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Stochastic ratchets with colored thermal noise

Laura Ibarra-Bracamontes and Vı´ctor Romero-Rochı´n*
Instituto de Fı´sica, Universidad Nacional Auto´noma de Me´xico. Apartado Postal 20-364, 01000 Me´xico, Distrito Federal, Mexico

~Received 19 November 1996!

We study thermal ratchet systems, i.e., particles moving in asymmetric periodic potentials using a general-
ized Langevin equation. This scheme allows for a clear distinction of thermal noise, whether ‘‘white’’ or
‘‘colored,’’ and time-dependent external fields, deterministic or stochastic. It can then be verified that, as a
consequence of the fluctuation-dissipation theorem, the ratchet does not drift if it is in interactiononly with a
thermal bath. That is, we show that a net current arises only if the forcing is done by anexternalsource. Hence
we find that the only necessary condition for rectifying an external field, producing a current, is the asymmetry
of the potential. The use of the generalized Langevin equation gives access to a wider variation of the
quantities involved; for instance, we find that an inverted current arises for external fields correlated in shorter
time scales than the thermal noise.@S1063-651X~97!09110-1#

PACS number~s!: 05.40.1j, 87.10.1e
ha
in

m
ce
e

he
-
o

rn

a
li

at
a

th
e
he
te
e

ll
he
t

no

s
rg

n
ly
m
sy
e
is

th
rn

s

th.

r

rce
sian
to
x-

rall
Unexpected transport properties of the so-called stoc
tic ratchets, namely, dissipative systems of particles mov
in asymmetric periodic potentials in the presence of ther
and external noise, have been the focus of attention of re
studies@1–8#. In addition to their potential application in th
understanding of biological or molecular machines@5,6#, one
of the most intriguing aspects of stochastic ratchets is t
ability to ‘‘rectify’’ symmetric correlatednoise and thus be
ing able to produce a net current. This result was pointed
by Magnasco@1# and further verified by others@2,3#, using a
one-dimensional ratchet system in the presence of exte
colored noise, in the overdamped~Smoluchowski! limit.
That study was inspired by the classical work by Feynm
@9#, where the ratchet and pawl system is used to exemp
the second law of thermodynamics: Feynman shows th
system executing Brownian motion in contact with a therm
reservoir cannot produce work.

In this paper we verify that, as a consequence of
fluctuation-dissipation theorem@10#, a ratchet in the presenc
of thermal noiseonly does not show any current, whether t
fluctuations of the bath are time correlated or uncorrela
Thus the net current or drift of the particle must be produc
by the presence of anexternalsource. In particular, we sha
show thatany external forcing may be used to produce t
drift. That is, we shall argue that the onset of a net curren
only due to the asymmetry of the potential and that it is
necessary that the external forcing be correlated in time.

In previous studies@1–7#, the description of the dynamic
of the system was done under the assumption of a la
separation of time scales, those of the ratchet~e.g., a motor
protein!, and of the thermal bath. The latter approximatio
however, allows for considering ‘‘white’’ thermal noise on
and therefore any time correlation of the forcing must co
from an external source. Here, by describing the ratchet
tem in the Brownian regime by means of a generaliz
Langevin equation, one is able to consider thermal no
with finite correlation times and thus it can be shown that
production of the current is due to a time-dependent exte
force.

*Author to whom correspondence should be addressed.
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The generalizedLangevin equation of a particle of mas
m moving in an asymmetric periodic potentialV(x) ~see Fig.
1! is

m
d2x

dt2
52E

2`

t

dt G~ t2t!
dx~t!

dt
2

d

dx
V~x!1 f ~ t !1Fext~ t !,

~1!

where G(t) is the memory friction kernel andf (t) is the
stochastic fluctuating thermal force exerted by the ba
Fext(t) is a time-dependentexternalforce. It is important to
stress that the properties ofFext(t), whether stochastic o
deterministic, correspond to agiven external process and
they are completely independent of theinternal degrees of
freedom of the system-bath composite. The thermal fo
f (t) has the usual stochastic properties of being gaus
with zero meanf (t)50 and its second moment is related
the memory friction kernel by the fluctuation-dissipation e
pression@10#

f ~ t ! f ~ t8!52kTG~ t2t8! for t.t8, ~2!

wherek is Boltzmann constant andT the temperature of the
bath. This theorem ensures proper equilibration of the ove
system-bath composite whenFext(t)50. As is well known,

FIG. 1. Ratchet potential. See Eq.~6!.
4048 © 1997 The American Physical Society
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56 4049STOCHASTIC RATCHETS WITH COLORED THERMAL NOISE
one recovers the usual Langevin equation with white no
when the memory kernel becomesd correlated, that is, when

G~ t !5gd~ t !, ~3!

with g the friction coefficient. It is important to recall tha
the use of a dissipation kernelG(t) with or without memory
depends on the time scales of evolution of what one con
ers to be the ‘‘system’’ and the ‘‘bath.’’ In reality, of course
a thermal bath is always colored. However, if the time sca
of evolution are such that one is able to approximate the b
as being white, in comparison with the time scale of t
system, the description becomes Markovian. This prop
allows for a more complete mathematical description of
dynamics of the system than if the finite time correlations
the bath are kept. But certainly, if the time scales of
system and the bath are comparable, then one must fac
non-Markovian character of the corresponding dynam
equations. One of the most serious difficulties due to the l
of Markovian character is that the whole hierarchy
multiple-time probability distributions cannot be construct
from the knowledge of the two-time conditional probabili
distribution @11#. Moreover, in general, one cannot wri
down a~generalized! Fokker-Planck equation for this distr
bution @12#. The latter result has consequences in the pre
study.

