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Formation of nick instabilities due to particle clustering along crystal interfaces
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The kinetic growth of crystal grains is simulated on a square lattice in the presence of mobile particles. The
model is based on the Eden and the dynamic epidemic models. Trapping of the particles by the advancing front
and a short-range repulsion of the particles by the front are both allowed. The grain boundary morphology is
studied through the kink density concept and the spatial distribution of particles is discussed. Indeed, the
clustering of particles along the crystal edges is found to induce the formation of so-called nick instabilities at
the liquid-solid interface. The particles, when trapped near such instabilities, occur as oblique filamentary
structures in the crystal matrix, just like river networks. These findings agree with recent experimental obser-
vations. The numerical laws are also explained by theoretical arguments based on different characteristic
lengths.[S1063-651X97)08810-1

PACS numbeps): 05.40+j, 81.10.Aj

[. INTRODUCTION particles. It has been shown that this process leads to the
aggregation of particles along the front and further leads to a
The interaction between some mesoscopic particles andontrivial trapping of the aggregates. This effect has been
an advancing solid-liquid front is of fundamental interest inrelated[7] to a percolationlike transition occurring as a func-
various fields of science. Indeed, numerous systems are réon of the particle fraction.
lated to such a problem, e.g., the behavior of biological cells In the present work we consider the case for which a
on an ice-water interfacl], the trapping of bubbles during smooth front(like a solidification front, instead of a rough
solidification [2], or the growth of superconducting interface as considered in our previous works, reaches a col-
YBa,Cu;0,_,/Y,BaCuQ, compositeq 3]. In the particular lection of particles. Moreover, we consider the case of low
field of crystal growth, it is of interest to consider the trap- particle fractions, i.e., far from a percolation transition. This
ping problem of particles in order to control the decorationis much more relevant for fulfilling crystal growth condi-
of a crystal by mesoscopic impurities. Indeed, trapped imputions. We investigate such a situation through a combination
rities control the microstructural features and the physicabf the so-called dynamic epidemic modél] and an ex-
properties of the materials as for the particular case ofended Eden mod¢B]. We discuss the final spatial distribu-
YBa,Cu;0;_, [4]. From the statistical physics point of view, tion and the grain morphology and give theoretical argu-
it is of interest to study how the interface shape is affected bynents to explain the observations.
the presence of a collection of particles.

The trapping or pushing of a mesoscopic impurity by an Il. MODEL
advancing solid front through a liquid has been discussed by
Uhlmann, Chalmers, and Jacksfsl. They experimentally We consider a two-dimensional square lattice. The model

studied the growth of a planar solid-liquid interface reachingis mesoscopic in the sense that each site can receive either a
a single perfectly smooth particle. They observed that forsolid (S) crystal “unit,” a liquid (L) unit, or a particle P).
typical growth conditions, there exists a critical particle ra-Liquid units, solid units, and particles are represented, re-
dius R, above which the particle is trapped by the front andspectively, on each siteby the variables (i), cs(i), and
below which the particle remains indefinitely pushed by thecp(i), taking only the integer value 1 or O for the presence or
growing front. In a Uhlmann-Chalmers-Jacks@iCJ) pro- absence of the phase on this site. Because d siga only
cess, the value dR, depends on physical parameters such asontain a single phase, the relation(i) + cg(i) +cp(i)=1
the nature of the medium, the nature of the particle, the veis implied. Initially, all sites contain the liquid phase, except
locity of the front, the viscosity of the liquid phase, and thean a priori fraction x of sites that are filled with a particle.
microscopic roughness of the particle. A practical criterionThus the average a@p(i) over all lattice sites gives trivially
[1] in crystal growth is that the pushing-trapping phenom-{cp)=x.
enology is usually expected to take place for the pro@get The single-grain growth process starts with an infoen-
around 10° cné/s. Thus the pushing-trapping transition oc- tral) site turning into the solid phase; this site becomes the
curs typically at the mesoscopic scale for crystal growth. nucleus of the grain growth. The grain growth then follows
Recently, we have introduced a simple model, the soan Eden growth process adapted to crystal grof@has
called dynamic epidemic modgb,7], which considers a me- follows. Each step of the growth process consists in selecting
andering interface pushing a collection of smooth mobileall unoccupied(liquid) sitesj in contact with the growing
cluster(solid). A growth probability weightP; is associated
with each selected site This weight constraint is first im-
*Electronic address: vandewal@gw.unipc.ulg.ac.be posed in order to take anisotropic crystal growth rates into
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the particle that is touched by the front to be subjected to an
UCJ event and thus be allowed to make a jump towards a
nearest-neighbor sif@s drawn in Fig. (c)].

