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Formally exact series expressions are derived for the entiofgrmation contentof a time series or signal
by making systematic expansions for the higher-order correlation functions using generalized Kirkwood and
Markov superpositions. Termination of the series after two or three terms provides tractable and accurate
approximations for calculating the entropy. Signals generated by a Gaussian random process are simulated
using Lorentzian and Gaussian spectral densigaponential and Gaussian covariance functicarsd the
entropy is calculated as a function of the correlation length. The validity of the truncated Kirkwood expansion
is restricted to weakly correlated signals, whereas the truncated Markov expansion is uniformly accurate; the
leading two terms yield the entropy exactly in the limits of both weak and strong correlations. The concept of
entropy for a continuous signal is explored in detail and it is shown that it depends upon the level of
digitization and the frequency of sampling. The limiting forms are analyzed for a continuous signal with
exponentially decaying covariance, for which explicit results can be obtained. Explicit results are also obtained
for the binary discrete case that is isomorphic to the Ising spin lattice m@E63-651X97)09210-9

PACS numbegps): 05.50+q, 89.70+c, 02.50.Ga, 02.50.Cw

INTRODUCTION abilities of the subsequences of symbols that appear in a
given signal. That is, from a frequency histogram of the sig-
A quantitative analysis of the communication or storagenal, one calculatepi(“) for each of theL" possible subse-
of data necessarily involves measuring the amount of inforquences ofn consecutive symbols. This is the probability
mation involved. Compression, which in general replaceshat an arbitrarily chosen run of symbols of the signal will
frequently occurring data strings by shorter code stringspe theith subsequence. The signal has entropy per node
id_eally entai_ls_no. loss of information and hence the efﬁ's=—Iimnaxn_lEipi(”)lnpi(”).
ciency and limitation of the process may be gauged by mea- \yather or not it is actually feasible to use this recipe to

suring the latter. It was Shanndd] who formulated the . . ; :
i N . calculate the information content of a particular signal de-
mathematical theory of communication and founded it upon

a particular measure of information that is closely connectetﬁ)ends upon the qlegree FO Wh!Ch the 5|gngl is correlated. For
almost random signals, in which successive symbols are al-

with the thermodynamic quantity entropy; both measure or- lated. the f | i But f
der and predictability. Shannon’s formula already occurred"0St uncorrelated, the formula rapidly converges. But for

in Gibbs's treatment of statistical mechanics and even earlighighly correlated signals, in which successive symbols are

the particular example given by Boltzmann had provided thé)_redetermmed_and can be accurately predlcteq, large cluster
microscopic basis for thermodynamics. The equivalence ofiZ€S are required before the entropy expression converges.
information and entropy is epitomized in Jaynes's!n this case the number of possible clusters can actually ex-

maximum-entropy formulation of statistics and statisticalceed the length of the signal and the statistics are insufficient
mechanicg2]. to evaluate the entropy.

We formally consider a signal to be a sequenceNof A meaningful signal is intermediate between a completely
symbols that come it types. For a continuous signal this is regular signal, which has zero entropy, and a purely random
the result of sampling @t nodes and digitizing intd levels.  one,p;=1/LN, in which case the entropy is given by Boltz-
Hence there areN possible distinct signals and we supposemann’s expressiors=NInL. Information reflects correla-
that the probability of each ig;. That is, we imagine the tions between successive symbols of a signal, which in turn
signal to be drawn from an ensemble of similar signals withare a manifestation of the redundancy of the language; in
certain common characteristics, each signal in the ensembigeneral, for meaningful natural communicatiSs=NInL. It
being replicated according to the distributipn. Shannon is these correlations that make compression and decryption
defined the entropy of a signhal & —X;p;Ing;, and the feasible. A signal encoded for brevity removes this redun-
entropy per node as= S/N. dancy and conveys the same amount of information with

As in statistical mechanics, this formal definition is of fewer symbols: The optimally abbreviated signal would be
limited practical use since for lard¢ the number of possible of length./"=S/InL<N (i.e., for the number of encoded
distinct signals is astronomical and collecting statistics forsymbols actually sent, it would appear to have Boltzmann's
each one rapidly becomes prohibitive. As an alternativemaximum entropy.

Shannon provided a prescriptive formula that uses the prob- The problem with estimating the entropy from the prob-
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ability of the occurrence of subsequences is that it treats eaddtatistical mechanics, namely, that ensemble averages and
subsequence as independent. It is not until the length of thime averages are equivalent. In the present context this
subsequences exceeds the correlation length of the signefjuivalence implies that in a statistical sense the signal is
that this becomes a good approximation. As discussed abovstationary or homogeneous in time.
this limits its usefulness to weakly correlated signals, which
unfortunately are those that have the least potential for com-
pression. What is desirable is a way of calculating the infor-
mation entropy that includes successively higher-order cor- Suppose we sample a continuous signal at points
relations in a systematic fashion. ryfz, ... Fy and that each measurement yields

In this paper we explore formally exact expansions for thee (—=,%). We focus on the probability density, which is
information entropy in terms of correlation functions. Simi- proportional to the probability that at the signal is between
lar expansions are well known in liquid-state statistical me-S; ands;+ds,, atr, the signal is betwees, ands,+ds,,
chanics, and here we show that they can be developed for.., and atry the signal is betweesy andsy+dsy. The
information theory applications. We show that in some casesignal represents a Gaussian or normal random process if the
the expansions are rapidly converging and that it is feasibl@robability density is of the form
to calculate the first few terms. We test the expansions for
Gaussian re_mdom signals and show that the particular Mar- w(N)(SN;rN):(Zﬂ_)N/Z|KN|lIZeXF{__lsNTKNlSN ,
kov expansion that we develop works well for both uncorre- 2

A. Gaussian random signal

lated and highly correlated signals. (1.1
In setting out the paper we have deferred the derivation of
the entropy expansions until after a discussion of the generavheres''=(s,,s,, . .. ,sy) is the transpose of the column

tion of a correlated random signal, which immediately fol- vectors" andK is theN-dimensional covariance matrix. As
lows. In Sec. | we also discuss the two-state leveling that waasual we define reduced probability densiti@$’(s";r"),

used and the simulation method. In Sec. Il we derive expanwhich are obtained by integrating out the remainidg-n
sions for the entropy from a Kirkwood and from a Markov samples. This corresponds to projecting the covariance ma-
superposition formula. We discuss these expansions in thgix onto ann-dimensional subspace and hene® is also
limits of extreme correlations and we test them against th&saussian with covariance matrik,. The elements of the
simulation results for exponential and for Gaussian covaricovariance matrix are in general

ance functions. Section Ill is concerned with the entropy of a

contlr_1u.0_us §|gnal anq its dependence upon thg sampling ar{tk}ij =(s18)— (s)(s})

the digitization. A uniformly sampled signal with exponen-

tial covariance is shown to have Markov continuum correla- [~ o 2 _
tions, and an exact analytic result for the entropy is obtained = fodﬁjﬁxdsj(si_<Si>)(sj_<51>)“’ (Si,8j3riuT))
and analyzed in the infinite sampling and digitization limits.

