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Analysis of synchronization of chaotic systems by noise: An experimental study

E. Sánchez,* M. A. Matı́as,† and V. Pe´rez-Muñuzuri‡

Group of Nonlinear Physics, Faculty of Physics, University of Santiago de Compostela, E-15706 Santiago de Compostela, S
~Received 16 June 1997!

The behavior of uncoupled chaotic systems under the influence of external noise has been the subject of
recent work. Some of these studies claim that chaotic systems driven by the same noise do synchronize, while
other studies contradict this conclusion. In this work we have undertaken an experimental study of the effect of
noise on identically driven analog circuits. The main conclusion is that synchronization is induced by a
nonzero mean of the signal and not by its stochastic character.@S1063-651X~97!09310-0#

PACS number~s!: 05.45.1b, 05.40.1j, 84.30.Bv
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Recently, many papers have been devoted to stoch
resonance, i.e., the enhanced response of a system to a
ternal signal induced by noise@1#, a phenomenon in which
noise has acreative role. Thus the claim by Maritan an
Banavar@2# that a pair of chaotic systems subjected to t
same noise may undergo a transition at large enough no
amplitude and follow almost identical trajectories with com
plete insensitivity to the initial conditionsor in other words,
that these systems may become synchronized simply by
ing subject to thesamenoise may sound completely reaso
able at first. Several authors@3–8# have commented on thes
conclusions, which are in contradiction to thecommon sense
understanding of the effect of noise on nonlinear dynam
systems@9#, i.e., that noise acts as a disordering field th
increases the degree of chaos of the system.

One of the arguments against the results of Ref.@2# is
that, based on the theory of the statistics of trajectory se
ration in noisy dynamical systems@10,11#, synchronization
will occur in ensembles provided that the highest Lyapun
exponent is negative, while if this exponent is positive t
systems will remain unsynchronized. In particular, Pikovs
@3# showed that the Lyapunov exponent of a noisy logis
equation is positive and thus one should not expect sync
nization behavior to occur. Notice that this type of synch
nization in random dynamical systems differs from the us
chaotic synchronization@12,13# in that in the present case th
Lyapunov exponents of all the driven systems are ident
~there are no conditioned, transverse, or the like, Lyapu
exponents!, implying that when the different systems sy
chronize their behavior is no longer chaotic.

Pikovsky @3# also showed that the results in Ref.@2# de-
pended on the numerical precision used in the calculatio
Synchronization appears only if the precision of the calcu
tions is not very high. This aspect has been considered a
in Ref. @8#, where the authors show that no synchronizat
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occurs if iterations are done with infinite precision, thus co
firming the conclusions in Ref.@3#.

However, the point can be considered most clearly
studying carefully the statistical properties of the noise ad
to the system~this point has been treated in some detail
Herzel and Freund@5#!. Maritan and Banavar@2# considered
two examples of chaotic systems driven by the same nois
discrete time system, the logistic equation, and a continu
time system, the Lorenz model. In the case of the Lore
system the noise that is applied is uniformly distributed in
interval @0,W#. Thus this noise does not have zero me
Here it is important to point out that these authors also
marked that the use of symmetric~zero mean! noise does not
lead to synchronization@2#. The effect of this asymmetric
noise can be understood because its mean acts as a co
bias to the system@5#. Thus one is altering the behavior o
the system that is no longer chaotic~the highest Lyapunov
exponent becomes negative!. In this sense, the effect of thi
type of noise is to suppress the chaotic behavior of the s
tem @14#.

The analysis of the effect of the applied noise in the c
of the logistic equation is subtler@5#, as in this case Maritan
and Banavar@2# apply a zero mean noise in the interv
@2W,W#. The key remark is that the logistic equation wor
in the interval@0,1# and sometimes the inclusion of extern
noise makes the system leave this interval and thus th
realizations of the stochastic variable leading to a violat
of the interval are excluded. This implies that the noise e
system experiences becomes asymmetric, i.e., biased,
the corresponding Lyapunov exponents may be negative
some threshold noiseWc @5#.

Some of the above-mentioned studies indicate that so
nonphysical aspects inducing synchronization may be du
numerical artifacts in the calculations@3,8#, pointing out that
the observed synchronization depends on the numerical
cision of the calculations, and for this reason we resort
experiments. In particular, electronic circuits are very use
devices for studying the behavior of nonlinear dynami
systems, both purely deterministic or subject to stocha
terms@15#. In both cases these circuits offer an analog sim
lation of systems that may not be trivial to solve by analy
cal calculations, especially in the case of systems subjec
noise.

