regarding only one species of

nary part (which must be odd inE). Finaly, particles to have trivial answers, e.g," " (x) must vanish

AN A
G . (=G ( x) follows frqm _Eq._(6) by translation in for x# 0 in an infinite system or yield the finite-size fluctua-
variance. Turning to the full distributions, these can be con-

X ; " - tions in a finite one. On the other hand, the two-point func-
structed Iro[n the. time series of, n’,/V, Rg{nk N /v, _tion between opposite charges can display interesting struc-
and Imin, nZ, ]/V in the steady state. Exploiting symmetries

] o ek >y tures, e.g., long-range correlations, as a result of the full
again, we note that, n-,/V andn, n_,/V are distributed  gistributionP[{n ,n; }] not being uniform. We note briefly
identically, so that we need to consider only the former. Fur

S0 ed , FUhat a completely “flat” steady stateP[{n, ,n, }]=1, is
th+er,70nlynk. nZ/V andn, n_,/V are necessarily real, while - opained fory=2, as in the one-dimensional version of our
n, n_,/V will generically be complex. model[18].

We simulate systems witly ranging from 0 to 1. For In Fig. 1, we present the results for the three independent
small y's we chooseE and the density in such a way that S's found in the 10X 100 system at a small value g¢fand
the system is in the homogeneous phase. For lasger note the discontinuity singularity of these objects at the ori-
(v>1v.=0.62) the charge exchange mechanism suppressegn. In Fig. 2, we show the same quantities fg=1 and
the ordered phase entire[)L6] so we can pick arbitrarily draw special attention to the fact that, whi * does not
large fields at any density. A particularly interesting casedepend ork at all, S*~ exhibits a highly nontriviak depen-
occurs for y=1. Here, the rates for particle-hole and dence. Figures 3 and 4 present the structure factor distribu-
particle-particle exchanges become equal, Mé,, =Wy, tions for the smallest longitudinal and transverse wave vec-
so that a positive(negative particle can no longer distin- tors, respectively. Before discussing the data in detail, we
guish a negativépositive) one from a hole. Thus, a positive will first present the theoretical framework within which they
(negative particle experiences biased diffusion, slowed onlycan be understood. In particular, we will focus on two points,
by encounters with other positieegative particles, just as namely first, the emergence of discontinuity singularities in
in the case of a single, noninteracting species, whose steadghe structure factors ak=0, and their consequences for
state probability distribution of configuration§.e., the long-range correlations in real space, and second, the origin
steady-state solution of the associated master equaSon of the asymmetric exponential form of the distributions. This
exactly known to be uniformi21]. For our case, this implies will then be followed by a comparison between our theoret-
that themarginal distribution of the occupation numbers of ical predictions and the simulations.
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ing order, we find a set of mean-field equations of motion for

the local densities that reads

limit,

IIl. COARSE-GRAINED DESCRIPTION

after taking a naive continuum

To extract the behavior at large distandes smallk in
momentum spage a continuum field theory for the slow

variables of the model is most appropriate. To find such a
description, we musti) identify the slow variables of the
theory, and(ii) obtain a set of equations of motion for these

(1-p"=p)]

*

exp

—p"=p7)

Y1

ap”=—VI{[p

(€)

P71}

=+

+e T

+1p

Vp™Eexp

guantities, corresponding to a coarse-grained version of the
we consider theWhere
d-dimensional case wheg, is directed along the electric

microscopic dynamics. For generality,

dimensional subspace, perpen-

_1)_
dicular to the field. Time is denoted Ry Then, the slow

isinthe d

field andx,

(10

r,

0
0 Iy

variables are easily identified as the conserved densities,

(x,t), of the two species. The most systematic way to
arrive at their equations of motion is to perform @nexpan-

p*

is diagonal and isotropic in the

is the diffusion matrix.I',

sion[22,23: after partitioning the whole system into suffi-

thus characterized by a num-
berI’, . V is the asymmetric gradient operator, acting on any

(d—1)-dimensional subspace

ciently large blocks of siz€), one splits the particle densities
associated with the block centeredxatnto a macroscopic

part (p=) and a fluctuating one

P

fVg—gVf. ¢ is the

coarse-grained bias ang is the unit vector along the

P

two functionsf andg according tof Vg

):

direction. Note that at the mean-field level we also obtain
explicit expressions for the diffusion matrix and the bias

/2, and e=2tanhE/2). Of
course, these may be modified by renormalization.