A similar analysis is carried out for a binary model in which (1.2

the digital correlations are Markovian, which turns out to be

just the Ising spin lattice model of statistical mechanics. Weand they take the form{K};=K(ri,r;)=K(rj), rj
conclude with a summary of the main results and a discus=|r;— rJ-|, for a stationary process. For the Gaussian process
sion of the prospects for generalizing the Markovian ap-he signal is symmetric about its mean, which without loss of
proximation to more than one dimension. generality we take to be zero,

l. CORRELATED RANDOM SIGNAL (s)= fw dssiw (s ;r)=0, 1.3

We have in mind a general treatment of communication
and data st'or'age, but to be' speci'fic we.shall for.mulate.thgnd following convention we scale the signal such that
problem as if it were a one-dimensional signal or time series.
Moreover, we imagine that the signal is already sampled so
that it comprisedN data. We shall also digitize the signal into {K}i=1. 14
L levels; the total number of possible distinct signals is then
LN. We shall speak of the probability of the occurrence of a One way to generate a normal distribution is from the
signal or of a sequence of data. By this we mean two thingssuperposition of random waves
First, we can imagine that the signals are taken from a large
collection of signals that share similar characteristics, and the o M
probability of a particular signal refers to the frequency with s(r)= \/% 2 cogk,r—o,).
which that signal occurs in the collection, and similarly for a n=1
particular data sequence. Second, we can imagine that the
signal is very long and that we can measure the frequency dfiere each phase, is randomly selected from a uniform
the occurrence of particular data sequences along its lengthjstribution on[0,27] and each wave vectd, is randomly
assuming that the signal is homogeneous in a statisticalelected from a specified spectral distributfgk) , which we
sense. These two interpretations of the probability of dat@ssume to be normalized. Hence the average of a function
sequences essentially correspond to the ergodic hypothesistbfat depends upon thetr;) is

1.5
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1 (= 2w
(2= (21)M dos- - -deby, wﬁg(t;r)=zjwdkf(k)fo d¢ 3(t—vV2Mcogkr— ¢))
@ mr
xfﬁwdkr--dka(kl)---f(kM)a. (1.6 =m, [t|<~v2M (1.12
In particular, and hence
(s(r))=0, 1.7 C"(M) ;1) =[Jo(qy2/M) 1"
2q2 M 7q2/2
(s(r?)= > [ Tdgy-a Tt e Mo (113

(2 )M IV'n 1 m= 1
Inverting this we have

xj dky- - - dky F(Ky) - - - F(Ky)

1 2
oV(s,r)=—e 572 (1.19
X cog K — ¢p) O Kl — ) V2
1 2m which is the desired normal form. This argument can be
B ;f,xdk f(k) fo d¢ cos(kr—¢) generalized to show thasV) itself is Gaussian.

=1, (1.8 B. Binary digitization

and

The continuous Gaussian random signal is digitized by

assigning the measured value at a node to a cell indexed by

1 oM M an integer. That is, the probability densities are converted to
K(rqy,ro)=(s(r{)s(r,))= > > probabilities by integrating them over the level widths. For
12 =(s(rs 2)) 2m)M Mi=1 m=1 the numerical tests we consider only the binary problem
o =2, in which the states correspond to whether the signal at a
% depy- - -deby particular time is positive or negative. The singlet probability
0 for a positive signal is
“ © 1 ©
xf dky- - - dkyf(ky) - - f(ky) W4 r)= :J ds oD(s)— f ds & 2= 1/
o P (+ir)=p . (s;r) 22a)o ,
X COSKnl 1~ ) COS Kl 2~ hr) (115

o which is independent of because we are dealing with ho-
:f dk f(k)cok(ry—ry). (1.9 mogeneous signals.
- The pair probability depends upon the spectral distribu-
tion of the signal viakK(r). Inverting the covariance matrix

We see that the covariance or height-height correlation fun o have

tion is just 27 times the inverse Fourier transform of the W
spectral distribution of the waves. Finally, the signal gener-
ated by this superposition of random waves is indeed Gauss- 0 @(s,,5,:1)

1
ian, 2 1-K(r)2

ol (tr)=(8(t=S(r))w Xex;{ - 2K(n)sy5,+ 5 |
> 2[1-K(r)*]
[ avei oo, s

(1.10  The probability that two measurements separated laye
both positive i93,4]
where we have exhibited the dependence on the number of

waves explicitly. Taking the Fourier transform of the convo- 2 o o @
lution integral, we obtain P+, )= . ds . ds;0'“(s1,8,;T)

@D =om_y@ne)(@n=oqgn".

1.1y

= 1+%arcsirl<(r)}/4 (1.17

Now and the pair-correlation function is
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9(2)(01,(72;V)E(@(Z)(Ulv‘fzir)/P(Ul)P((fz)

2
=1+ alozgarcsirK(r), (1.18

whereo;= =+ 1. It is also possible to give an analytic expres-
sion for the triplet correlation functiof8,4] (a)

3 )
g )(0'1,0'2,0'3,r12,r23,r31)

2
=1+ ;[crlcrzarcsirK(rlz)

+ o0 3arcsirK(r ,3) + azoqarcsirk(rzq) .
L Nk, Nevrsessreassnrens [ Nerrrrens
(1.19 - \\/

(b)

C. Simulation

To obtain benchmarks to test the entropy expansions we
simulated correlated Gaussian signals by the superposition of £, 1. Correlated random signals with) Lorentzian andb)
random waves. The details of the simulation and the estimasaussian spectral densities. The result of binary digitization and

tion of the entropy have been described by Kgjec[5]. We  regular sampling of the signal is shown as symbols. The correlation
used a Lorentzian spectral distribution length is five nodes in both cases.

vl

f(k)= (1.20 cases one can visualize similarly sized domains. This simi-
2+ k2’ L. . . . .
Y larity is particularly clear in the digitized, sampled signals.
For the simulations the Gaussian random process is con-

which has exponential covariance function structed in Fourier space and then the fast Fourier transform

K(r)=e (1.21) is used to gives(r;). The number of sample points was
' ' typically N=21_218 The larger number of points was re-
We also used a Gaussian spectral distribution quired for signals with longer correlation lengths. One ran-

dom wave was generated for each of the discrete wave vec-
o - tors {k,} (thus M=N) by choosing the phase$d,}
f(k)= \/:ef" K7, (1.22  randomly from a uniform distribution of0,27] and by as-
2m signing the wave an amplitude in proportion to the spectral
distribution. The number of independent signals used to col-
lect the statistics was typically 2000. It was always checked
K(r):efrz/gg{ (1.23 that the results were independent of the simulation system
size and the number of realizations.
Herey~ ! ando are the correlation lengths of the respective 1€ entropy was calculated in a fashion similar to that
models. Both the Gaussian and the Lorentzian can be used t5€d by Shannon to estimate the redundancy of the English
represent naturally occurring signals. The difference betweel@nguagel1]. First the signal is leveled at each sampling
them is that the Lorentzian model contains much-higherP0int so that it has a binary value. Clustersmofsites are
frequency components than the Gaussian model. analyzed and the probability of t_aach (_)f th Qos_S|b|I|t|es is
In the case of the Lorentzian we used the discrete FouriggValuated from the number of times it recurs in the process.
transform for the simulations. For sampling on a grid\of  The_entropy of clusters of this size is simplg™

which has covariance function

points of uniform spacind\, such thatr,=nA,, = Eizr:nlgoilngoi . To save memory we exploit both the up-down
symmetry of the spins, by storing a sequence and its comple-
_ N7'sinhyA, ment together, and the time-reversal symmetry of the signal,
f”_coshyAr—coinAr ! (1.24 by storing a sequence together with its reversal. The entropy

per siteS(M/m is then plotted against ¥ and the infinite

wherek,=2mn/NA, . For the Gaussian model we approxi- limit result is estimated by extrapolating toni# 0.
mated its discrete Fourier transform by evaluating the con- An example of the extrapolation procedure used for the
tinuous function on the grid point$,=f(k,). estimation of the entropy in the simulations is shown in Fig.

