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Stability of synchronous chaos and on-off intermittency in coupled map lattices
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In this paper we consider the stability of synchronous chaos in lattices of coNptmhensional maps. For
global coupling, we derive explicit conditions for computing the parameter values at which the synchronous
chaotic attractor becomes unstable and bifurcates into asynchronous chaos. In particular, we show that after the
bifurcation one generally observes on-off intermittency, a process in which the entire system evolves nearly
synchronously(but chaotically for long periods of time, which are interrupted by brief bursts away from
synchrony. For nearest-neighbor coupled systems, however, we show that the stability of the synchronous
chaotic state is a function of the system size. In particular, for large systems, we will not be able to observe
synchronous chaos. We derive a condition relating the local map’s largest Lyapunov exponent to the maximal
system size under which one can still observe synchronous chaos and on-off intermittency. Other issues related
to the characterization of on-off intermittent signals are also discufS&063-651X97)07210-3

PACS numbsgs): 05.40:+j, 05.45+b

I. INTRODUCTION tency. Section Il presents numerical results on the charac-
terization of on-off intermittent signals using quantities like
Consider a coupled map latti¢&]. Assume that there is a laminar phase distribution plots and power spectra. In Sec.
range of parameter values for which this system exhibits &1 we consider the stability of synchronous chaos in coupled
unique attractor of synchronous chaos where every elemefitap lattices where the coupling is nearest neighbor. We
evolves chaotically and is in synchrony with every other el-point out that, in such systems, we can only expect to see
ement. Suppose that, as the parameter is varied past a certgt@ble synchronous chaos and the accompanying on-off in-
bifurcation point, this synchronous chaos loses stability, andermittent behavior if the number of coupled maps is small.
is replaced by an asynchronous chaotic state. It can be showsection V concludes this paper.
that, under rather general conditions, immediately after the

bifurcation, the dynamics exhibits on-off intermitter[@#?] II. STABILITY OF SYNCHRONOUS CHAOS
in which long episodes of nearly synchronous evolution IN GLOBALLY COUPLED MAPS
(laminar phas)eare interrupted by a certain element or ele- AND ONSET OF ON-OFF INTERMITTENCY

ments in the system bursting away from the synchronous

state. The bursts become more and more frequent as the pa-Coupled map lattices, as discrete analogs to coupled os-
rameter is moved further and further away from the bifurca<illators and partial differential equations, have in recent
tion point. Eventually, the system reaches fully developedyears become the model of choice for developing intuitions
heterogeneous chaos where no clearly identifiable episodé@sd concepts in the study of spatiotemporal dynamical sys-
of synchronous chaos are seen. According to the terminologigms[1,9]. Assuming globalmean field coupling we ex-

of a recent papef2], this bifurcation is a spatiotemporal press our model as

example of a nonhysteretic blowout bifurcation. Blowout bi-

furcations occur in systems with symmetry, which in our e &

case is the spatial translational invariance due to identical Xn+1(1)=(1=OfCG(I)+ T > f(xa())), 1)
elements used at each space site. It is nonhysteretic because 1=
there are no other attractors in the phase space coexistingn ) ] )
with the synchronous chaos attractor. Hysteretic blowout bi¥vherex is an N-dimensional column vecton denotes the
furcations occur if there are simultaneously more than ondiMme step, i,j are labels of lattice sitesf(x) is an
attractor in the system. In this case one may observe riddlelj-dimensional nonlinear mapping functiois the coupling
basins on the side of the parameter axis where the synchréirength satisfying &e<1, andL is the total number of

nous state is still stablgs]. coupled elements. The lochl-dimensional map
Assume that the local map N dimensional and is cha-
otic in the absence of coupling. In Sec. Il we carry out a Xn+1=f(Xn) (2

stability analysis of synchronous chaos for globally coupled
systems of such maps. We show that, when the synchronouss assumed to be chaotic. From E¢b. and(2) one can see
chaos becomes unstable, the system exhibits on-off intermithat x,(i) =x,(j)=x,, i,j=1,2,..,L, is a solution to Eq.
(1), indicating that fully synchronized chaotic states are pos-
sible. For this synchronous chaotic state to be observable the
*Electronic address: ding@walt.css.fau.edu correspondindN-dimensional manifold must be attracting or
TElectronic address: yang@walt.css.fau.edu stable. Below we derive the criterion for the stability of this
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synchronization manifold. Stability analysis for synchro- =[x(1),x(2),...x(L)]". In other words, the synchroniza-
nized periodic orbits in coupled map lattices can be found irtion manifold is the diagonal which is invariant under the
[10]. dynamics. The stability of this invariant manifold can be
assessed by computing its Lyapunov exponent spectrum.

