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We study kinetically rough surfaces which display anomalous scaling in local properties such as the rough-
ness or the height-difference correlation function. By studying the power spectrum of the surface and its
relation to the height-difference correlation, we distinguish two independent causes for anomalous scaling. One
is superroughenindglobal roughness exponent larger than or equal Jfoeten if the spectrum behaves
nonanomalously. Another cause is what we term an intrinsically anomalous spectrum, in whose scaling an
independent exponent exists, which induces different scaling properties for small and large length scales. We
show that in this case the surface does not need to be superrough in order to display anomalous scaling. The
scaling relations we propose for the structure factor and height-difference correlation for intrinsically anoma-
lous surfaces are shown to hold for a random diffusion equation, independently of the value of the global
roughness exponent below or above di#1063-651X97)06910-9

PACS numbgs): 05.40:+j, 05.70.Ln, 68.35.Fx

[. INTRODUCTION ance implies that there is no characteristic length scale in the
surface besides the system size, and thus all scales obey the

In recent years, an enormous amount of work has beesame physics. In particular tHecal width measuring the
devoted to the study of the dynamics of growing surfacessurface fluctuations over a window of siZe<L should scale
[1-4]. Although in most cases the growth processes considn the same way as E@2), hence
ered occur very far from equilibrium, it has been observed
that the surface fluctuations exhibit power law behavior simi- th it t<s
lar to that found at second order transitions between equilib- W(/\t)~ /X if S<tle 4
rium phases. For instance, if we measure the fluctuations of a

(d+1)-dimensional interface by thglobal width Let us stress that this scaling behavior for theal width is

- — 12 not guaranteed in general when Family-Vicsek scaling holds

W(L,t)={([h(x,t) = h(t)]5)), (D for the global width(3), since the self-affinity of the interface
_ is an additional independent condition.

where( )y denotes ipatlal average over the whole substrate pegpite the success of the above scaling picture in the
of sizeL9, h(t)=(h(xt))x is the average value of the height characterization of many growth moddts—4], it has been
at timet, and( ) is an average over realizations of the noise,known that in the case of the so-callsdperroughsurfaces,
in many cases it is observed thaf(L,t) satisfies the dy- i.e., for surfaces with a global roughness expongntl, the

namic scalingansatzof Family and VicseK5], usual assumption of the equivalence between the global and
" local descriptions of the surface is no longer vabg-8. In
W(L,t)=t"*f (L/&(1)), (2)  these systems, the usual Family-Vicsek faenfor the local

) , width has to be replaced by
where the scaling functiof(u) behaves as

th if tY2</
() W(/ 1)~ At if S<tii<L (5)
/X|OCLZB* if /< L<t1/Z,

const if u>1

f(w ux if u<l.
The roughness exponet characterizes the surface mor-
phology in the stationary regime, in which the horizontalwherey =1 is the so-calledocal roughness exponent and
correlation lengthé(t) ~tY# (z is the so-called dynamic ex- B, =(x— xioc)/z. This behavior has been termadomalous
ponen} has reached a value larger than the system Isize scalingin the literaturd7,9] and lately different models have
This happens for times larger than the saturation timepeen studied in whicly,. andB, take values different from
t>t (L), which scales withL as ty(L)~L?* The ratio 1 andB—1/z, respectively{10]. In the presence of anoma-
B=x/z is called the growth exponent and characterizes théous scaling,,,c andy differ, hence not all length scales are
short time behavior of the surface. equivalent in the system. The common understanding in the
The existence of dynamic scaling is supposed to arisditerature has been that anomalous scaling is related to the
from the self-affine character of the interface. Scale invari-superrough character of the surfaces studied. However, in a
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recent papef11] two of us have demonstrated that growth d9% .
models in whichy<<1 may also exhibit an unconventional G(/,t)ocf d[1—cos{k-/)]S(k,t), (7)
scaling behavior with scaling relations between exponents (2m)

similar to those in Eq(5) [12]. h h . Lis limited tarPL <K</
In this paper we complete the picture presented in RefVNere the momentum integral is limited torfl <k<m/a

[11], showing that the mechanisms which lead to anomalou nd rgpresents a continuum appr_oximation fo the sum over
scaling behavior can be separated into two classes, accordilig® discrete set of modes. In a discrete growth moale§

to the behavior of the structure factor or power spectrum ofdentified with the lattice spacing.