Figure 1 shows typical random Gaussian signals obtaine@d. The entropy per node is plotted against the reciprocal of
from the simulation. The most noticeable difference betweerthe number of nodes used in the subsequences. This ex-
the Lorentzian and Gaussian models are the high-frequen@mple, which is a Lorentzian signal with relatively short-
components that are present in the former, due to the slowanged correlationy= 0.5, is typical of the results obtained
k=2 decay of the spectral density. The low-frequency com-here. From the figure we estimate the simulated entropy per
ponents of the two signals are rather similar and in botmode for this signal as=0.6008.
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0.625 —

w(“)(rn;r“>=EN pM (NI 6(r,00), (2.2
o i=1

0.620 |- ]
I where the Kronecker delta appears. Perhaps most important
is the singlet probability()(7;r); for a homogeneous sys-
tem this is independent of the sitein which case we denote

it by p(7). We shall also define a correlation functigh”,

2 i | which is just the probability normalized by the singlet prob-
abilities,

0615 - -
0.610 - -

I - 1 n
oe0s - ] g (M =p (" Hlp“)(ri;ri)- 2.3
e =

0800 T T T T 0 oas The pair-correlation function is the most familiar of these;
) for a homogeneous system this only depends upor{léte
1n tice) separation of the two siteg®)(71,7,:r1,). The depar-
ture of g from unity measures the correlation between
FIG. 2. Entropy per site obtained from the simulations by ex-the subset of sites; if the sites are independent of each

trapolation, using the probability distribution of subsequences Opt_her_t_heng(”)zl. We shall be concerned with systems
size n. This is an example of the procedure for the LorentzianWith finite-ranged correlations, which means in the limit that

model with yA,=0.5. one site is far from the rest; we havg™(";r"
—g" ("1, 1 e, If all the sites are well sepa-
Il. ENTROPY EXPANSIONS rated,g(™(7":r")— 1, r"—o. Note that because we are deal-
A. Generalized Kirkwood superposition expansion :?rﬂt;vlth an open system the asymptotic limit is precisely

We cast the digitized, sampled signal as a spin lattice We can use the asymptotic behavior of the correlation
model in statistical mechanics. We consider a latticeNof functions to define a generalized Kirkwood superposition ex-
sites, each site occupied by a spin variable viitipossible  pansion. Fon=3 we define
levels:o;=1,2,...L,1=1,2,... N. Each configuration of
the spins corresponds to a particular signal. There is no con-
straint on the value of the total spin: In the language of the n-1
lattice gas this is anl(—1)-component open system. We g™ (o";r")=AM(a"r" ][]
will denote a configuration of a subsetmfites by ¢";r"), s=2

which meansr, atr,, o, atr,, ..., ando, atr,, wherer; (—1)stn-t
is a particular lattice site. We lgi™™(oN;rN) be the prob- x| TT (o, ..ot .. 1) ,
ability of a particular configuration of the system occurring. (i) ! st ®

Shannor{1] showed that the information entropy is 2.4

where the inner product is over th¥, different ways of
choosings sites from then sites. This expression formally
defines the remaindex("™; the generalized Kirkwood super-
position approximation is to takd(M=1 (cf. Ref.[6]). Re-

iss [7] derived the generalized superposition expression us-
ing a variational argument, and it can be shown to be the
nly superposition approximation that is consistent with the
symptotic behavior of the correlation functid&d. For the

S=—k2, pM(aN;rM)Ing™(aN;r). (2.2
O'N

The sum is over th&N possible configurations of the sys-
tem. Henceforth we shall set the constént1. Although
formally exact, this expression cannot be used in this for
because in general one does not know the probability of al
of the configurations of thefystem. If all configuratioqs Weretriplet correlation function we haveising an obvious abbre-
equally likely thenp™=L"N and S=NInL. Correlations .~ notatioi

imply that some configurations are more likely than others,
which makes the system predictable to some extent and con-
sequently reduces the entrofBs NInL.

We will now formally expand the entropy in terms of
correlation functions. First we define timesite probability,
which is the probability that a particular subsetadites will
have a specific set of spins, irrespective of the spins at th8ettingA(®=1 yields the Kirkwood superposition approxi-
remaining sites, mation[9]. For the quadruplet we obtain

9®(1,2,3=9?(1,29?(2,39?(3,)A®(1,2,3).
(2.9
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9?(1,2,39(1,2,99®(1,3,499®(2,3,9
9'?(1,29?(1,39?(1,99?(2,39'?(2,49'?(3,4)
=9?(1,29?(1,39?(1,499(2,39?(2,499?(3,9A%(1,2,3 A% (1,2,9
3(1,3,9A%(2,3,9A%(1,2,3,4. (2.6)

A¥(1,2,3,9

9¥(1,2,34=

Setting AW=1 vyields the superposition approximation For the homogeneous problem and in the lidit> o, this
given by Fisher and Kopeliovicfl0]. By induction it fol-  becomes
lows that

N(1,2,...N)=g?(1,29?(1,3 ...gP(N-1N) L

SIN=— [
(1,23 ... AN1,2, ... N). 2 p(o)inp(o)

(2.7

We can now use this formal expression for tReparticle -
correlation function in the expression for the entropy. We
write

|

™ =

P (;;r_ 9 P(oi,07:1)Ing?(0y,0;1))
0]

N

| [

N N

:ln[@(l)(ﬂ'lﬂ'l)' : '@(l)(UN ;rN)g(N)(UNirN)]

w

Xp3 (o, 07,0 Tk ki)
=2, Inp™(ai;r)+In[g?(1,2)---gP(N=1N)
=1 XINA® (g ,07, 041 Tk ki) = - (2.10
xA®(1,23---AN@,2, ... N)]
Note that these are distinct site probabilities, so that

N - N
M(g":rM=0 if any r;=r;. This then is a formally exact
=S Inp® (o 1)+ INg@ (o oy i1 P (a™r") yri=rj. ally ex:

igl o (oin 21 j:izﬂ g7 (o105 expansion for the entropy in terms of successively higher-

Ne2 N— N order correlation function§/N=s;+s,+ - --. An approxi-

mation for the entropy can be obtained by neglectpgnd
+E 2 2 InA(s)(O-I10-]10-k1r|1r]1rk)+ o
= :| :]

higher-order terms, which corresponds to settit’=1.
Such correlation function expansions for the entropy are well
(2.9 known in liquid-state theorysee Ref[11] and references

Using the definition of the reduced probability functions, thethere"); the present derivation follows that of Wallagt2).

entropy becomes
B. Generalized Markovian expansion
_ (N)( N..N (N)( N. N The superposition approximation given above is generally
2 pM(aNrNIng™ (NN . Ximatl  abov .
applicable. But for a one-dimensional lattice it is possible to
do better by exploiting the order inherent in the geometry.
Specifically, the correlation between three siteg, andk,

[oa

N oL ordered along the line such that<r;<r,, is largely deter-
Z 2 oW r)Ing V(a1 ;r;tlged by the correlation of the terminal sites with the central

9% (ai,0),006:11.1}.1%)
_z E p(Z)(UHO—]! I!r )Ing( )(U|,O'],r|,r)

I<j oj.0] wg(Z)(UivUJv i J)g )(O'],(Tk,l'],l'k)
(2.11
This Markovian approximation for the triplet correlation
-2 2 990 VOO LT T function has been previously exploited in theories for chain

I<j<k oi,o).0% polymers[8,13. It has the correct asymptotic behavior as

ry—o°, namely, only the correlation between siiesind |
remains. For the quadruplet case we can generalize this by
XINA® (a,07,00;1i,1], 1)+ (2.9  taking
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901,07, 01,013 en) rn — =, g®oj,00.005r5.rr) — 990,00t i i)
(3) 3) which cancels with the denominator leaving®( o,
_97(01,07,0GTiT. 1) (07,0, 013 T Tkl T) 0,0k, 015 ) — 990 ,0y,00:r0,15,1), as re-

quired. Extending this to the general case, we defifié as
(2.12  the ratio of then-site correlation function to its generalized
Markovian superposition approximation and we have the for-

g(Z)(O-J vo-k;rj vrk)

where r;<r;<r,<r,;. The denominator corrects for the -
double counting of the shared pair. This may be seen since &8al definition