Notice that if no low contact number is available on a
nearest-neighbor liquid site, the particle cannot make any
move, although a UCJ event is allowed. This is another way
for a particle to be trapped. A new growth step is then taken.
FIG. 1. Schematic illustration of one growth step on a small partThe whole proc_:ess described _|n the previous paragraphs is
of the front. The particle, liquid, and crystal phases are represente'@peated a deSIer numblrof tlm_es. -

It is useful to discuss the physical range of validity of the

in black, gray, and white, respectively(a) a central site that is a - > g
kink site is chosen for the growth stefl) in this site the liquid Model and stress it with respect to the mesoscopic scale.

phase is turned into the crystal pha&s;the particle touched by the R€arrangements on a crystal surface are essentially

growth front makes a move decreasing its contact with the front. €vaporation-diffusion processes occurring at the microscopic
level. The model does not need to include such diffusion

account as in Ref9]. The growth probabilityP; on one of ~ processes. Indeed, the ensemble average will take care of

the possiblg growth sites is assumed to be proportional to Such fine features occurring at a different time scale. The
strict validity condition imposes that the mesoscopic cells

considered by the model should thus be larger than the dif-
PjNeXF{gNN% CS(m)}’ (1) fusion length of atoms in the melt. Consider that the diffu-

sion length\ = D 7, with a characteristic time intervalas,
where the summations run over all the nearest-neighbcg-d., the time to grow the solid phase on a cell. This charac-
(NN) m sites of the selectegl site. The exponential form teristic time 7 is simply r=a/v, wherea is the size of a
(Boltzmann-like of Eq. (1) is used to enhance the bonding lattice mesoscopic cell of the model andhe growth rate of
anisotropy along(10) and (01) lattice directions and to the solid phase. The above model is thus valida, i.e.,
mimic an activation energy procef3]. The parametegyy
is like the bond energy in the lattice-gas model. It is a di- D/v<a. 2
mensionless parameter. It can be argi@dhatgyy has the
simple formgyny=Jun/kKgAT, whereJyy is a coupling en- Thus the model should consider a “sufficient large scale”
ergy, kg is the Boltzmann constant, adT is the departure depending on the physical quantities presented by the physi-
from the equilibrium temperatur@indercooling. The prob-  cal situation. Typically, the unit siza should be a meso-
abilities P; are stored in an array, renormalized over thescopic length, i.e., the size of the considered impurities. For
interval [0,1], and a specific growth site is chosen by ran-instance, for the YB#u;0;_, system cited in the Intro-
domly. The solidification of the mesoscopic cell is then sup-duction, the diffusion coefficier is about 10** m?/s [10]
posed to take place there. and the usual growth rate is of the order of 1 mm/H10].

As an example, a small part of the front is shown at threeThus the conditior(2) is verified if a is larger than 1um.
consecutive time steps in Fig. 1, where the crystal phase i§his size is roughly the size of the,BaCuG particles, i.e.,
drawn in white, the liquid phase in gray, and the particles inthe minimum scale of the mesoscopic microstructure of in-
black. In Fig. 1a) the central liquid site was chosen to turn terest. Application of the above model to Y®8axO,_, ce-