A. The case ofN=1 Differentiating Eq. (3) and evaluating the derivatives

We begin by considering the simplest case where the Ioalong the synchronization trajectory leads to

cal map is one dimensional. Rewrite E@) and Eq.(2) as

M 2(D)=(1= O)F"(Xo) 8%y(i) + Ef (Xn) %)

Xn1(1)= (1= &) (xa(0))+ T 2 foa(i), 5
This means that the tangent vector 6z,
and =[6%4(1),6%4(2),...,0%,(L)]" evolves, along the chaotic
trajectory X,(1)=x,(2)=---=x,(L)=x, with X4
Xnt1=F(Xp)- (4 =f(x,), according to
The synchronous chaotic attractor witty(i)=x,(j)=X, 5 3,6 6
lies along the one-dimensional diagonal in thedimen- Z0+1= %% ©
sional phase space spanned by the vectar where
1-(L-1)e/L elL elL --- e/l
e/l 1-(L-21)e/L €L --- elL
3n=1" (%) : : o : = (Xp)J. (7)
elL elL elL --- 1—-(L—-1)€lL UL

Note that the constant matrikis a cyclic matrix and it commutes with the following shift matfx

0
1 0
sS=|: & i , (8)
0 0 O 1
0 0 - 0

LXL

namely,

JS=SJ.

This implies that these two matrices share the same set of eigenvectors. The eigenve@anefenown to be

( ‘m-1 ‘m-1 ‘m-1 )T
En= ex;{ 1 ),ex;<47-r| T),...,ex;{ZLm T) , (9)

wherem=1,... L and T denotes matrix transpose. From n
these eigenvectors we find thathas an eigenvalue of one A= lim = In ( H ) vy /| v
and an [ —1)-fold degenerate eigenvalue of {%). n—e N

Form=1 we getE,;=(1,1,..,1)"=v, as a real eigenvec- 1 n
tor of the constant matri¥ in Eq. (7) pointing along the =1lim = In H ' (Xm)| -
diagonal direction. The corresponding eigenvalue is one. Us- n—co m=1

ing v; and the definition of Lyapunov exponer|tsl], we
obtain It is not surprising that the value of,, describing the
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stretching dynamics within the synchronization manifold, is (a)
the same as that of the one-dimensional map. In particular,
from the chaos assumption earliar,>0.
Note that the constant matriX is a symmetric matrix.
This means that the eigenvectors of the eigenvalue )1
span the [ —1)-dimensional subspace orthogonal to the di-
agonal (synchronization manifold[12]. Choosing an arbi-
trary set of mutually orthonormal vectors from this subspace,

Vo, Vaz,...V_ , we obtain the remaining.—1 Lyapunov
exponents,

)\2:)\3:“':)\L:)\1+|n(1_6). (b)
We refer to the Lyapunov exponemis=»N\z=---=\_ as

transversal Lyapunov exponents since they characterize the
behavior of infinitesimal vectors transversal to the synchro-
nization manifold. In other words they determine the linear
stability of synchronous chaos. Note that the Lyapunov ex-
ponents found here do not depend on the lattice Isiz€his
is in contrast to the case where the coupling is nearest neigh-
bor (see Sec. V.

When € is relatively large such that<QO\;<—In(1—e¢),
all the transversal Lyapunov exponents are negative, and the ()
synchronous chaos state is stable and is the only observed
system behavior. This result makes intuitive sense since
strongly coupled systems tend to behave in unison.