-1 . -1 .
g )(a-il.”O-infl'ril'”rin—l)g(n >(0'i2"'0'inari2"' i)

(n)(o-. g T )=
I In' 11 n g(nfz)(o-iz...O-in;riz...ri )

n

(2.13

wherer; <rI if j<k.
The entropy is a functional @™, which because of the ordering involves ikites consecutively. We denote consecutive
site probabilities byP("™ and consecutive site correlations 8" and exhibit the location of only the first site. Hence we have

N)(O']_,(Tz, . ,O'N;rl)
(N=1) . (N-1)
:G 1. ”r;lloz-N_l,rl)G (72 UN’rZ)A(N)(Ul,(J’z. ...,O'Nil’l,rz,"-I’N)
G( )(0'2, ...,(TN,]_;rz)

=G'?(01,02:11)G?(02,03:r)- - -G (o 1,0 1)

XA(3)(01,02,03,r1,r2 ra)-- (3)(0'N7210'N7110'N;rN72aerl!rN)' : 'FN)(Ul,(Tz, CoONGT1 g, e y) (2.19
|
and consequently the entropy is C. Limit of large and small correlations
N L A guide to the accuracy of the approximations obtained
_ (1 by truncating the expansions is given by examining the limits
2 2 (O-I ’ Inp (O-I 1r ) . . . .
<) = of extreme correlations. In the low-correlation limit we have

N—-1 N
—_21 > P@(oi,00,1:1)INGP (0,07, 1;1)) go<N><oN:rN>~iH1 p(o) (2.17
=1 0j,0i+1 =

and the entropy is
> PO(g,0i11,07:2:10) by

i=1 3
XINAP (0}, 014 1,014230 FaaF 0= - (2,15 SIN== 2 p(o)inp(0). (2.18

In the limit N—e (so thatN—1 can be replacedEy, etc) In this limit all the correlation functions are unity,
and for a homogeneous systm(o.ri)=p(o)=p(a)], g™(e™r"M=1,n=2,... N. Consequently, both the Kirk-
the entropy per site is wood and the Markov generalized superposition approxima-

tions are exactA(M(a™r")=AM(¢"r"=1,n=3,... N,
E p(a)Inp(o)— E p(0)p(7)G? (o, 7)ING? and only the first term contributes to the entropy expansion,
o=1 o7 giving the exact result in both cases.
In the opposite fully correlated regime, where there is a
X(o,7)— E p(a)p(T)p(MG® (o, 7,\) distribution of the spin among the different systems of the
o, TN ensemble, but the spins of any one system in the ensemble

— are identical, we have
XINA® (o, 7, N)— - -. (2.1

N
Notice that compared to the generalized Kirkwood superpo- p(N)(aN;rN)~p(0)H 8o, o). (2.19
sition approximation, which sums correlations over all sites i=1
with an appropriate combinatorial factor, this expression
only involves correlations between consecutive sites. The entropy is
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TABLE |. Entropy per site for the Lorentzian model as a func-

S=—2> oM@ rNIngM™M(aN:rNy == p(a)lnp(o), tion of inverse correlation length.
oN o=1
(2.20 Kirkwood Markov
. . . LY Simulation s;+S, S;+S,+S3 S;+S, S;+S,+S;3
which no longer scales with the size of the system. In this

limit the probability isp™ (o™ r" = p(c)1"_,8(v;,0), and 1.5 0.6827 0.6823  0.6828  0.6829  0.6828
hence the correlation functions for identical spins arel.0 0.6636  0.6598  0.6641 0.6641  0.6636
gV (o -a;r"=p(c) ", n=2, ... N. Nowin the case of 0.6 0.6205 0.5960  0.6299  0.6231  0.6209
the generalized Kirkwood superposition approximation thed.5 0.6008  0.5592  0.6216  0.6044  0.6011
remainder is 0.25 0.511 0.3108 0.7688 0.5216 0.5130
0.1 0.383 -0.5088 3.6089 0.4049 0.3898
AM(g- - gt =p(a) " Vp(g)"~2"Cn-1 0.05 0.2964  -1.9202  16.724  0.3247  0.3069
o an n nel 0.025 0.222 -4.7733 74.680 0.2559 0.2375
Xp(o)~ ("I p(o) TV g 0148  -13373 5028 01833  0.1664

(2.2  0.005 0.108  -27.727 2064  0.1410  0.1260
0.0025 0.078 -56.452 8368 0.1076 0.0949
The exponent is 0.001 0.053 -142.64 52716  0.0747  0.0648

exp=(1-n)["C,—"Cpp_1+"Cpp_p—--- +(=1)""?"C;]
Kirkwood superposition approximation is not a good expan-
—["Cn-1—2"C o +3"Cy 3 sion for highly correlated systems.
e (= 1)™Y(N=2)"C,] The generalized Markov superposition approximation is
2 much better behaved in this regard since the remainder is
=(1-n)["C;—"Cpl(—1)"
(1=mC=Col(= 1) G"(g-- )G (o 0)

1 —(n) PO -rn =
_[(n_l)ncl_nnco](_l)n+ A" (o o;r") G(”_l)(o'---a)G(n_l)(O'-"(T)
=(—1)"*1, (2.22
_p(0) (o) " 1 2.2
which gives p(o)z ()2 " ' :
AM(g. oyt =p(a) D" (2.23  Accordingly, only the first two terms in the entropy expan-
sion are nonzero,
Using this the generalized Kirkwood superposition approxi- L L
mation for the entropy yieldéeplacing the sums over par- _ 2)
ticle positions byN—1, N—2, etc) S= _N;::l p(a)lnp(g)_(N_l)Z:l p(0)InG(0,0)
- N(N-1)
S= —NZl p(o)Inp(o) — Tzl p(a)Ing?(a,0) =—[N—(N- 1)]2 p(o)lnp(a)=— 2 p(a)Inp(o),
~ N(N=-1)(N=2) (2.26

InA® o .
3! 2 p(o) (0,0,0)= which is the exact result. In this case we see that any trun-

cation of the Markovian expansion for=3 will still yield

1-N4+ the exact entropy in the completely correlated limit.

=[_1+

N(N—1) N(N—-1)(N—-2)
21 3! o
D. Numerical results

X 2 p(o)lnp(o) Results for the Lorentzian and for the Gaussian models
o=l are given in Tables | and I, respectively. For both the gen-
eralized Kirkwood superposition approximation and the
=[-1+(1-1)V] 2 p(a)Inp(o) Markov superposition approximation we give the two- and
o=1 three-term expansions. It can be seen that in the latter case
two terms are already good and that the third term gives a
— 2 p(o)Inp( o). (2.24) minor but.consiste.nt improvement. In ge'neral, the entropy
o=1 per node is a maximum for the random sigishall corre-
lation length and goes to zero as the correlation length in-
This is certainly the exact result, but it required the precisecreases.
cancellation of all the terms. In general, if the expansion is Figure 3 graphically tests the truncated expansion based
truncated after a few termssN/2, an error of ordeN" will upon the generalized Kirkwood superposition expression
be made. This completely dominates the exact entropyagainst the simulation result for the Lorentzian model. For
which is of order unity. We conclude that the generalizedweak correlationsy=0.5, the two- and three-term expan-
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TABLE Il. Entropy per site for the Gaussian model as a func-

tion of correlation length. 07 ' T ' | ' !

Kirkwood Markov 0.6 _
o Simulation s;+S, S;+S,+S3 S;+S, S;+S,+S;3 I p

800 0.004 -105.992 16794 0.0035 0.0035 0.5} P .

400 0.007  -85.8003 10880 0.0065  0.0065 L

200 0.011  -58.6195 4676.509 0.0118  0.0118 04l |

100 0.022  -31.7868 1249.406 0.0215  0.0215

50 0.040 -15.418 296.5258 0.0385  0.0385 S|

20 0.080 -5.5511  40.6511 0.0817  0.0815 03 7

12 0.120 -2.9237 12.3082 0.1224  0.1218 - /

5 0.230 -0.6361 1.2667  0.2364  0.2339 02k e .