1, I=(1+e"

[23]: T, =

8

)+ Q2= (x,1).

X

(

2 ne=p"

X e b(x)

1

nx,=p

The continuity equation9) admits both homogeneous
and inhomogeneousindependent solutions, associated with

This decomposition is inserted into the microscopic mastethe disordered and the blocked phases. The former is our

focus here. To ease comparison with simulation data, we

equation, followed by a systematic expansiofinAt lead-
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choose equal densities for both specig$(x,t)=p . This  erage densitp=(1—y)p and 6=(3—-y)/(1-y), and fo-

solution describes the steady state at the mean-field level. cusing on the fluctuations about the homogeneous phase, the
At the next order in thé) expansion, we find a Fokker- result is

Planck equation for the fluctuating payt-. For our pur-

poses, the equivalent Langevin equation is more transparent. I (X, 1) = LEB(V) xB(x,t) = V- *(x,1), (1D

At this order, its deterministic part is linear and tfmon-

served noise is Gaussian. After defining the “reduced” av- where the drift matrix is given by

[L(V)]=

(1-p)VI'V—(1—-68p)ely9 pVIV+pel 9 ) 12
1

pVIV—"pel9 (1-p)VI'V+(1—-6p)el'yq

and summation over repeated indices is implied in @4) . o s otk
and in the following. They™(x,t) are Gaussian white noise X’(k,w)ZJ dt d x*(x,t)e !k, (16)
terms, with average and second moment

and similar ones for the noise, so that

(m{(x,1))=0,
(7D PP (X 1)) =208 5(x—Xx") 8(t—t"), (13 (7(k,w))=0,
wherea,B=+,—;1i,j=1,2,...d. Due to the bias, the noise
i aBy — i i a ’ ’ a ’ ’
matrices {jj _).—o-“ﬁ are diagonal but not proportional to (k,w)nf(k @ ))=20ijﬁ[(2w)d“¢‘>‘(k+k )S(w+w')]
the unit matrix: (17)
aB . L
o 0
a"ﬂ:( L aﬁ) ' (14 the solution to Eq(11) is simply
O 0'”
Note thato*# is symmetric and due to charge symmetry, we x“(K,0)= (L™ H*Pik- pP(k,w), (18

also haves* "=~ . Similar toT', , o# is diagonal and

isotropic in the @—1)-dimensional subspace, characterized,ere

by a numbera®”. In the absence of the drive, our model

reduces to an equilibrium system, so that the fluctuation dis-

sipation theoren{FDT) holds. In our case, this guarantees LYB(K, )= L*(ik)—iw*P. (19)
o*PxT, or, more specifically,

Note that, ink space, £**,£7 ") and ('~ ,£™ ) are

o =[p(1-2p)+yp?IT, complex conjugate pairs.
Not surprisingly,(x = (k,w))=0, consistent with the de-
ot =[— YF]F (15) composition(8). The two-point correlations of * (k,w) are

just thedynamicstructure factors, defined as
[23]. However, when driven, t_his proportionality does not
hold in generic ranges of and p, in that the diffusion and o d+1 , ,
noise matrices are renormalized differently by the drive S™(k,@)[(2m) T 8k +kT) o0+ w')]
si_milar to the §ituation in the dri\_/en single species c[@% =(x*(k, ) x*(k",0")). (20)
Finally, we point out that there is a correlation betwegn

and#~ due to the fact that charge exchange is allowed. This . , )
effect is captured by the matrier™ ~, which is expected to USing Eds.(18) and(17), the two independer§'s follow:

be proportional toy and negative definite for nonzero drive

as well. kot t
o
S (kw)=—— (L7 [*+|L" 7%
A. Steady-state structure factors |de(L)|2
Equations(11)—(14) are linear equations that are easily ko' K