The experiments performed for the present work
based on the use of Chua’s circuit, a paradigm of nonlin
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analog circuits exhibiting chaotic behavior@16#, which con-
sists of three energy storage elements, one inductor and
capacitors~coupled through a resistance!, and in parallel
with a piecewise linear negative resistance implemen
through the use of operational amps. It is defined by
evolution equations

C1

dV1

dt
5

1

R
~V22V1!2h~V1!,

C2

dV2

dt
5

1

R
~V12V2!1 i L , ~1!

L
diL
dt

52V22r 0i L ,

whereV1, V2, andi L , the voltages acrossC1 andC2 and the
current throughL, respectively, are the three variables th
describe the dynamical system, resulting from straightf
ward application of Kirchhoff’s law. The parameters ha
the following meaning:C1 andC2 are the two capacitances
L is the inductance,R is the resistance that couples the tw
capacitors, andr 0 is the inner resistance of the inductor. Th
three-segment piecewise-linear characteristic of the non
ear resistor, a current, is defined by

h~V1!5GbV11
1

2
~Ga2Gb!@ uV11Bpu2uV12Bpu#, ~2!

whereGa and Gb are the slopes of the inner and outer r
gions ofh(V1), respectively, andBp51 V defines the loca-
tion of the breaking points of three-slope nonlinear char
teristic h(V1).

An experimental setup of two equally driven Chua c
cuits whose components are defined
(C1 ,C2 ,L,r 0 ,R)5(10 nF,100 nF,10 mH, 20V,1 kV) has
been built. The tolerances of the components employed
are 10% for inductors, 5% for capacitors, and 1% for res
tors. The experiment has been designed in such a way
one can connect the individual circuits in a variety of wa
The circuits were sampled with a digital oscillosco
~Hewlett-Packard 54601B! with a maximum sample rate o
203106 samples per second, eight bit analog to digital re
lution, and a record length of 4000 points. The external no
has been generated by using a function generator~Hewlett-
Packard 33120A! and its characteristics, Gaussian distrib
tion and zero mean in the absence of an offset have b
adequately checked. The slopes of the nonlinear charact
tic h(V) ~2! are defined by Ga528/7000S and
Gb525/7000S.

The external noise has been introduced in two differ
ways: additively and multiplicatively. In the first case@see
Fig. 1~a!# the stochastic voltage produced by the noise g
eratorj(t) has been converted in a current through a volta
controlled current source~VCCS!, this contribution being
added to that of the nonlinear element, yielding, throu
straightforward application of Kirchhoff’s laws, the evolu
tion equation for the voltage across capacitorC1 ,

C1V̇15
V22V1

R
2h~V1!2 f ~j!, ~3!
wo
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where f (j)5j/R8 with R8512.5 kV.
The second method to introduce the noise@see Fig. 1~b!#

uses a recently introduced@17# circuit that enables one to
drive the nonlinear element by using the voltage from
external source. The nonlinear element is driven, in gene
by the voltage coming from an external source, not neces
ily the voltage coming from capacitorC1, as would happen
in the case of a standard Chua circuit. Thus it is a VCC
with a characteristic defined by Eq.~2!. We have added the
stochastic signal to voltageV1 by using an analog adder an
the result has been used to drive the nonlinear element. T
yields the evolution equation for the voltage across capac
C1,

C1V̇15
V22V1

R
2h~V11j!, ~4!

where it is easy to see that the noise term now yields
multiplicative contribution.

The basic result of the present work is that the importa
aspect in the effect of noise on an ensemble of identica
driven chaotic systems is whether its mean is zero~sym-
metrically distributed noise! or nonzero ~asymmetrical
noise!. In the present work the noise that has been used
white, with a Gaussian distribution. If the noise has ze
mean, the identically driven systems do not become synch
nized to each other independently of the amplitude and va

FIG. 1. Schematic diagram of the experimental setup cor
sponding to a single Chua circuit subject to noise in two differe
ways:~a! noise enters additively through a stochastic voltage tha
converted into an intensity through a VCCS and added to the int
sity produced by the nonlinear element of the circuit@see Eq.~3!#
and~b! noise enters multiplicatively by adding a stochastic volta
to the voltageV1 taken across the extremes of capacitorC1, which
is then fed into the nonlinear element. In both setups two identi
Chua circuits have been subject to the same noise.
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ance of the noise. The observations are in line with Ref.@9#:
Noise produces a loss of the fine fractal details of the stran
attractor, which becomes smeared out, while no evidence
synchronization behavior is observed. This can be seen
Fig. 2 for the case of additive noise~3!, while the results are
completely analogous to the case of multiplicative noise~4!.