2 0.4225 0.31755 0.42066 0.43274 0.42520 I .

1 0.5972 0.60066 0.59786 0.60443 0.59888 _

0.7 0.6569  0.66528 0.66422 0.66533 0.66423 01 P ]

0.5 0.6815 0.68941 0.68938 0.68941 0.68938 I

0.36788 0.68945 0.69302 0.69302 0.69302 0.69302 009001 . 0.2)1 . 0!1 1L

0.25 0.69234 0.69315 0.69315 0.69315 0.69315

0.125 0.69310 0.69315 0.69315 0.69315 0.69315 Y

0.0625 0.69314 0.69315 0.69315 0.69315 0.69315

0.02 0.69315 0.69315 0.69315 0.69315 0.69315

FIG. 4. Test of the generalized Markov superposition approxi-
mation for the Lorentzian model. The symbols are the simulation

. . . . . data, the dashed curve is the two-term series, and the full curve
sions agree with each other and with the simulation result. "ﬂqcludes the first three terms

this regime the entropy per site is jBtN~s;=In2. As the
correlation length is increased the entropy drops and the twaseless for signals with correlations extending more than a
approximations bracket the simulation result. In fact, theyfew nodes.
begin to diverge as the third term in the expansion overcor- In contrast, the truncated expansion based upon the gen-
rects the error in the first two terms. The approximation iseralized Markov superposition expression is uniformally ac-
curate for all correlation lengths, as can be seen in Fig. 4.
The two-term approximation is already quite good and in-
T — T . . cluding the third term gives even better agreement with the
simulation data.
Figure 5 tests the expansions for the Gaussian signal and
i the conclusions are similar to those drawn for the Lorentzian:
| The validity of the Kirkwood approximation is restricted to
" i weak correlations and the Markov expression is uniformly
gl accurate over the whole regime.
061 " The sigmoidal character of the entropy as a function of
w L . | the inverse correlation length is more apparent for the Gauss-
ian signal than for the Lorentzigef. Fig. 4). Although both
04 . i asymptotically approack~In2 for correlations not extend-
ing beyond nearest neighbors, they approach the opposite
] ; 1 highly correlated limits=0 at different rates. The Gaussian
. already appears asymptotic by the time the correlation length
02 / is 100 nodes or so, whereas the Lorentzian entropy is still
| . | noticeably nonzero even with a correlation length of 1000.
L H This is no doubt due to the influence of the high-frequency
0 M NI N spectral components in the latter model.
0.001 0.1 01 ! The Markov approximation will work well for a broad
class of signals. We also carried out tests for periodic signals
v by using a model with sinusoidal covariance and exponen-
tially decaying amplitude. The performance of the Markov
FIG. 3. Entropy per site as a function of inverse correlation@PProximation was similar to the above, except for signals
length(in units of the node spacindor the binary digitized Lorent- ~ With long-period oscillations and even longer correlation
zian model. The symbols represent the simulation results and th&ngth. The entropy for these highly correlated signals tended
curves represent the generalized Kirkwood superposition approxto be overestimated by both the simulations and the Markov
mation(the dotted curve uses two terms in the series and the dasheapproximation; the deterministic changes of sign were per-
curve uses three ceived as random by both. We have not shown these results

0.8
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0.7 — A. Exact and approximate entropies

In practice, a continuous signal has to be sampled and
digitized, by measuring it at regular intervals and by assign-
ing each measurement one of a discrete set of values. This is
appropriate and consistent with using entropy to measure
information content because entropy itself is only defined for
discrete probabilities. The question we address here is the
dependence of the value of the entropy on the process of
sampling and digitization.

We imagine that the continuous signslr) has been
sampled at regular intervals, so that=s(r,) and r,
=nA,, wherese (—«,») is real variable, and we now wish
to digitize it and to convert the probability densiti&s™ to
probabilitiesP(™. We define an integer variable that in-
dexes the cell in which the measured signal falls. For sim-
plicity we take the cells to be of uniform widthg. [It is
straightforward to replace this constant width by a function

0.6 -

0.5

04l

03

02}

01

00 .= ool —o L N Ag(s), if desired] The discretization is accomplished by

means of a coarse-graingdfunction,

lVe O,(s)=0(s—t+AJ2)6(t—s+AJ2), (3.1

FIG. 5. Gaussian model. The symbols are the simulation dataVhere the Heaviside step function #&x)=1, x>0, and
the dotted and dashed curves are the two- and three-term generdl(x) =0, X<<0. This is more closely related to the Kronecker
ized Kirkwood superposition approximation, respectively, and thed rather than the Dira®, which is important because we
full curve is the three-term generalized Markov superposition ap-shall use the propert¢ In®@=0. With this the discrete prob-
proximation, which on this scale is indistinguishable from the two-ability for n consecutive sites is defined to be
term version.

n
because the cluster sizes required to estimate reliably the P(n)(g'n)Ef ds,--ds, QM (][] O,(0Ag,S).
entropy from the simulations was intractably large in this i=1

regime. (3.2

The entropy is the functional of the discrete probability
that has been used throughout. Accordingly, this definition of
The analysis and results that were obtained above appliefie discrete probability determines uniquely the entropy of
to a signal that had already been sampled and digitized. W€ continuous signal
now address the question of whether it is meaningful to

[lI. ENTROPY OF A CONTINUOUS SIGNAL

speak of the entropy of a continuous signal and we explore S(Ag,A,)= _2 PMN(GN)InPMN(gN). (3.3

the relationship between the probability and the probability oN

density and between the corresponding digital and the ana-

logue entropies. Here we have explicitly indicated that the value of the en-

In Sec. Il A we distinguish between the formally exact tropy of the continuous signal depends upon the degree of
expression for the discrete entropy and an approximate exéampling and upon the level of digitization; it is not possible
pression that is applicable to continuous signals and we givéo speak of an entropy independent of these. It is emphasized
the criterion that sets the regime of validity of the latt8ec.  that this defineghe entropy of the continuous signal. This
A 1). In Sec. Il B we explore the example of an expo- definition and that for the probability are formally exact and
nentially covariant continuous Gaussian random signal@s such they are always valid.
which yields to exact analysis. In Sec. Ill B 1 it is shown that It is possible to make a useful approximation to these
the correlation functions of the model are Markovian, whichexact expressions that becomes increasingly valid as the
allows us to obtain explicitly the results for the approximatelevel of digitization is refined. We approximate the integral
entropy. The validity of the digitization approximation is de- by a trapezoidal sum to obtain an approximation for the con-
rived in Sec. Ill B 2, and the entropy in the limits of infinite secutive site probabilitP~P™  where
sampling and digitization is obtained explicitly in the general
case(Sec. Il B 3 and for binary digitizationSec. Ill B 4). PM(oeM =AM (Agoq, ... Agoy). (3.9
The results of this section make clear the sense in which the
entropy of a continuous signal depends upon the degree dthis is a valid approximation for the discrete probability
sampling and digitization. In Sec. Ill C 1 we give an examplewhen the integrand is slowly varying over the range of the
of a binary digitized signal that has Markovian correlations,discrete cells. We obtain the criteria for the validity of the
which means that the entropy can be calculated exactly. Thigpproximation below.
turns out to be equivalent to the one-dimensional Ising spin We may also define an entropy that is an integral of the
lattice model with nearest-neighbor interactions. probability densities
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— % ()N Ny (N <N where s(r) e (—«,»). If the signal is sampled at regular
S(ASsAr)E_j_xdsl’ - dsyQ(sT)INAgQTV(ST). intervals, so thas,=s(r,) andr,=nA,, then the covari-

(3.5 anceis

The reason for choosing this particular definition is that (sispy=x""1l, (3.10

within the validity of the digitization approximation, Wherex=e~7r.