solved in Fourier space. Introducing the Fourier components

—————2RdL LY, (21)
for the fluctuations |de(L)|? 1 }
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+H g To ensure that the system is within the linear stability region
St (k,w)=— 5 FTILTYY*+LT ] of the disordered phase, we must havewhp>0. Since
|detL))] —3Tr(L£)=(1-p)kIk is automatically positive definite,
Kotk we only require det()>0 for all k+ 0. Collecting, we find
+————— (L)L +(LT)?]
|det(L)] S (k)= ko" "k [£772 ko' k ReL L)
To compare directly with simulations, we need the steady- —ETr(ﬁ) det£) — ETr(ﬁ) det L)
state structure factors 2 2
ko™ k £77L7T
S*(k[(2m)Ya(k+k)]=(x (kX (k'.1), (22) St (k)=— I et L)
—5Tr(L
which are easily obtained from E¢21) by an integration 2 (£)
over w, using the residue theorem and noting that the two +— - —V it -
zeros of det) simply correspond to the two stable eigen- ko k £ ReL FHiLT Im{L },
values ofL: 1 de(£)
2Tr(L)

(24)

B ,Tr(.c)+\/d . Tr(L)\? 03
w12=—1m5 =\ dets) 2 |- (23 so that, with the help of Eq12), we finally obtain

(1—p) ko™ "k (KIK)2+[(1-8p)%/(1~p)?]e?T ki
(1-2p) kIk (KT'K)?+4m?T ki

S++(k):

P ko' Tk (K[K)?+[(1-8p)/(1—p)]e?Tfkf
(1-2p) kIk (KT'K)?+4m?T kf

P ka++k(krk)z—[(l—575)/(1—75)]82rﬁkﬁ+ (1-p) ka*k (K['k)?>~[p?/(1~p)?]e?Tfkf

Re(S™(k)}=—

(1-2p) KIk (KT'K)2+4m?T kf (1-2p) kIk (KTK)2+4m?T" k? ’
(25)
|m{s+*(k)}=;[2_(l+ 5)pl (ko' *Kelk  (1-p)(1-8p)+p* (ko' K)el |k
(1=p)(1-2p) (KI'k)?+4m?T ki (1=p)(1-2p)  (KT'K)?+4m?T ki
To simplify the notation, we have defined a “maséh the field theory sengem via
1-6p)2—7p2 1-2p)[1-(2-y)2p]
am?= 10)~ P 821“”=( p)[1-(2=7) p]SZF”_ (26)

1-2p 1-(1-y)2p

Its role is to mark the linear stability boundary, which, in the limit—, is given precisely byn?=0. Otherwise, foffinite
eL, the system does not reach the stability limit as longeds/Zm)2<[1—(1—y)2p1/(1—2p)[(2— y)2p —1] is satisfied
[16]. Thus, it is sufficient to impose?>0, i.e.,p_< 1/2(2— v), to keep the system in the homogeneous phase.

Similar to the driven lattice gd2,3] and the two-species model studied eall&], these structure factors are all singular

at the origin. The singularity takes the form of a discontinuity, in either the function itself or one of its derivatives. In
particular, bothS** and R¢S" ~} are discontinuous, so that the ratios

lim S**(0,k)) - ~ 44 ~ ~ o 4o

kj—0 _ 1—2p (1—5p) g /FH—[p/(l—gp)]O'H /FH (27)
lim S**(k, .0 (1-0p)°~p*> (1-p)* o *IT, ~[p/(1=p)]o IT,

k, —0

and
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lim Re{S+ _(O,kH)}

k0 ~1-2p  1-5p o] "IT=[p/(1=5p)lo| T 8
lim Re(S*~(k,,0}  (1-6p)>~p? 1-p o/ "IT,~[(1=p)pla! T,
k, —0
|
are in general d|ff_erent frc_)m unity. In cont_rast,{lSTT_(k)} ~ (1-6p)2(1—2p) (1-7) ..
vanishes fotkk— 0 in any direction. Here, discontinuities oc- o’= == ~5 =~ =
cur in higher derivatives. Unlike in the driven Ising lattice (1-p)I(1=6p)°—p~] (1-2p)
gas, these singularities do not simply originate in the generic 1 6oV (1—23 ~
FDT-breaking relationof#/T#o{#/T, , but also in the _ (.,_ 2 _ p)~ _ LA
specifics of this particular driven system, reflected in the first (1-p)[(1—6p)%—p?] (1-2p)
factor on the right-hand side of EqéZ?)_and (29). It is a
monotonically increasing function op, reaching«~ at 3 (1—'5)76 il
p=1/2(2—vy). As a result, the amplitudes of the disconti- o= 1= (1= 67)2— 2 d
ele o (1-p)[(1=6p)°—p°]
nuities diverge as the system approaches the stability limit of
the homogeneous phase. p? L
_ _ S———
(1-p)[(1—6p)*—p?]
B. Equal-time spatial correlations
The equal-time correlation functions (1-3p)(1-2p) o .
G (x)={(x*(x' +x,t) xP(x',t)) are just the Fourier trans- (1-p)[(1-8p)2—p?] (1-2p)
forms of the structure factors
p2(1-2p 1-p
d’k . - ~’;( f)z —-+1 (120) -
G"B(X)=f 2 )dS“B(k)e'k'x, (29) (1-p)1(A=6p)°=p°] [(1=2p)
a