(b)

into the solid phasésee Fig. 1b)]. ramics can be found in Reff11].
After each growth step that results in gluing a new crystal
unit on the front, the untrapped particles that are in contact IIl. NUMERICAL RESULTS

with the new crystal unit are selected. Each selected particle

is either assumed to be blocked and to become trapped for Let us recall that a growing site is defined as a site con-
ever by the crystal with a probabilify, or a dynamical UCJ- taining the liquid phase and being a nearest neighbor of a
like event is allowed to take place with a probability-p.  crystal unit. A kink site is defined as a growing sitiguid)
One should note that the UCJ theory considers only the twhaving strictly more than one crystal neighboring units. For
extreme casep=0 and 1 for particle radiR<R, andR  example, the site chosen for growth in Figajlwas a kink
>R, respectively. In real situations, the size of the particlessite. The kink sites are also “hot sites” since they are most
may be polydisperse. The roughness of the particle may berobably chosen during the crystal growdee Eq(2)].

also considered to be different from one particle to another. We define and introduce the notion of the kink site den-
Thus a noninteger probability allows one to consider that sity k as the ratio between the number of kink sites and the
the particles are not identical. We are of course aware that #®tal number of possible growing sites at each time step. A
true process cannot be represented by a single number.  crystal with “perfect” smooth edges along tki&0) and(01)

For a UCJ event, the number of nearest-neighbor solidlirections hak=0. As the crystal grows, the kink site den-
units of the particle has to be calculated. This is called thesity k is numerically found to fluctuate around a value de-
contact number of the particle. The contact number of thepending ongyy [9]. A recent work[12] has shown that the
neighboring emptyliquid) sites is also calculated. If ofer  kink density depends exponentially ggy. The higher the
more neighboring sités) has (have a contact number gyy, the lower the kink site density.
strictly less than the contact number of the particle itself, the In the present studygyy was arbitrary fixed to be 200, a
latter makes a random jump towards one such site in order tealue that gives smooth edges in the absence of parfiéles
reduce its contact number. In Figchl, for example, we let This value is reasonable as a relative value of the ratio be-
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(b) (©

FIG. 2. Typical boundaries for grains made {10 000 crystal units. The trapped particles are also shown. The particles are static
(p=1). Three different concentrations of particles are illustrate@d x= 75, (b) x= 35, and(c) X= 7=.

tween the bond energy and the out-of-equilibrium temperainfinite growth is obviouslyx=3 with a minimum particle
ture range as mentioned above. In this section we study thaterdistanced=2. However, for a random initial particle
effect of the other parametefs andp) on the global crystal distribution, the maximum fraction of particles allowing the
shape, on the local surface morpholdgyroughk), and on  growth is aboutx.~0.41 for p=1. This critical valuex,
the spatial distribution of trapped particles. corresponds to the random-site percolation threshiti#ion
In the simulations reported here, the initial distribution of the square lattice for the fraction of initial liquid site
particles was often chosen to be spatially regular rather thabh—x.~0.59. Forp=0, a previous work6] has shown that
random in order to have initially disconnected particles andhe transition occurs at.=0.56+0.01, i.e., at a quite larger
in order to emphasize the displacement of particles througfraction of particles.
the UCJ mechanism. At the beginning of the simulation, the For the investigated values afandp=1, the decrease of
particles were separated by a fixed integer distahedong the kink site densitk is empirically found to be a stretched
both (10) and(01) directions such that thg concentration exponential
value is given by M?. The results, however, were found to
be similar for random or regular particle distributions. K(p=1)~€Xp( — y\&), 3
Let us examine first the case for which the trapping prob-

ability has the maximum valuepE 1) such that the particles for x<x_, the amplitude of the stretched exponential de-
represent static hindrances for the growing front. The resultpendmg on the size of the grain. The continuous curve of
ing crystal shape and the trapped particles are shown in F|g;ig_ 3 is a fit of the data with the latter equation giving