We now focus upon consecutive nodes. The covariance

S(Ag, A ~—>, ANOMN(gA,, ... onAY) matrix for n consecutive nodes is

UN

1 X X2 xn—1
XINAYQOMN (g 1A, ... ,onAy)
X 1 X xn—2
~—> BN INBN (V). (3.6) Q= ¥ x x"3 (3.1
O'N .
Hence this has the same appearance as the formal definition xn—1 yn-2 yn-3 | 1

of entropy and insofar a8 ~P(™, thenS~S. There is no

way of avoiding the appearance of the cell si¥gin the By induction it follows that the inverse is the tridiagonal

- . = . . . . matrix
defining expression forS, as dimensional considerations
make clear. In many applicati_ons entropy diffgrences with 1 —X 0 )
the same level cuts are the main concern, in which case as an 5
additive constant the width of the levels does not contribute. 1| I+x® =X 0
Q; l= 0 -x 1+x? 0
Validity of the digitization approximation 1—x2
In practice, a guide to the permitted size of the level spac- 0 0 0 1

ing A, for the digitization approximation to be valid may be o (3.12
obtained by analyzing the singlet and neighbor correlation '
function. For Gaussian signals we expect that the width offhat is, entries on the main diagonal equal %2, except for

the levels should be small compared to the variance and inhe first and the last, which equal 1, and entries immediately
deed this is essentially the criterion that we derive. Perhapghove and below the main diagonal equak. Again, by

the most straightforward way to proceed is to note that if thanduction we can show that the determinant of the consecu-
probability density is slowly varying over the cell width, tjve covariance matrix is

then the probability of adjacent levels must be similar,

PW(g+1)~PW(g) or QW(s+A)~01)(s). Further- |Qul=(1=x*)""". (3.13
more, errors in the tail of the distribution are unimportant, so
that we only need to apply this criterion in the region of
maximum probability

The usual Gaussian probability density folconsecutive
sites

QDA -0 (0)|<QD(0). 3. oo exd —s"Q; 's"2]
| (Ag) ( )| (0) (3.7 Of )(S )_(zw)nlz(l_xz)(n—l)/Z (3.19

This alone is not sufficient because we are also concerned
with effects of correlations on the digitization. The most im- has an exponent that in this case simplifies to
portant correlation is between neighbor nodes. Again, we

insist upon a gradual variation in the neighbor probability —s"TQ, *s" -1 [ ) A n!
0@ (s;,5,=A)~0C)(s,,s,). The worst case scenario is > = > (1+X )Z S —ZXZ Si+1Si
i 2(1—x)[ i=1 i=1
clearlys;=s,=0 and the criterion becomes
102049 -0@(0,0]<0?(0,0). (3.9 —x¥(2+2)|. (3.15
B. Example: Exponential covariance We introduce the consecutive site correlation function

1. Markovian factorization of the correlation densities

n
The aim of this section is to solve a specific continuum F<”>(s”)=9(”)(s”)/ IT a®s), (3.19
model in which the approximate entropy can be obtained =1

analytically and to exhibit the continuum limits of this model here the sinale sit bability density i |
explicitly. We consider a Gaussian random signal with expo-W ere the single site probability density 1S, as usual,
nential covariance(this is the same as the model with 1
Lorentzian spectral distribution considered numerically 0W(s)= = e R (3.17)
above 27

(s(r)s(t))y=e -4, (3.9  and the neighbor probability density is
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Q(Z)(Sl,sz):

)(sﬁ— 25,SoX+ s%)].

(3.18

1
ex
2my1—x° F{

2(1—x2

The exponential covariance function is important because

it gives a Markovian consecutive site correlation function.
We exploit this fact in evaluating the approximate entropy,

whose correlation function expansion terminates after two
terms. The Markovian character follows because the expo-

nent of then-site probability density may be written

SnTlesn S(n_l)TQ;_lj_Sn_l
2 2

- m[sﬁ+xzsﬁ,l— 2XSpSp-1]

(3.19

and consequently

1

Q(n) sn =Q(nfl) Snfl
(s") ( )277(1_)(2)

ol

:Q(nil)(snil)Q(Z)(sn*l ’Sn)/Q(l)(Sn—l)

-1

m(sﬁﬂzsﬁ,l— 2X$Sp-1)

n—-1
=0W(sp [ 0P(si,5,0/0%(s). (320

Alternatively,

n—1

rmsm =[] 1?(s ,si.1),

i=1

(3.21)

which is the Markovian factorization. This exact result for

the Gaussian probability density is peculiar to an exponentiaq

covariance function and equally spaced sampling points.

OF SIGNALS USING . .. 4063

S(Ag,A)=— f ds;- - -dsy QM (sM)InANQ M (sN)

XInANOQ M (s))- - QW(sy)
XT @) (sy,5) - - TP(sy_1,5)

Nf ds; QM (s)INAQ Y (s))

_NJ dslf ds,0?(s1,5,)INT P (sy,5,)

2m(1—x?)
1+In——F—
AS

2

(3.22

assuming thaN—1 can be replaced by.

This result is a particular example of the general result for
a Gaussian probability density obtained by ShanfidnIn
the present language the general result would be written

N

S(Ag, A= > +In[(2mN2ASNVIKNT. (3.23

The advantage of the present analysis is that it makes clear
the relationship between the exact and the approximate en-

tropies; Shannon would have considered his expressio8 for

to be the entropy of the signal, not just an approximation. In
addition, the factor arising from the width of the levelg"
would have been neglected and the entropy would have ap-
peared to be independent of the sampling and of the digiti-
zation. The present model allows all steps of the derivation
to be exhibited and a final analytic expression for the entropy
because the determinant of the covariance matrix has been
obtained explicitly. We now use these explicit results to
evaluate the continuum limits.

2. Regime for digitization

We now need to digitize the continuous signal to obtain a
result for the exact entropy. The formal expressionsH&Y
andS(Ag,A,) were given above, but the present signal does
not yield analytic results for them. Analytic results were ob-
tained forP™ and'S(A¢,A,) and here we evaluate the cri-
teria for the validity of these approximations.

The first criterion was based on the singlet probability
density| QM (A — QMW (0)|<Q®)(0). For thepresent nor-
mal distribution this reduces to

Ag=2. (3.24

The criterion based on neighbor correlations was
00,4, —0?)(0,0)<0Q?)(0,0). In the present case the
igitization is valid when

Ag<\2(1—x%). (3.29

The exactP™ does not preserve the Markovian character

of the consecutive site correlations. However, the approxigince in generak<1, this supersedes the bound established
mation P(M=A"Q (" remains Markovian and hence the ap- by the singlet probability. Notice that these bounds limit the
proximate entropy can be calculated directly from the firstwidth of the levels to be much less than the variance of the
two terms of the Markovian expansion, signal.
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3. Continuum limits

n

The expression for the entropy of the digitized, sampled, p<n>(an)~p<1)(al)i1:[2 8(o1,01), nyA<l. (3.28
continuous signaB(Ag,A,) =3 PN (M) InPMN(N) is for-
mally exact and we want to explore its behavior in the con-The entropy in this limit reduces to
tinuum limitsA,— 0 andA¢— 0. The expression for the digi-
tized entropyS(Ag,A,)=dsNQM(sN)InAYOMN(SY is an
approximation that is valid in the liminAg—0. For the
present exponentially covariant signa§(Ag,A,)=N[1
+In2m(1—x%)/A2)/2, wherex=exd — yA,]. We have thaiS A;—0, N,A; fixed. (329
=S whenA¢<2(1—x?). The entropy is also a function of o o o
the number of sample point$ and of the number of levels The limiting result is independent of and so the criterion
L, and in addition to the limit&t,—0 andA—0, we shall  for the validity of the digitization approximation now de-
consider the limitsN—c andL—c. Of these 16 possible pends only upoP™®)(o), namely,A< 2. If this holds we
combinations of limits the three most important will be the can explicitly evaluate the entropy
one withNA, fixed, the one withlL A, fixed, and the combi-