As we shall show below, by a numerical solution of E
~1!, such an equation does not show a net current in
abscence of external forces, i.e., ifFext(t)50 in Eq. ~1!.
Nevertheless, and this was truly unexpected@1#, if one adds a
time-symmetricexternal force, the system then shows a
current, in general. A different result here is the fact that
correlation time of the external force can even be sho
than that of the thermal bath in order to produce a curre

For comparison purposes we shall use as external forc
systematic deterministic oscillatory force, such as

Fext~ t !5F0cos~v0t !, ~4!

with F0 andv0 arbitrary and constant. In the other extrem
we shall considerFext(t) to be a stochastic force and tim
symmetric as well.

As already mentioned, in the descriptions given in, e
Refs.@1–3#, it is assumed that the motion takes place in
overdamped~Smoluchowski! regime and the memory of th
bath cannot be taken into account. The dynamical equa
then reads

g
dx

dt
52

d

dx
V~x!1 f̃ ~ t !, ~5!

where we have writtenf̃ (t) to make the following points. As
such, this equation represents the interaction of a par
with a thermal bath only if f̃ (t) is d correlated. In other
words, only a d-correlated f̃ (t) obeys the fluctuation-
dissipation theorem; see Eqs.~2! and~3!. If f̃ (t) shows time
correlations with correlation time different from zero, the
these are produced necessarily by an external source. I
been argued~see, e.g., Ref.@3#! that these correlations ar
actuallynonequilibrium fluctuations. This may indeed be the
case, but nonetheless those fluctuations are still of an e
e

d-

s
th
e
ty
e
f
e
the
l
k

f

nt

.
e

t
e
r

.
s a

,

.,
e

n

le

as

er-

nal origin. That is, an isolated system such as the ove
system-bath composite, must reach a thermal equilibr
state in the absence of external forcing~such as a time-
dependent field or a temperature gradient@8#! and there can
be no~stationary! currents. This is in fact the situation for th
stochastic processx(t) defined by Eq.~5!, with symmetric
correlatedforce f̃ (t), and it is precisely in such a case that
has been found@1–4# that the system reaches a stationa
state with a net current.

We now proceed to exemplify the above results via n
merical solutions of the generalized Langevin equation~1!.
In dimensionless units (m51 and l51, the mass of the
particle and the period of the potential!, the ratchet potentia
is a simple one@3# ~see Fig. 1!

V~x!5
V0

2pS sin~2px!2
1

2
sin~4px!1

1

3
sin~6px! D . ~6!

The thermal stochastic force is taken to be Gaussian, w
zero mean and with the correlation function

f ~ t ! f ~ t8!5A2
1

2t0
e2ut2t8u/t0, ~7!

where t0 is the bath correlation time. One recovers t
d-correlated situation in the limitt0→0. The memory kernel
G(t) is defined through the fluctuation-dissipation relati
~2!. The solution to the generalized Langevin equation
dependent on several parameters:V0, the amplitude of the
ratchet potential;A, the amplitude of the stochastic force;t0,
the correlation time, or memory time, of the bath; andT, the
temperature that enters in the fluctuation-dissipation rela
given by Eq.~2!. If in addition we consider an external fiel
Fext(t), as in Eq.~4!, we have two more free parametersF0
andv0; if the external field is stochastic, we must specify
least its strength and its correlation time. We have k
V052.5 throughout and vary the rest of the parameters.

The goal here is to find out if the system shows a stati
ary current different from zero in a given situation defined
the parameters described above. It turns out, however, th
the generalized non-Markovian description it is not cle
which is the function that measures the current, such tha
reduces to the probability density current in the Markovi
limit @13#,

j ~x,t !52
kT

g
]xr~x,t !1

1

g
@Fext~ t !2]xV~x!#r~x,t !,

~8!

with Fext(t) slowly varying. The latter identification follows
from the conservation law for the probability densityr(x,t).
This law can be deduced from the corresponding Fokk
Planck ~or Smoluchowski! equation @13#. Now, since a
‘‘generalized’’ Fokker-Planck equation is not known@12#
~due to the non-Markovian character introduced by
memory term! one cannot write down the conservation la
for the generalized probability distributionr(x,t). Thus, in
order to find out whether or not a current exists, we sh
mainly look for the behavior of the average position of t
particle as a function of timex(t). This average is calculate
over many realizations of the stochastic thermal force, an
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the external noise if the latter is also stochastic. Ifx(t)50,
there is no current. Ifx(t)Þ0, the particle is drifting. Every
situation described below was obtained with 100 realizati
of the stochatic forcef (t) and for runs of 900 000 time step
(Dt50.01) @14#.