2 for differentx concentrationsta) x=z5,(b) X=7, and(c)  ~5 745,

x=15. Each grain is made dfi=10 000 crystal units. Fora |t js of interest to examine the effect @ on the grain
large concentration, the front is Jagged since the particles shape. Figures(d)—4(c) present three grains that are grow-
greatly perturb the front. The grain shape becomes Ies§Ig with different trapping probabilitiep. Each grain is

squarelike as the fractionis increasedsee Fig. 20)]. ~ made ofN=10 000 crystal units and the concentratioris
Figure 3 presents in a semilogarithmic plot the kink site

density k of suchN=10000 grains as a function of the

square root of the concentratian The parametep is fixed 0.1

to be p=1, as in Figs. ga)—2(c). Each dot represents an

average ok over 20 simulated grains. Circles and triangles

are used for random or regular initial particle distributions,

respectively. No significative change &fis observed be-

tween the random and the regular initial particle distribu- .,

tions. One should note that the values of the kink site densit

is low (of the order of 10%) because of the high value of

gnn [9]. For both random and regular initial particle distri-

butions, a decrease &fis observed as the amount of par-

ticles is increased. In the presence of particles, the number «

growing sites decreases because particles “infect” the sur 0.001 0

face. The results of Fig. 3 show that the kink site denkity

decreases also witk, a result that was unexpected by a

comparison with Fig. 2. Therefore, we emphasize that a low

kink site density does not correspond necessarily to smooth g _ 3. Kink site density as a function of the square root of the

edges and to a square symmetry. On a length scale less thggkticle concentrationx for N=10000 grains. The particles are

the particle interdistance, the edges are flat even though thgatic (p=1). Each dot is an average over 20 simulations. The

global shape looks roundddee Fig. 2c)]. circles and triangles represent the use of random or regular initial
For a periodic initial particle distribution and fgg=1, particle distributions, respectively. The continuous line is a fit with

i.e., static particles, the maximurnfraction allowing for an  the stretched exponential of EB).

T
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FIG. 4. Grain boundaries and trapped particles shown for three grains matte 1 000 crystal units. The concentration of particles is
set tox= % Three different values of the trapping probability are illustrate@) p=0.16,(b) p=0.04, and(c) p=0.01.

kept constant X=75). For largep values[Fig. 4@a), the turbed and the relaxation of the front towards a new flat
grain internal particle distribution is perturbed, but is still configuration depends on the parameter strengths.
homogeneous, as was the initial particle distribution. When For highp values p~1), the particles are of course eas-
decreasing the trapping probabilip; flat edges locally ap- ily trapped and the accumulation of particles on the growing
pear together with particle-free regioffsg. 4(b)]. However, front cannot occur. Particles alone represent small hindrances
the particles aggregate on the edges of the daig. 4(c)].  for the front. The front is deformed by the presence of such
The accumulation of particles locally leads to the formationparticles[see Fig. 2c)]. The front is rough on a scale larger
of “nicks” on the growth front. This mechanism results also than the particle interdistanc#,,. In general, one particle
in the trapping of aggregates in the crystal matrix. Largeoccupies a site having more than one nearest-neighbor crys-
inhomogeneities and clusters of particles behind nicks aréal unit. In other words, the interface is pinned by the static
clearly seen in Fig. @). These inhomogeneities look like particles. This is schematically drawn in Fig@s Those
filaments. The trapping events seem to be a cooperative pheites are candidates to be kink sites, but are removed from
nomenon for low trapping probabilities. the number of possible growth sites. This explains why the
Figure 5 presents on a semilogarithmic plot the kink sitekink site densityk decreases witk. In fact, the edges of the
density k as a function of the particle fractior and for  crystal remains flat, but only on length scales corresponding
non-a priori trapping situation g=0). Each dot represents to the particle interdistancé,,;. Because the kink sites tend
an average over 20 simulated grains of dize 10 000. The to be occupied by a particle, the distance between two kink
kink site densityk decreases as the fracti@nncreases. This = sitesdy is proportional to expfy,, i.e., the exponential of
seems similar to what was observed above forthel case the particle interdistance. Since on averagjg~ 1/1\/x for
(see Fig. 3 However, the kink site density is found to be a static particles and somewhat by definitionsJf,~k, one

simple (nonstretchedexponential recovers the results of Fig. 3 and the stretched exponential
for k [Eqg. (3)].
K(p=0)~€Xp(— ¥X) (4) For low trapping eventsp=0), the particles move along

the front, resulting in a local accumulation of the particles on
for x<x., the amplitude of the exponential depending on thethe front[Fig. 6(b)]. Such clusters obstruct the advancing
grain sizeN. The continuous curve in Fig. 5 is a fit with Eq.
(4), giving y~10.962. 0.1