When the noise that is introduced in the system has
stead nonzero mean, the stochastic signal induces qualita
changes in the system. This is shown in Fig. 3 for the case
additive noise~3!, which proves that the relevant effect o
the external stochastic signal is indeed closely linked to t
fact that the mean of the stochastic signal is different fro
zero. Notice the similarity between Figs. 3~b! and 3~c!. This
confirms the validity in our case of the theory of statistics fo
trajectory separation in random dynamical systems@10,11#.
Synchronization occurs, in a generalized sense, when
highest Lyapunov exponent becomes negative, although
implies that the system is no longer chaotic. The results o
tained by introducing the external noise multiplicatively~4!
are completely analogous.

FIG. 2. Effect of symmetrically distributed~zero mean! noise on
two Chua circuits identically driven accordingly to Eq.~3!; see also
Fig. 1~a!: ~a! V1 taken in both circuits versus time,~b! the twoV1

voltages represented versus each other, and~c! phase portrait in one
of the two circuits (V1 vs V2). It is important to remark that the
oscilloscope is stopped, and if points were stored in memory,
phase portrait would fill a squared region in the phase portrait.
e
of
in

-
ive
of

e

r

he
is

b-

To summarize, we have considered the effect of noise on
the synchronization of identically driven chaotic systems. In
agreement with the interpretation carried out by other au-
thors @3,6–8#, but especially as discussed in Ref.@5#, the
relevant aspect is not the stochastic nature of the signal used
to drive the chaotic systems but instead its mean value. If it
is zero, which, for example, is the situation that corresponds
to the kind of thermal noise generated by a system in thermal
equilibrium, the effect of the signal should be just to smear
out the fractal structure of the strange attractor, but without
yielding any observable effect on the behavior of an en-
semble of identically driven systems. If the stochastic signal
has instead nonzero mean, the net effect will be a biased

e

FIG. 3. Effect of asymmetrically distributed~nonzero mean or
biased! noise on two Chua circuits identically driven as shown in
Fig. 1~a!: ~a! V1 taken in both circuits versus time, exhibiting a
phase shift between the two signals,~b! the twoV1 voltages repre-
sented versus each other, and~c! phase portrait in one of the two
circuits (V1 vs V2). Notice that panel~b! shows that there exists a
generalized synchronization relationship between the two signals,
although the signals are no longer chaotic@as seen better from panel
~c!#. Notice that the stopped image presented in panel~b! is a genu-
ine effect and does not stem from a technical feature of the oscil-
loscope, i.e., it exists on a scale longer than several minutes~to be
compared to a sampling time of a few microseconds!.
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signal that will induce a regularization in the system. Th
effects is completely analogous to that of some chaos s
pression methods that achieve this result through pertu
tions in the system variables@18#. According to the theory of
synchronization in dynamical systems driven by noise, s
chronization will occur whenever the highest Lyapunov e
ponent of the system is negative@10,11#; this implies that the
dynamics becomes regular~although somehow noisy!. This
is precisely what one observes in the cases that we h
considered in the present work.

At this moment it is interesting to recall the results of R
@19#. Rajasekar and Lakshmanan concluded from numer
experiments that the addition of noise to a chaotic system
the effect of suppressing chaos, i.e., of making the high
Lyapunov exponent become negative. From the conclus
in the present work and also from Refs.@3,5# it is clear that
these results emerge from the fact that Rajasekar and La
manan generated a set of random numbers with a non
mean, that is, introduced a bias in the system. A well-kno
effect of noise in nonlinear systems is to allow the system
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perform a noise-induced transition from the correspond
attractor to a second attractor~that has its own attraction
basin! @20#, but this is not the explanation of the behavi
reported in Ref.@19#. Rajasekar and Lakshmanan report
also on the effect of the numerical integration step in
transition from chaos to order. One could think of represe
ing the corresponding dynamical system by an analog circ
In this case the conclusion is that unbiased noise cannot
press chaos, although it may induce a transition to an ex
ing ~periodic! attractor. This representation is continuous a
it is clear that the approximation of the underlying system
a numerical method should be such that its behavior can
depend on the intregation time step, which is not a phys
parameter of the system.
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