As the coupling gets weaker, especially whap>
—In(1-¢), all the transversal Lyapunov exponents become

positive and the system undergoes a blowout bifurcation, x(D)x
through which the asynchronous state is born. For a given .
local one-dimensional map, the critical value of coupling is li

e.=1—e M, (10

n

From this formula it is clear that, the more chaotic the local o
map, the larger the value @f . This is again an intuitively FIG. 1. The time seriesx(i)—x, from 40 of 100 globally
reasonable result. coupled logistic maps. The overbar indicates spatial avefape.

For e slightly less thane, the synchronous chaos is no =0.43>€.=0.4225, (b) €=0.41, which is slightly less thaa,,
longer stable. However, from the assumption that the Synand(c) €=0.385, which is further away from the critical valeg.
chronization manifold is the unique attractor fere., we
know that points far away from the synchronization manifolddeveloped asynchronous chaos as the paraneetér385 is
are still attracted to it inmediately afterbecomes smaller far removed from the critical value, as shown in Figc)1
than e.. This combination gives rise to the situation that,
after the synchronous chaos becomes unstable, the variable B. The case ofN>1
that describes the distance between the system state and the
synchronization manifold exhibits on-off intermittency. Be-
low we illustrate this point with a numerical example.

Let f(x)=1—ax® be the logistic map. Foa=1.9 we Xn11=F(X,) (11)
have\,=0.5490. Consider a globally coupled systemLof
=100 such maps. From E¢L0) we gete.=0.4225. Figure  agmits N Lyapunov exponents denoted Hy,=h,=--

1(a) shows the dynamics far=0.43>¢.. The variable plot-  ~p = Herex is anN-dimensional column vector. Let
ted at the lattice sité is x,(i) — x,, where the overline indi-

cates the spatial average of the variakle The absolute An=D,f(x,) (12
value of this quantity measures the distance between the sys-

tem state and the synchronization manifold. As expected, fope the Jacobian matrix of the local map. From the theory of
the 40 units displayed in the figure, we observe synchronizeglyapunov exponentil 1], for a typical initial conditionx; in
chaos in which the plotted quantity is uniformly zero. Forine proper basin of attraction, we can find a seNofinit

Now let us assume that the local mégn Eq. (1) is
N>1 dimensional. This locaN-dimensional map

€=0.41, which is slightly belowe., clearly identified epi- yectorse, ,e,, . . . ey such that
sodes of synchronized behavior are seen in Rig\. @hich is
interspersed with bursts away from the synchronization at- 1

tractor, suggesting the occurrence of on-off intermittency. h;= lim = In
This intermittent dynamics is eventually replaced by fully n—e N

'Q’- (13

e
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Note that, if we pick arN-dimensional unit vectoe at ran-  The synchronization manifold, defined By(i)=x,(j), i,]
dom, then a calculation similar to that in the above formula=1,2,..,L, is N dimensional and the dynamics in the mani-
will always yield the largest Lyapunov exponeni. fold evolves according to Eq11).

Consider the coupled system E(.). The phase space Consider an infinitesimal deviation from this manifold
now isL XN dimensional. Let us form the phase space vec-$z,. Then, from Eq(1) and along a synchronization trajec-
tor as tory, we have

z=[x"(1),x"(2),...x"(L)]". 8Zn+1=I162Z,, (14)

In other wordsz is an (L X N)-dimensional column vector. where

[1-(L-21)e/L]A, (elL)A, (e/lL)A, - (elL)A,
(elL)A, [1-(L-1)e/L]A, (elL)A, --- (elL)A,
In= . . . . . (15
(elL)A, (elL)A, (elL)A, -+ [1—(L—1)e/lL]A,
|
is an L XN)X(LXN) matrix. Note the similarity between Eq10) and Eq.(18). As a

The spectrum of all the Lyapunov exponents with respectesult we conclude that, far<e., the synchronous chaotic
to the synchronization solution can be evaluated in a fashiostate is no longer stable and we observe the onset of on-off
similar to that of one dimensional local maps. Consideringintermittency.

vectors of the form We now illustrate the above theoretical criterion for the
parallel_y T T - bifurcation of synchronous chaos with an example where the
viitt=le e8] local map is the il=2)-dimensional Heon map,
where g is the same vector as that used in Ef3), we Xns1=Ynt1l—axé, (19
obtain the Lyapunov exponents describing the dynamics
within the synchronization manifold through Yni1=DbX,. (20)