S(Ag,Ap)—— 2> PY(a)InPY(a),

(o8

nation of these two. S(Ag,A;)=S(Ag,A,)
We begin with continuous digitization with fixed sam- .
pling A;—0 andL—ee, with LA, N, andA, fixed. This is :_f ds 0V(s)nA.0M(s)
the limit where the digitization approximation is valid and —w S
=3 _— ~ 1 V2
S(Ag,A)=S(Ag,A,) NInA~NInL, (3.2 :EHHA_W’ A,—0, A< 2N fixed.
S

which is just the uncorrelated limit. This is expected since if
the variance of successive samples is large compared to the (3.30
spacing between the levels, then the continuum nature of thlc?1
signal is lost and it is indistinguishable from a random signal
The quantityS— NInL will approach a finite limit af\;— 0,
L— and hence may be regarded as an effective continuu
entropy that may be used as a practical indicator of the su
ficiency of the digitization.

A related limit isL—o, with Ag fixed. In this case the

both cases we see that in the infinite sampling limit with
fixed level spacing the entropy no longer scales with the
number of sample nodes. In essence, as the nodes get closer
:ﬂlgether they become so highly correlated that consecutive
nodes almost always are in the same state.

The second, more realistic, infinite sampling limit has
) A,—0,N—oo, with NA, fixed andA( fixed. In this case we
ex(tlr)a levels b*eyondAst :S.* ad.d ”O‘T"r?g because  ,pain the functional form of the limiting result by consider-
*7(s) =0, s=s". Hence, in this part|cul'arlllm|S—> const. ..ing correlations at the pair level. For a continuous signal we
Henceforth we shall assume that the limits are taken withy, oot that successive closely spaced nodes will almost cer-
AdL fixed. o tainly be in the same state, so th®®(o,0)=[1

The infinite sampling limit isyA,—0 or x—1. We can- — e]PW(a), wheree<1, andP@(q, o+ 1)= ePD(a)/2
not simply insert this into the expression for the digitizedThere is no, chance of tr,Ie states of 7consecutive nodes. being

entropy because that would gi&— —, which cannot be separated by more than one level fioy fixed, A,—0. The
correct since the entropy should be bounded below by Zerqjependence of on A, follows from

The problem is the violation of the digitization criterion and

we must simultaneously tak®s<2(1—x%)~4yA,, and P@(g,0+1)
L—oo with LA fixed. In view of this we can define the
continuum limit of the entropy as J<rAs+As/2 Ju—AS+3As/2d 1
= S S
_ N m aAg—Ag2 TAgt+ A2 2m\y1—X
S(AS!Ar):S(AsrAr)HE'FNlnA—y
s _
X exp —————(S2— 2xs;S,+53)
A2 ;{2(1—X2) 1 15271 S
S
A—0, A;—0, A_r: const4y. (3.27 e7a2/(1+x) Asdt fAsdt
=i, du), db
This result holds whethdd— oo or whether it is fixed. 2myl=x"Jo 0
Now consider the infinite sampling limi,— 0, with Ag 124 2xt o+ t2 2a(t.—t
fixed. ObviouslyAs>\4yA, and the digitization approxi- Xex;{ Lt 122 2] xr{ 2((11+X)2) ,
mation is not valid. In this case we cannot (Besince it is 2(1-x%)

not a valid approximation to the true entropy, and instead we (3.3D)
must calculateés and P directly. The first and easiest case is

with fixed N, so thatNA,—0. For a continuous signair wherea=oA +A /2. AsA,—0,x—1 and the integrand is
+A,)=s(r)+0O(A,) and hence almost everywhere dominated by the region=<1—x? andt,=<\1—x2. In this
P@(g;,05) =PV (c,)8(0q,0,), A,—O0. It follows that region the integrand is of order unity and hence the double
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TABLE IIl. Continuum limits of the entropy of the exponen- To linear order in yE‘/Z),Ar/ﬂ-, the neighbor pair-

tially covariant continuous signal. correlation function is
Limit Fixed S(Ag,A,) G¥(o,7)~1+0o7—207y (3.36
L—oe Ag, Ar, N S— const and the neighbor triplet-correlation function is
Ag—0, L—oo LA, A,, N S~NInL
A0, A,—0 AZA,, LN S—N[1+In8myA,/AZ)2 G (o, N)~1+ 07+ A+ No—2y[ o7+ A+ Nay/2].
A,—0 A<V2,L,N S~1/2+Iny2m/Ag (3.37)
A,—0, N—o NA,, Ag, L S~aN¥3nN ) i
Keeping only the first three terms, the Markov entropy ex-
pansion is
integral has valueD(1—x?). Since the numerator of the
prefactor is proportional t®)(o"), we conclude that SIN=-3 p()Inp(a)— D p(a)p(1)G P (a,7)
[ o, T

E:O(\/l—XZ):O(\/Z’yAr), (3.32

which confirms that changes of the level are increasingly rare
as A,—0. On average the number of level changes is

xlne<2><o,r)—u_2m p(a)p(T)p(N\)

NS, PM(a)e=O(NV2yA,). @ G®(a,7\)
. . XGY(o,7,\)In
Now consider how the entropy changes if we double the G(a,7)G@ (7))

number of nodes by inserting a new node between each ex-
isting pair of nodes. If the signal at the nodes on either side
of the new one has the same digitized vadtjethen the new
node almost certainly has the same valtiee probability is
1-¢€', wheree'<e). If the new node is inserted between 1

two nodes where the level changes frento o+ 1, then it - §U§A G (o, 7 MING (0,7 \). (339
will definitely have one of these values, each with probabil-

ity 1/2. In other words, the additional uncertainty that arisesExpanding the pair term to linear order we obtain

due to doubling the number of nodes and halving their spac-
ing only depends upon the number of changes of level and
each contributes just In2,

1
=In2+ ZE G(a,7ING?(a,7)

2
S, /N~ Z[(Z—2y)|n(2—2y)+2y|n2y]~|n2+y|ny—y.

(3.39
Son— Sy=O0(NV2vyA,In2). (3.33
Similarly, the triplet term becomes
Since in this particular limitA,o1/N, we conclude that 5
S(AL.A)~O(NY2NN), Sg/N~—5=(4-2y[2+V2])In(4-2y[2+2])
N—oo, A,—0, NA, A, fixed. (3.3 +472yIn22y+ (4y - 2\2y)In(4y — 22y)
The reason that we cannot giv'e the numerjcal value of the ~—2In2+ 2+ \/Ey(1+2|n2)— \/Eylnz\/i
constant prefactor is that we did not explicitly evaluate the 2
double integral above. In addition we neglectgd the cal- 2 2
culation of which would involve the correlation function for _ 2-v2 _ _ 2+v2
- WO ! yln2(2—2) ylny.  (3.40
three consecutive sites. Nevertheless, we have obtained the 2 2

functional form of the entropy and in this continuum sam- _
pling limit we conclude that the entropy per node goes to*ccordingly,
zero. This is because the additional sites provide little new

information. The results for the entropy in the various con- _ _ _ _ _ Y
tinuum limits are summarized in Table III. S(As,80)~N[1=lny+/2In2— (Y2~ Din(2 \/E)]\/E