In Figs. 2~a!–2~c!, the average positionx(t) of a Brown-
ian particle in a ratchet potential in the presence of a gi
periodic sinusoidal force is shown; cf. Eq.~4!. The different
curves correspond to different strengths of the external fo
F0 @Fig. 2~a!#, to different frequenciesv0 of the external
force @Fig. 2~b!#, and to different values of the bath correl
tion time, or memory,t0 @Fig. 2~c!#. We can see that, in
general, there is a net drift for almost all cases.

We want to highlight the following points. First, in Fig
2~a!, the case ofno external forceis also shown, i.e.,

FIG. 2. Average positionx(t )̄ vs time ~a! as a function of the
strengthF0 of the external force fort051.0 andv050.05, Eq.~4!;
~b! as a function of the frequencyv0 of the external force for
t051.0 andF051.0, Eq.~4!; and ~c! as a function of the correla
tion time t0 of the fluctuations of the bath forv050.05 and
F051.4, Eq.~7!.
s

n

e

F050.0, and one finds that there is no net current. We str
that the fluctuations of the bath aretime correlated, i.e., t0
Þ0. In accordance with the second law, one cannot extra
current from a thermal bath, whether white or colored.

Next, we direct the reader’s attention@see Fig. 2~b!# to the
striking oscillacions of the average positionx(t). The fre-
quency of this oscillation is, within statistical errors, the fr
quencyv0 of the external force. For comparison, in Fig.
we show the actual ‘‘walker’’x(t) of ten runs, correspond
ing to different realizations of the thermal noise for givent0,
F0, and v0. One can hardly expect from Fig. 3, given th
fact that we are facing a highly nonlinear system, that
averagex(t) will show such a clean filtering of the forcing
frequency. Note also the inversion of the current in Fig. 2~b!
for a large driving frequency.

Finally, in Fig. 2~c!, it is important to note the nonmono
tonic behavior of the current as a function of the memo
time t0 of the bath, for fixed external force. The caset050.0
corresponds to a white bath. Note that when the bath h
very long correlation time (t05100.0) it becomes very inef
ficient in driving the particle.

We now discuss the case in which the time-depend
external forceFext(t) is stochastic. We take it to be Gaus
ian, with zero meanFext(t)50 and the correlation function

Fext~ t !Fext~ t8!5F0
2 1

2text
e2ut2t8u/text. ~9!

FIG. 3. Positionx(t) vs time, for ten different realizations of th
stochastic thermal forcef (t), in the presence of an external forc
Fext(t), Eq. ~9!. t051.0, F051.0, andv050.05.

FIG. 4. Average positionx(t )̄ vs time, as a function of the
correlation timetext of a stochastic external forceFext(t), Eq. ~9!.
t051.0 andF0510.0.
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56 4051STOCHASTIC RATCHETS WITH COLORED THERMAL NOISE
The results are shown in Fig. 4. The different curves co
spond to different correlation timestext of the external force.
Three main conclusions can be drawn from here. First, if
correlation time of the external force is equal to the corre
tion time of the bathtext5t0, there is no drift~as it should
because the ratchet comes into contact with a single col
noise!. That is, the external force plus the thermal force
equivalent to increasing the intensity of the thermal noise
can be seen from Eqs.~2!, ~7!, and~9! ~completely analogous
to the case of a white bath with ad-correlated external force
as shown in@1,3#!. Second, for external correlation time
longer than the thermal correlation timetext.t0, the situa-
tion should approach that of a white bath in the presenc
a colored external source: There must be a drift~‘‘positive’’
in this case!, as it has already been demonstrated@1–3#.
Third, for external correlation timesshorterthan the thermal
correlation timetext,t0, there is also current. It is importan
to point out that the current in this case is ‘‘negative,’’
‘‘inverted.’’ The origin of this inversion, not elucidated her
ev
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is clearly different from the current inversion found in pr
vious studies@2–4,7#.

An interesting case is the extreme one of acolored ther-
mal bath,t0Þ0, with awhite, or d-correlated, external force
text→0. We found, as shown in Fig. 4, that the ratch
moves. That is, it is capable of rectifying even a symme
d-correlated external noise. This result indicates that the o
necessary condition for a thermal system to show curren
that the potentialV(x) be asymmetric. From the prese
work we can further conclude that the phenomenon is v
robust: Perturb in~almost! any way an otherwise ratchet i
thermal equilibrium and it will generate a current. We stre
once more that the study of a system with a colored ther
bath, memory, and with time-dependent external for
~evend correlated! can only be studied with ageneralized
Langevin equation, such as Eq.~1!.

L.I.B. acknowledges support from Consejo Nacional
Ciencia y Tecnologı´a ~Mexico!.
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