Fora=1.4 andb=0.3 the largest Lyapunov exponent is cal-
culated to beh;=0.4207. Consider a globally coupled sys-
(16) tem of L=100 such maps. From Eql8) we get €.
=0.3434. The variable of interest here is the distance be-
( n ) ‘ tween the system state and the synchronization manifold
&l

1
)\iparaIIeI: lim ﬁ In H Jm .Viparallel |Viparalle|
m=1

n—o

= lim E In (17 measured by
n

n—o

which, as expected, is; . 0.8
To describe the dynamics transversal to the synchroniza-
tion manifold let us form vectors as

V;/erticalz[aqu,aqu,”_,anT]T' 0.6

where a;'s are chosen such thdta;,a,,...,a ] is an
L-dimensional unit vector orthogonal to the vedtbrl,..., 1. d

Note that such vectors are eigenvectors of the constant ma- 049
trix J in Eq. (7) with eigenvalue (% ¢€). A calculation simi-

lar to that in Eq.(17) gives the distinct set of all transversal

Lyapunov exponents, 0.2

NE=hy +In(1-e).

N

0
0 2000 4000 6000 8000 10000
NP hy+In(1-e). n

So the largest transversal Lyapunov exponent is

From this we calculate the critical value of coupliagto be FIG. 2. The value ofi= (1/L) =t_,|x(i)—x] as a function of
time n from L =100 globally coupled Hgon maps. Here=0.34 is

e.=1—e M. (18)  slightly less thane,=0.3434.
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dn+1:|(1_5)yn|an:77nana (22

where d,=v"6z,, v=[a,e',a,e',...,a.€"]", and y,&"

. R T A . . . .
Here the overbar denotes the spatial average of the variabfe® An- Note thate is still a unit vector andy, is a multi-
inside. Fore> ¢, the value ofd, is uniformly zero in the Plicative scalar that describes the amount of stretching due to

long run for any initial condition, indicating the presence of the application ofA,. Althoughd, ., andd, represent pro-
synchronized chaotic attractor. Figure 2 shows the on-offections of the tangent vectodz, ., and 6z, onto two dif-
intermittent time series foe=0.338 which is slightly less ferent directions, both directions are orthogonal to the syn-

1 L
dn:_z |Xn(i)_xn|-
L i=1

thane,. chronization manifold. Thus we can still think of them as
measures of the distance between the trajectory point and the
IIl. CHARACTERISTICS synchronization manifold. In this sense Eg2) and Eq.(21)
OF ON-OFF INTERMITTENT TIME SERIES play a similar role and we may expect the on-off intermittent

time series from coupled\(>1)-dimensional maps to share
The characterization of on-off intermittent time series likethe same universal properties as that from coupled one-
the one shown in Fig. 2 has been extensively studied in theimensional maps.
past[3—7]. We will not duplicate these analyses here. Instead

our goal is to point out the mathematical origin that enables B. Numerical results
the past analyses and results to be applicable to the present il h . f i . .
spatiotemporal on-off intermittency problem. We illustrate the properties of on-off intermittent time se-

ries with three quantities: laminar phase distributions, power
spectra, and mean bursting amplitude as a function of the
coupling strengtte.

The on-off intermittent time series, for parameter values Supposed is the variable plotted against time. Letde-
close to the critical point, spends most of the time in the offnote the threshold value of such that ford> 7 the signal is
state, suggesting that the system state is near the synchrosbnsidered on and fai< 7 the signal is considered off. The
zation manifold. The time series in this case show universakength of the laminar phase, denoted Byis defined as the
properties. length of the off state. In practice one should choesa

To see the reason, consider the case where the local mapch a way that whed< 7 the linear approximation in Eq.
is one dimensionall(=1). Letd, denote the absolute value (21) or Eq.(22) is valid.
of the projection ofsz, of Eg. (6) onto any unit vectov that For a typical chaotic local map, analysis [id,13] (see
is perpendicular to the diagonal,=|v'z,|. The value ofd,  also[6]), which is based on a model like EQR1) and a
can be viewed as measuring the distance between the traja@andom walk analogy, shows that the distribution of the
tory and the synchronization manifold and evolves accordingaminar phasd is in the form
to

A. Theoretical considerations

P(T)~T73/267T/TS' (23)
dn+1:|(1_€)f’(xn)|dn: 7ndn, (21)
where

where 7,=|(1—¢€)f’(Xy)|.