4. Binary digitization ~—=Nv7yA,[alnyA,—b]+0O(yA,), yA,—0.

The last continuum limit aboveN—, NA,, A fixed) (3.4)
can be explicitly confirmed for the binary leveled wave with ) ) )
exponential covariance function. Using an asymptotic expan] Ne neglected higher-order terms in the Markovian entropy

sion for smallyA, , we have expansion contribute the numerical value of the constants
andb. We note that if the total sampling time is fixed, then
arcsinK(A,)=arcsifexp— yA,)]~arcsifl— yA,] A,xN"! and the entropy of the signal goes lik8
~N¥2nN, N—o, which agrees with the analysis given
N -y above for a multilevel signal. That the entropy per sampling
2 2vAr+ O(vA,). (339 node should go to zero is quite reasonable since we can
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increasingly predict the state of the next sample the closer flimensional Ising model with nearest-neighbor coupling pa-
is to the present measurement. rameter —zkgT. The normalization constant follows from
the reduction formula

C. Example: Markovian digital correlations

The main virtue of the exponentially covariant model that  P" " Y(g" )= > P™(g")
was solved above was that the correlation densities were on=*1
Markovian, which meant that it was possible to obtain ex- ’{ n-2

A,ex

plicit analytic results for the approximate entrof; The = ZE 0011
drawback was that this Markovian character was not pre- =1
served by the digitization process, and hence the exact en- A,
tropy could only be evaluated in certain continuum limits, = A—P(”‘l)(a“‘l)z coslz. (3.46
namely, A;—0. Hence, in the binary digitized signal we n-1

could not obtain an explicit e_xpression for the'exact entrop enceA, =A,Al"", whereA=2 costz, and

because the Markov expansion does not terminate, as can be
seen from the fact thad;# 0. The digitization destroys the A=PU(g)=1/2. (3.47
Markov character of the original continuous signal, as can be

seen already at the three-site level. Recall that the pairBy construction, the consecutive site correlation function has
correlation function is Markovian factorization

9(2)(01,Uz;r)EW(Z)(Ul,Uzir)/P(Ul)P(Uz) n-1
2 GM(aM=PM(e"/Al=[] G?(0;,01,1). (3.49
=1+ alazgarcsirK(r), (3.42 =1

What is the digital covariance function that corresponds to
whereo;= *=1, and the triplet correlation function is the Markovian probability distribution? We have

3 T a0,F g,
9Tz ootz e o) K=(aro)= 3 T o10,PN(0")
2 op==*1 op==1

=1+ ;[olazarcsirK(rlz)

:A71 z . z

+ 0,03arcsirK(r »3) + o307 arcsirk (ry) . op=*1 op-1=*1

(3.43

(o

XPO V(g Y, > g1, (3.49
=]

Evidently this can only be expressed as a Markov superpo-
sition for consecutive equally spaced sites if the covarianc®ow if on_1=+1 the final sum is 2 sink and if o,_;

function obeys certain properties, namely, =—1 the final sum is- 2 sinhz, which gives
i 2.7 i (n—1); n—1
[arcsirK(A)] —EarcsuK(ZA,). (3.49 (o100)= tanlz Y, L > ) p (" YHoyo,_q
g1==* op_1==*
The expression holds to first order for exponential covari- =[tante](o10, 1) =[tante]" "1, (3.50

ance asy—0 (highly correlated limit and also for a Gauss- o _ .

ian covariance function to second order in the same limitHence an exponential digital covariance functikignA,)

Even if this expression is satisfied, there is no guarantee that €xf — yAn[] will give a Markovian consecutive site cor-

Markovian correlations will occur fon> 3. relation function for a binary digitized signal, where the de-
cay length is related to the Markovian decay parametay

Binary digitization

e "Ar= tantz. 3.5
Rather than digitizing a known continuous signal, in this (353
section we seek the digitized covariance function that will o entropy is
give a Markovian digital signal. For a binary digitized signal
o= =*1, a Gaussian probability for consecutive sites in Mar-
kov form is S=— > - > PNENINPMN (N
o1=*1 on==1
n—-1
P<“>(a“)=Anexp[zZ a0 (3.45 =—N 2, PD(g)InPV (o)

=1 o=*1
No pure quad'ratic terms are included here peqaﬁsel for —(N=1) >, > P@(0y,0,)InG?(gy,0,)
all configurations. It is evident that this is just the one- o1==%1 0p==1
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1 By expanding the many-site correlation functions as a
=NIn2—N Z+ Z+ a8 717nS 1 €712 product of lower-order functions and a correction factor, we
1=l o=l obtained formally exact expansions for the information en-
2 tropy. When we set the remainders beyond a certain order to
:N'”Z_Nlnz_NZwlUﬁ:N'”[z cosfz]—Nz tanfe. unity we obtained a superposition approximation for the
higher-order correlation functions, which in turn truncated
352 the expansion for the entropy at the same order. We explored
Note that in the continuum limityA,—0, z— —InyyA, two superposition z_approximatio_ns: a genera_llization of t_he
oo In this limit P_(lrk_wood superppsmon apprpxmatlon that is common in
liquid-state statistical mechanics and a Markov superposition
YA, that is ideally suited for one-dimensional signals and time
TlnyAr, (353  series. We compared with Monte Carlo simulations of a
binary-leveled correlated random signal, using exponential
or S~NY2nN, N 1/A, . This agrees with the limits found at @nd Gaussian covariance, and we showed that the Markov

the ends of Secs. Il B 3 and 11l B 4, with the constant pref-@Pproximation was superior and only two or three terms of
actor being obtained explicitly in this example. Similar the entropy expansion sufficed for accurate results over the
analysis could be carried out beyond the binary level forvhole regime from low to highly correlated signals. The
more general models in which the digital correlations argVliarkov approximation will work well for a broad class of

Markovian(e.g., the Potts and the related spin lattice model$ignals, including periodic or quasiperiodic ones, except pos-
of statistical mechanigs sibly in the case of long-period, highly correlated signals.

The success of the Markov approximation is likely due in
large part to the one-dimensional nature of the signals that
we examined here since it is formulated to take full advan-

We have addressed two main issues in this paper: thtage of the order inherent in this particular geometry. In con-
value of the entropy of continuous signals and the use ofidering higher-dimensional problems, such as image pro-
expansions for the information entropy. For a continuous sigeessing or tomography, it is possible in principle to treat
nal we pointed out that sampling and digitization are fundathem as a one-dimensional problem resulting from serial
mentally intertwined with the measurement process, which isampling and the Markov expansion could simply be ap-
consistent with the essential dependence of the informatioplied. Such an approach is unlikely to yield good results
entropy on discrete probabilities. The nuance of our analysibecause the mapping to one dimension induces long-range
was to distinguish between, on the one hand, the formallgorrelations with period equal to the length of the scan line
exact entropy sum that uses the discrete probabilities of and it would be inaccurate to apply the superposition ap-
sampled, digitized signal and, on the other hand, the approxproximation to correlations of lower order than this. We con-
mation that sets the probability simply proportional to theclude that the generalized Kirkwood superposition expansion
probability density and approximates the entropy as an intewill have an advantage for higher-dimensional systems.
gral of the latter. Although the latter procedure generallyHowever, as we pointed out in the text, the generalized Kirk-
yields to analytic evaluation and is increasingly accurate agvood superposition approximation fails for highly correlated
the widths of the digitization levels are decreased, it must beystems because it overcounts the correlations. What we re-
stressed that it is an approximation to the true entropy of theguire is a Markov-type approximation that generalizes the
signal. In both cases the information entropy is a function ofotion of order to higher dimensions. For example, one could
the sampling and the digitization and it is not possible toapproximate the three-site correlation function as the product
speak ofthe information content of a continuous signal in- of the two most highly correlated pair functions, which in
dependent of the value of these. The analysis of the corpractice means the two closest pairs of sites, and analogously
tinuum limit (infinite sampling and digitizationwas carried for the higher-order correlation functions. The utility of this
out for the exponentially covariant Gaussian random signalor other approximations in higher dimensions remain to be
but the results are likely qualitatively applicable in general. explored.
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