_p[2=(1+9)p] . (1-p)(1-dp)+p?
independent ok’ by virtue of translational invariance. To _(1_;)(1_2'5)"’ (1-7)(1-27) o -
simplify the transforms, we introduce some changes in nota-
tion. First, we rescale the lengths and momenta:q, the following, only two major properties of tha's,

X, —x T2 x—x IT12: k, =T 1%, kj—Ti%; so that i - i - i
L7 AL s ATTAR e R L BLR I " rather than their detailed expressions, are important. First,

I' becomes the unit matrix. Further, we tef’—a{’/T, ,  they are all positive definite within the stability limit of the
Uﬁlﬂﬁgﬁlﬁlrﬂ. After some algebra, we can recast the struchomogeneous phase, and second, they are diagonal but ge-
ture factors in much more compact form nerically not proportional to the unit matrix, since they are

related to the noise matrices. Now, referring the details of the
integrations to Appendix A, the transforms can be carried out

S"(k)= ke'k —(kg-2|<)—k2 , exactly. Writingr=|x|, r, =[x, |, andrj=|x|, we define
k2 k4+4m2kH
- rdr-1) 1
X)=—— —
4 d/2 d-2’
RS ()= 2 (ko) (30 T
= — o —_—,

k2 k4+4m2kH coshimx))( m (d-2)/2
Fi(x)= W<T) Ka-2p(mn), (32

Im{S*~ (k)} = (k Sk)—sr“llzk” (@-2)12

m =(ko i -
4 20,2 sinhlmx;)( m
K™+ 4m7k] FZ(X)E(ZT)‘E T) K(d—2)2(mr),
wherek= k| and whereI'(2) is the Gamma function an,(z) is the modi-
fied Bessel function. The correlations can then be expressed
~ 2 in terms of these three functions
(1-0p) s
T ~2_~29
(1=p)[(1=6p)"=p7] G**(x)=— VaVE(X) + Va?VF 4(X), (33)
(1-p)p ‘e

_(1_',;)[(1_ 6p)2—p2]-p? o @Y Gs = (X)=—Va*VE(X)+ Vo*VF (), (39
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1/2

el ters in this model. In particular, the sign@f ~(0,x;) shows
G () = =L VadVF,(x), (35) P gn@%_(0.x)
o 2m

that negative charges prefer to be located “downfield,”
rather than “upfield,” from positive ones, as a precursor of
whereG_ are the parts o6~ even or odd inx;, corre- the blocking transition. In conclusion, the spatial correlations

e,0 .
sponding to the transforms of the real and imaginary parts ofre dominated by the expected” power law, except along

S*~. The full correlation is, of course,G* (x)= the field, where a novel; " decay takes over. Similar

Gg‘(x)+G§‘(x), reflecting the symmetry7) of the sys- behavior is found if charge exchange is not allowed=0)

tem in the presence of the field. [19]. Thus, this new power law appears to be a generic fea-
Leaving the detailed asymptotic expansions of E§8)—  ture of driven two-species models, associated with the ex-

(35) to Appendix B, we only indicate the main features here.cluded volume constraint and the opposite bias. We should
Clearly, the discontinuity singularities of the structure factorshote, however, that it can only be generated in the presence
translate into power-law decays of the correlation functionsOf at least one transverse dimension, i.e.dml.