IV. DISCUSSION

In this section we consider the kinetic mechanisms ant
interpret the numerical results on the kink site denkityfhe
parametergyy, P, andx of the model constitute the basic
relevant set because the tuning of each parameter separat
induces both globally and locally different morphological
changes as experimentally observed. A wide variety of ob
served kinetic behaviors and morphologies can be produce
by the present model. The most interesting result is the ok 0.01 L L .
servation of inhomogeneous nontrivial particle distributions 0.00 0.05 0.10 015 0.20
obtained even for low trapping probabilities.

We recall that two sorts of trapping mechanisms can take
place on the advancing fror) the particles in contact with FIG. 5. Semilogarithmic plot of the kink site densikyas a
the front are trapped with a probabilipyor (ii) the clustering  function of the particle fractiorx for N=10 000 grains. The par-
of particles(for p—0) ahead of the front obstructs the dis- ticles are pushed by the interfacp=0). Each dot represents an
placement of some of them and leads to their trapping by theverage over 20 simulations. The continuous line is a fit with the
front. For both types of trapping events, the flat front is per-simple exponential law of Eq4).
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(2)

(b)

FIG. 6. Schematic illustrations of the typical interface morphol-
ogy for two different situations(a) the particles are statippE&1)
and(b) the particles are pushed by the interfape=(0) leading to
the formation of nicks and filaments. The particle, liquid, and crys-
tal phases are represented in black, gray, and white, respectivel
The different length scales discussed in the text are emphasized.

FIG. 7. Different time steps in the formation of a nick on the
edge due to the accumulation and trapping of particles. The time
Xteps evolve from left to right and from top to bottom.

V. CONCLUSION

front and a nick is created. Figure 7 presents different time From the kinetic growth simulation of two-dimensional
steps of the typical formation of such a nick. Trapped andyrains taking into account the presence of mesoscopic par-
untrapped particles are drawn. The structure of trapped paficles either trapped or pushed by the interface, the local and
ticles looks like “filaments.” These trapped structures wereglobal crystal morphologies as well as the trapped spatial
recently observed in KCI crystals decorated by SKD,O;  distribution have been studied and discussed. The UCJ-like
particles [14]. Filamentary structures of trapped particles mechanism is found to induce the formation of the so-called
have been observed also in the directional solidification ohick instabilities on the edges of the crystal. The particles,
reinforced aluminium based materiglss]. Finally, the UCJ
mechanism has been shown recently to describe the occur-
rence of filamentary structures in YRau;O,_, supercon-
ducting ceramic$16].

An interesting result is that a nick cannot easily disappear
for highx values because additional particles fall into the
nick as the front advances. Moreover, the motion of nicks
results in some sort of drag, thus in filaments growing side-
ways to the main growth directions. For very-highalues,
we observe the collapse of two or several nicks. This results
in the formation of treelike structures or ‘“river network—
like” structures. Such a structure is illustrated in Fig. 8 for a
grain of N=20 000 crystal units growing in the presence of a
high density of particle$x=3 and p=0.01). For p—0, the
edges of the grain remain flat, but only on length scales FIG. 8. Grain ofN=20 000 crystal units. The distribution of
corresponding to the nick interdistancgck, i-€., Snk  trapped particles is also shown and is seen to lead to different fea-
~eXp(hic) - Due to the filamentary structures of particles tyres in particular filaments going sideways and “river networks.”
trapped behind the nicks, one would expect thgf~1/X  The grain has been grown in the presence of a high concentration of

such that one recovers the results of Fig. 3 and the simplparticles &= 3). The UCJ mechanism has been enhanced by taking
nonstretched exponential of E@L). p=0.01.




56 FORMATION OF NICK INSTABILITIES DUE TO . .. 4047

which are trapped around such instabilities, lead to the forstructure could be quantified in further work both at the
mation of filamentary structure®r pattern$ in the crystal simulation and at the experimental stages.

matrix. The density of kinks is a nontrivial function of the
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