Clearly,d=0 is a fixed point for Eq(21), reflecting the To~(ec—€)? (24)
fact that the synchronization manifold is invariant. Accord- . . . .
ing to [6,7] this d=0 fixed point is stable i{In|z,)) is nega- gives the crossover point from_a power _Iaw behavior with an
tive where( ) denotes temporal average. This is equivalent t#XPonent—3/2 to an exponential behavior. _
saying that; +In(1— €)<0, the same stability condition de- In Fig. 3(a) we plot th(_a numerically calculated histogram
rived earlier using Lyapunov exponents. As past work ha%or.thg length of the laminar phase for 100 globally coupled
shown, it is the linear equation with parametric driving in ogistic maps. The on-off intermittent time series used here is

Eq. (21) that underlies the observed universal characters ofonstructed in the same way as that shown in Fig. 2. We
the on-off intermittent time series. This is why we should €h00Ser=0.01 and collect 1 000 000 distinct laminar phases
expect the same characteristics for on-off intermittent timd© Statistics. Two values ot are considerede; =0.415
series found in earlier works to be applicable to the preserfP!uS and €,=0.4075(triangle). Recall thate.=0.4225 in
problem. this case. The straight line in the figure has a slope of

The case where the local mapNs>1 dimensional is not ~3/2 and is plotted to guide the eye only. From the figure we
as simple. To see what to expect here, we again examine t15@n see that the numerical results conform to the theoretical

projection of 8z, in Eq. (14) onto a unit vector of the form prediction in Eq. (23).. In particular,_ thg crossover from
power law to exponential occurs earlier@s moved further

v=[a;e’,a,e,...,a.e'], away frome;. The quantitative prediction concerning this
behavior is contained in Eq24) and is confirmed for the

wheree is an N-dimensional unit vector picked at random coupled logistic maps in Fig. 4 wherg is obtained and
and [a;,a,,...,a.]" is an L-dimensional unit vector or- plotted for a number o€ values.
thogonal to the diagonal. This vectaris orthogonal to the Figure 3b) shows the numerically calculated histogram
N-dimensional synchronization manifold. Lettimg denote  for the on-off intermittent time series in Fig. 2 for 100 glo-
the absolute value of the projection, from E¢B4) and(15), bally coupled Haon maps. We use=0.01 and the same set
we get of parameters as that used for Fig. 2. Again a straight line of
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FIG. 4. Log-log plot of the crossover time, [see Eqs(23) and

figure.

FIG. 3. (a) Log-log plot of the histogram for the laminar phase
interval distribution for the on-off intermittent time series from 100
coupled logistic maps. The time series used here is constructed in
the same way as that used in Fig.(B) Log-log plot of the histo-
gram for the laminar phase interval distribution for the on-off time
series shown in Fig. 2.

slope —3/2 is drawn in the figure to guide the eye. Clearly,
the same power law and exponential crossover behavior is
observed here for coupledN$ 1)-dimensional maps.

Figure 5 shows the power spectrum for the globally
coupled logistic maps witta=1.9 ande=0.41. The two
straight lines in the figure have slopes of1/2 and -2,
respectively. It is predicted if4] that one should observe
three distinct regions of scaling behavior in the power spec-
trum of on-off intermittent time series. For small frequencies
the spectral density should be a constant. For intermediate
frequencies the spectral densB{f ) scales with frequency
f as

S(f )~ (1/f )Y

log,,S(/)

FIG. 5. Log-log plot of the power spectrum for on-off intermit-
tent time series from 100 globally coupled logistic maps.

0.0

(24)] as a function of the parameteg— €.