In particular, the first terms in Eq$33) and(34) exhibit the

well-known r ~¢ decay[25], which is associated with the C. The y=1 case

breaking of the FDT in the presence of conservation laws
[5]. In contrast, a discontinuity singularity in higher deriva-
tives is not sufficient to produce the ¢ power, as illustrated
by the form ofG_ ~, Eq.(35). The second terms in E¢&83)
and(34) and the only one in Eq35) are more subtle, since

All expressions simplify considerably when we get 1,
yet they still capture the essence of this two-species model,
namely, the nontrivial correlations between opposite charges

the exponentials of the hyperbolic and Bessel functions com- St (k)= ko' "k
pete. Summarizing our results asr—o, we find forr, k2
#0:
1 1.2 2 2
ogj—op|ri—(d=1r Re[S*(k)}=(ko" k) ———, 38
a0 Hri-@-urf) oS" (0= (ke h) g = 38)
rd | 2 [
3 3[.2 2 _ __—sgn(e) 2mk
ogi—al|ri—(d=1)r IM{S*(k)}=(ko" k) ——————
G (=G (0 ”rd { — SN ST 0} (ke k) K+ amak?
(36)

where now 4n?=(1—2p)2¢%T'). No instabilities can occur

here: even forp =1/2 where the “mass'm? vanishes, ho-
mogeneous configurations prevail since the model reduces to

. . . a driven one-species model. For generic densities, we note
where the ellipses represent exponentially decaying Part3hat the form of thet + structure factor is the same as in the

Here, all three key components of the characteristic nonequbne-species model. due to the fact thals cannot distin-

librium power-law decays are displayed, namely, the neces; s, : hol he mi ic level. Th
sity of FDT violation, o /T’ # o, /T, , the dipole amplitude guish between-'s and holes at the microscopic level. The

iated with st isot i ¢ key question is, of course, whether tbrs (especiallyo™ *)
associated with S rong_adn_lso ropy in the presence ol a con,,o proportional to the unit matrix or not. Unfortunately, in
servation law, and the™ “ itself. We emphasize again that

N ) the absence of a renormalization group analysis we have to
tr;]e ?dd pa(rjt of the cross correlationS, (x), is purely ey on simulations to answer these questions. Based on the
short ranged.

) ) . ) . results of the previous subsection, it is clear that only
Along the field direction, the behavior of the correlations S**(k) could possibly produce the ¢ power law. How-

G;*(x)oc. ..,

is more complex. Here, a novel powef,"* Y2, emerges, ever, our simulation results indicate that the internal symme-
which will dominate over the “FDT-violating™r =%, for all  ty of the system, at this particular value 9f restores FDT
d>1. Thus, forr, =0 we have for either species, i.e., the first equation(itb). This is en-

tirely consistent with the fact that the microscopic steady-

G**(O,XH),GQ‘(O,x“)oc—r”‘(d“)’z state distribution of either species is uniform, as mentioned

in Sec. Il. Thus, correlations will be short ranged, given by a

+O(maxr @, ry "7, 8 function for identical species and exponential decays for

opposite chargegxcept in the field direction, between op-

_ _ _ posite speciesvhere
G;r (O,xH)oc—sgr(st)rH (d+1)/2 O(r” (d+3)/2). (37)

In the parentheses, we have indicated nlest-leadingterm L . w2 [d—1/m)@rDP2

in the asymptotic expansion df q_,,,. Surprisingly, in G (0x)=20(ex))o (ZT)d/z om r_\l

d>3 even this power is still more relevant than the more

familiar r 9. We also emphasize that in E@®7) all propor- 1

tionality constants are positive. Thus, the explicit factors of +0| 3 e /2) ] (39
(—1) carry information about the structure of particle clus- rﬁ
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Here®(x) is the step function and; ~ is always negative. 2i L _ — .
Thus, the novel; “*1’ power law, a key feature of this Qz=1 (R4S (K]~ VAH{REST (KT}, (42
two-species model, survives in the cross correlation, even in
this simplified case. where A=|S"*(k)|?—|S"(k)|>>0. The inverse trans-
forms also result in exponential distributions, characterized,
D. Distribution of structure factors however, by two distinct decay factof® .| and|Q_|:

So far, we have focused entirely on thaver-

ages of density-density operators. In this final section, 1 SlollsT i st=0

we will construct the full probability distributions for Ne ' s =

these fluctuating quantities, i.e.x"(k,t)x"(—k,t)/V, P (s k)= (43
Re{x" (k) x (—k,D)I/V, and Infx*(k,t)x (—k,DIV, Laos™ i st <o,
following the method of Ref[26]. Representing these opera- N

tors bys*t ™, s" 7, ands’” ~, we seek their marginal distri-
Yy r i g

butions, for eaclk vector separately: with N=yJA+{RgS" (K)]}*. The distribution of
Im[x*(t)x *(t)]/V, i.e., P ™, follows from P,”~ by just
+ +x interchanging Res* (k)] and InfS™ (k)] in Egs. (42
P++(s++;k)=<5(X (kOX (k) ++)>, and (43).
v To summarize, all three distributions are asymmetric ex-
ponentials, withP™* representing the most extreme case.
. Refx"(k)x * (k)] Due to this structure, their standard deviations are always
P/ (ss ;k)={4l v —S : greater than or equato averages, so that fluctuations will
(40) never be “small” in the usual seng€0,26].
Im[X+(k Hx *(k,D)] IV. DISCUSSION
et ) — ! ! et
Pr (s k)= < 5( Vv Si ) > Finally, let us turn to comparisons with simulation results.

Typically, we find that power law tails are much more diffi-
Here, we have useg™ (—k,t)=x"*(k,t), since the densi- cult to observe than in the single-species ci&. Appar-
ties x*(r,t) are real. Also, we have normalized by in ently, their amplitudes are rather small, so that the data are
order to obtain a well-defined thermodynamic limit, noting obscured by either critical singularities or finite-size effects,
that (2)96(k=0)=V. In principle, these distributions can depending on the points in the phase diagram that we choose
be computed explicitly, by inserting the solutigri (k,t) of  to investigate. Thus, we focus on the structure factors. Using
the Langevin equatiofill) into (40) and averaging over the a standard least-square routine, we fitted our analytical re-
noise, associated with Eq13). However, given that these sults[Egs.(37) and(38) before rescalingto our simulation
distributions are universdR0], depending only on the lin- data. The fit was done simultaneously for the tHg&eusing
earity of the Langevin equation and the Gaussian nature ahe smallest % 11 nonzerd vectors. The agreement is quite
the noise, rather than on the specific forms of diffusion andyood, especially considering that the theoretical results are
noise matrices, Eq$12) and (14), a detailed calculation is based on a linearized Langevin equation, but we note the
not necessary. Instead, we can refer to the distributions for following: for the y=0.02 casdFig. 1), despite being in the
simpler case{20], namely, the model without charge ex- homogeneous phase, the system was relatively close to the
change, since their forms will be identical to the ones we areontinuous transitiofi16], with m~4x 102 corresponding
seeking here. However, some brief comments are in order, t® a correlation lengtli~ 25 in units of the lattice constant.
put the results into perspective. For technical reasons, it it particular, “longitudinal” parameters, such &5 and the
simpler to compute the characteristic functidns., Fourier  ¢'s, seem to suffer considerable renormalizations here. On
transforms of Eq. (40) first. Denoting these bp“#(Q), we  the other hand, the “transverse” parametels, and o, ,
find that B**(Q) has a single pole in the lower haf appear to obey Eq15). In that sense, the FDT is satisfied

plane, so that the inverse transform yields an exponentié‘l"ithi”_ the transverse subspacko illustrate this feature, we
distribution for the non-negative variabse *: combine Eq(15), written for the transverse parameters, with

the explicit form of the structure factof&5) for kj=0. This
yields the exact “finite-size” amplitudes, completely

1

e-sTHSTT if gtt=0 independent ok, : S**(k, ,0)=p (1~ p) andS" " (k, ,0)=
PTT(s" k)= ST"(k) — p?2, in perfect agreement with the simulations. In fiué
0 if stt<0. d-dimensional space, however, the FDT is of course vio-

(41 lated: as a result of the coarse-graining effect in the field
direction, we generically found /I'j# o, /I", for the res-
Here, S"* (k) is just theaveragestructure factor, and we caled ‘“noise” matrices. In particular we had
will refer to 1/S** (k) as the “decay factor” of the expo- o}}/T|=0.83301/T, , predicting the typical FDT-violating
nential. In contrast, botP;” ~(Q) andP," (Q) exhibittwo  power law.
poles, one () being on the negative, and on@ () on the For y=1.00 (Fig. 2, S""(k) is completely flat, as we
positive imaginary axis, expected, indicating that| */I'y=o */T', . Moreover, the
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value of this constant is just(1— p), again consistent with d