For large frequencieS(f ) should scale withf as

S(f )~ (1/f )2,

In Fig. 5 we see the predicted behavior for the intermediate
and large frequency regions clearly. However, the predicted
low frequency behavior is not observed. This could be due to
the prohibitively long time series required for the appearance
of such behavior.
Our last numerical result is shown in Fig. 6. Here we
consider the globally coupled logistic maps wih-1.9 and

T plot the mean bursting amplitude as a function of the param-
eter e,.—e. Theory in[5] predicts a linear relationship be-
tween the two quantities. This is clearly the case from the
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T
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0.08- ~ Here we assume one-dimensional local maps and impose the
/‘ periodic boundary conditiom,(0)=x,(L). Similar discus-
A sions can be carried out for the case NfX1)-dimensional
0.077 yd local maps.
Like the case of global coupling, from E{5), we see
0.064 + that the synchronous chaotic state is invariant under the dy-
é A namics. We proceed to compute the Lyapunov spectrum for
v 0.05 4/ the synchronization attractor.

The Jacobian matrix for Eq25) at time n calculated
along the synchronous chaotic trajectoty(i)=x,(j) =X,

0.04 s with x,.1="f(x,) is the followingL X L matrix:
/4,
0.034
1 i 1 Kn_ f ,(Xn)
0.02 0.03 0.04 0.05 0.06
g€ (1—e) €l2 0 0 €l2
el2  (1—¢€) €2 0 0
FIG. 6. Average bursting amplitude for on-off intermittent time X
series from 100 globally coupled logistic maps as a function of the 0 0 0 - (1-e¢) el?
parametere.— €.
€l2 0 o - el2 (l—e)
IV. NEAREST-NEIGHBOR COUPLING = (x)K.

AND THE STABILITY OF SYNCHRONOUS CHAOS

Consider the following coupled map lattice model where
the coupling is nearest neighbor: The matrixK is also a cyclic matrix and commutes with the

matrix Sin Eq. (8), i.e.,KS=SK. Hence the eigenvectors for
the Jacobian matriK are still in the form of Eq(9), namely,

Xns2(1) = (1= F (D)) + 5 11061 = 1)+ T (xa(i + 1)

(29)
|
E —( it ami 2t oLt )T 26
m=lexp 27i L ,ex mT,...,ex mT , (26)
|
wherem=1,... L andT represents matrix transpose. functions of the system siZe. In particular, for large_, the

From these eigenvectors and the definition of Lyapunouvargest transversal Lyapunov exponastis nearly the same
exponentd11] we obtain the Lyapunov exponent spectrumasX\; which by definition is positive. This, coupled with the
for Eq. (25) as natural limitation thate<1, means that a large nearest-
neighbor coupled system does not have a stable synchronous
chaotic attractor. For a given individual map, iX,is fixed,
let us calculate the maximum lattice sizg under which we
can still observe synchronous chaos. Clearly, the larger the
coupling strength, the larger the sikg,. By letting e=1
and\,=0 we have,

1 n
A=lim = In[ [T £ Xn(i))],
N N m=1

—

No=N;+IN[1—€e+e€ cog27n/L)],

L,=int am 2
m="" Cos exp— A1)’ @)
N+In(1-2e¢) if L even
L= A +In[1—e—e cog2a/L)] if L odd where the function irft) gives the largest integer that is equal
to or less than the argument.
ordered in a descending fashion. To get a concrete idea of the value lof,, suppose that

Unlike the Lyapunov exponents in globally coupled sys-the local map is the surjective logistic mafgx) =1—2x.
tems, the Lyapunov exponents in the present system aM/e know that\,;=In 2 in this case. From Eq27) we get
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L,=6. That is, for a system with more than six nearest-into an asynchronous chaotic state.
neighbor coupled surjective logistic maps, one can no longer (2) We show that the on-off intermittent time series, im-

observe stable synchronous chaos. mediately after the synchronous chaotic state becomes un-
stable, has universal characteristics.
V. CONCLUSIONS (3) For nearest-neighbor coupled systems, we show that
The main results of this paper are as follows. the stability of the synchronous chaotic attractor is a function

(1) For globally coupled map lattices, we derive explicit ©f the system size. In particular, we can only expect to ob-
conditions for calculating the parameter value at which the>erve synchronous chaos in such systems if the number of
synchronous chaotic state becomes unstable and bifurcatégupled maps is small.
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