Eg.(15). In contrastS" ~ (k) clearly exhibits the structure of dik elkx I 5_1 1

Egs.(38). Here the system is far from transitions+3), so E(X)Ef 2m K2 =T an oo (A1)
that critical fluctuations are completely avoided. Conse- T’ 77

quently, usingn=3(1-2p)|e|T'}”? with the mean-field pa- Then, it o is diagonal and isotropic in the

rameters produces a “mass” closely matching the one ob¢q— 1)-dimensional transverse subspace but not a multiple

tained from the fit. . . of the unit matrix, it is easy to compute
Now, we turn to a comparison of the analytical results for

the structure factor distributions with the simulations, sum-
marized in Figs. 3 and 4, for the two smallest wave vectors,

r 2 2 _ d—-1 2
VoVE(X)=—0, 8(X)—(oy—a,) (d/2) ri—( )rH.

respectively. The control parameters were the same as those 2 a2 pd+2

of Fig. 1. Again, the agreement between our Gaussian theory (A2)
and the data is quite impresssive. The-+" histograms

show simple exponential dec§26], while the “+ —" his- Next, we will outline a formal way to obtain the other two

tograms clearly represent asymmetric exponential distriburequired momentum integrals. For a more rigorous treatment
tions. To test the theoretical prediction, namely, that thesee[23]. We defineF; andF, as follows:

slopes of the histograms are determined entirely by the struc-

ture factor averages, we simply measured the latter, i.e.,

S*" ,ReS"7, and InB" ~. We then inserted thmeasured Fl(X)Ef
averages into théheoreticalrelations for the decay factors. (
Clearly, the “+ +" case is particularly simple since the de-

cay factor is just the inverse d8** itself. For the two g " )
“ + — distributions, the decay factor€) - | , given by Eq. E (x)=J d% e"*(—2m)ik|
(42), are considerably less trivial, but the agreement is nev- 2 (2m9 K+ 4m2kﬁ
ertheless remarkable. Here, renormalizations can obviously

also occur, but can be absorbed into the effective parametefsis then helpful to realize that the integrands, without the

of the theory, leaving théorm of the structure factor distri-  exponential factor, are simply the convolutions of two func-
butions invariant. Moreover, they are automatically capturegjons, i.e.,

by the measuredstructure factors, so that they do not spoil

the agreement between data and theory here. However, we

must avoid critical fluctuations since these fall out of the k? _f d’k’

scope of a linear theory. K4+ 4m2kﬁ - (2

In summary, using both simulations and analytic tech-

nigues, we have examined the structure factors in a simple

model of biased diffusion of two species. We calculated the —2mik; ddk’

corresponding spatial correlations, finding not only the ex- 2 2 2 :f q
d ) 22 k*+4m-k (2)

pected power law decay 9, typical for nonequilibrium [

steady states of conserved systems in the presence of stro\% ere

anisotropy, but also a powce'[_(d”)/2 for correlations along

the bias, characteristic for two-species models. We also in-

vestigated the full distribution functions for the structure fac-

tors, being universal asymmetric distributions. The general

agreement between simulations and a Gaussian field theory

is surprisingly good, while we await a renormalization group

analysis of the continuum theory of the model in order to (2m)¢ ) ]

make more detailed comparisons closer to the continuous ~ C(K)=—%—3a(k )[(kj+im)+o(kj—im)], (AS)

transition.

ddk eik~><k2
2m)® k*+4m?k?’

(A3)

JF(k)C(k—k),
a
(A4)

F(k")S(k=k"),

F(k)= ,
(k) k24 m?

(2m)° . .
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APPENDIX A: MOMENTUM-SPACE INTEGRALS
FOR THE CORRELATION FUNCTIONS F(X)=F(r)=

(d-2)/2
From Eq.(30) we see that we need three basic types of

integrals. Although the first one is well known, we list it for (AB)
completeness: C(x)=coshmx),
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S(x)=sinh(mx;). APPENDIX B: LONG-DISTANCE ASYMPTOTIC
BEHAVIOR OF THE CORRELATION FUNCTIONS

Thus, using the convolution theorem, we trivially get . , .
g v To obtain the long-distance behavior fSicVE(X), we

just have to omit the first term in EqA2), which is aé

Fl(X):COSKm)ﬂ)F(r)l (A?) function:

Fo(x) =sinh(mx)F(r).

2 4 ay2
Note thatF(r) is the solution of VoVE(X)|xro= — (0] 0. I'(d/2) ri—(d—1)r

27Td/2 r.d-%—Z
(= V2+m?)F(r)=8(x). (A8) (B1)

Then using some algebra and E@8), we can translate

VoV into differentiation with respect ts : This is the typical “FDT-violating” power law, provided

that o is not a simple multiple of the unit matrix. Otherwise,
_ the amplitude of this term would be zero.
VoVF(X)=—0, 8(x)+ o, 2mg|{sinh(mx)F(r)} Using the “largez” asymptotic expansion of the modi-

+(UH—GL)&f{cosf(m)qu(r)} fied Besssel functiof27]

=—0,0(X)+ 0, 2mdFy(x)+(o—0))

X 3fF1(0), K,(2)= \/ge—Z{H

VoVF,(x) =0, 2ma|{cosiimx)F(r)}+ (o= o)

1\ 1
2——]—+0

L) 2z

4

1
=l (B2

z

we can obtain the long-distance behavior YarVF,(x) and

2 .
X gj{sinimx)F(r)} VoVF,(x) as m=const-0 andr—o. Due to the strong
=al2m&||F1(x)+(UH—al)aﬁFz(x). (A9)  anisotropies in these functions, we consider three different
scenarios.
These forms are particularly useful when we calculate the (i) r;=0, r,—c. Combining Eqg. (A9) and the
corresponding long-distance behavior. asymptotic form ofF(r) we find

N (d-1)/2 1
‘9HF2(X)|XH:0:mF(r)|xH:ozLe*mu (E) +0

p(d+ D72
1

1 9F(r)
+_

d-1)/2
2E o, N w2 o (m (d-1)
f l(x)IXH:O—m F(r) =m e — +0

(2m)%2 ry

1
pla+ne) [ (B3)
1L

=0 470

while ¢,F,(x) and aﬁFz(x) are simply zero ax;=0, since they are odd functions gf. Thus, finally we have

1
ri‘”l)/z '

Va-VFz(x)|XH:0:O. (B4)

NET) . m<d—1>/z
(Zw)d’ze r +0

VUVFl(X)|XH:OZ(O'J_+O'H)m

(ii) ry—o, r;#0. In addition to using the asymptotic form &f(r), we can now also write cosm\@‘):%emru and

sinh(mm):sgnw)%em'u. In the following, we will keep the second leading power in ity order to simplify the discussion of
case(iii ). We find
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V@2 e™i r\(m (-2 gq—1 rp\(m (d+1)12 1
—_— —mr I N — — L — -
(QHFZ(X)—(ZW)M 5-e (1 r)<r) +8m2((d 3) (d+1)r)(r) +0| 75 |-
5 Jai2 e™i . r|3(m\@ 22 d+1 g de 1y (g rf| (m)(@+orz 1
(BS)
d|F 1(X)=sgr(x)d|F2(x),
IFF 2(X)=sgr(x)) I F1(x).
Thus, forr, #0 we have in leading order
—= 2 _
VoVFi=m 2 me & e (0, +0) =201 +(0-0,) (T)(d Yol A (B6)
(2m)¥2 2 r 2\ ((d+1)72

Vo VF,(x)=sgnx))VoVF(x).

(iiiy r j—<0, r, =0. Note that Eq(B5) was obtained exploiting onlj— . Settingr, =0 has two important consequences:
since nowr =1, the exponential decays cancel and, further, the amplitude of th¥{1$"? term will vanish. Invoking the

next-to-leading terms in E4B5) yields

VoVFi(X)|;, —o=—0, (2m)

VoVF(X)|; —o=sanx)) VeVF(X)|; o,

which are the desired results.

w2 [d—1/m)|d+DP2
]

+0

]

|

(B7)
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