the surfaceS(k,t), to be defined below. One of the mecha-

nisms is superroughening, which occurs wisk,t) has the A. Superroughening

Family-Vicsek form butx>1. The second independent \when expressed in terms of the structure factor, Family-
mechanism corresponds to what we tentninsic anomalous  vicsek scaling reads

scaling of the structure factor, where an independent expo-

nent appears which measures the difference between the S(k,t) =k~ @x+dg (ktl?), 8
short and large length scale power laws, namely, the differ-

ence between the local and global roughness expongnts  With sgy the following scaling function:

and y. We will show how to identify the scaling by extract-

ing the independent critical exponents from the correlation Sey(U)~
functions. Intrinsic anomalous scaling of the structure factor Fv

has been already measured in some discrete growth models

[9] relevant to epitaxial growth of surfaces. However, sincelndeed, Eqs(8) and(9) can easily be seen to be equivalent to
all the surfaces studied featurgd-1, a clear distinction had Eds.(2) and (3), by noting that the global width is nothing
not been made concerning the origin of their anomalous scalut the integral ofS(k,t), i.e.,
ing, which had been implicitly associated with super-

const if u>1
udx*td jf  u<1.

(€)

dc

roughness. Here we show that, on the contrary, surfaces with 2 1 _

anomalous spectra display anomalous scalimgnatterwhat WAL= F’Ek Stkit)= (2m)¢ S(k,t). (10
their value of the global roughness exponent is, eijherl

or x<1. Note as well that Eq(9) implies that, forkt*?>1, the spec-

The paper is organized as follows. In Sec. Il we presentrum doesnot depend on time, and hence at saturation
the two different shapes of the structure factor which cantzs|) S(k,t) is a pure power law independent of system
give rise to anomalous scaling of the local width, namely, asjze. Going back to real space, E8) implies, using Eq(7),
Family-Vicsek structure factor wit>1 and an intrinsically  the usual Family-Vicsek scaling forid) for G(/,t).
a.no_malous .DOWGI‘ Spectrum, and comment (?ﬂ the rglatlon t0 In the case of growth models generating Superrough sur-
similar scaling relations already proposed in the literaturgaces ¢>1), but with astructure factor fulfilling Family-
[9]. In Sec. Il we present numerical simulations of an ana-yicsek scalingthe integrals in Eq(7) are divergent in the
lytically solvable model which features intrinsic anomalous|imit /<t for L—, given the strong singularity at the
scaling independent of the value of its global roughness exorigin of integration. Taking the limir’<t* first for fixed
ponent . We show that the model has an intrinsically 3 |, one obtains
anomalous structure factor. Finally, we present some general
conclusions in Sec. IV. 22Dz g petMr<l

G20~ 220D <<t @D

Il. ANOMALOUS DYNAMIC SCALING

. : P : that comparing with Eq5) xi,c=1 andB, =8—1/z. In
A convenient way of investigating the scaling of a surface>° : g, Aloc o Ko
is to compute the height-difference correlation function the early time r_eg|ma ‘</<L, G(/,)~t™" As has
been remarked in Ref§8,14], the fact thaty,,. cannot ex-
G(/. 1) ={[h(7+X.t) = h(X,1)]2)5). 6 ceed 1 for sgperrough surface,@:ﬂ) isa purely geometric
(7 0=LIh(7+x.D=h(x.0 ) © property which follows from definition6). A very well-
This correlation function scales in the same way as th&nown example of the scalingll) is the so-called linear
square of the local widtiG(/,t)~w?2(/,t), and provides an Molecular beam epitaxy equati¢6,7].
alternative method to determine the critical exponents.
The complete dynamic scaling can also be obtained by B. Intrinsic anomalous scaling

studying the Fourier transform of the interface height in a There exist growth models —an example of which is dis-

system of linear size (see, e.g|1], and references thergin ¢ sqe in the following section, and see d8b— for which
h(k,t) =L~ %22 h(x,t) — h(t)Jexp(Kk-x). In this representa- the the structure factopresents an unconventional scaling
tion, the properties of the surface can be investigated byiot described by Family-Vicsel9). Let us consider a dy-
calculatinAg the structure factor or power spectrum,namic scaling form forS(k,t) as in Eq.(8) but with the
S(k,t)=(h(K,t)h(—K,t)} , which contains the same infor- scaling functionsg(u) replaced by

mation on the systerfil3] as the height-difference correla- 20 .

tion functionG(/,t) defined in Eq(6), both of them being u it u>1

related by SAlW™ yax+d u<i, (12
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where the labelA denotes intrinsic anomalous spectrum. G(/ 1) = /Xt 2kq( /[t (1~ 20)/2s) (16)
Here 6 is anewexponent which “measures” the anomaly in
the spectrum. In a system of sike Egs.(8), (12) hold only ) )
up to the saturation time(L)=L?, after which the system where the sg:;lmg function behavesgsl) ~ const. foru<1
sizeL replaces the correlation length? in all expressions. andg(u)~u~=Xfor u>1. It has been argued [9] that this
In particular, at saturation the structure factor depends ofc@ling behavior should be expected whenever large slopes
S(k,t)~L2%20-(2x*d)  As a consequence, the stationary develop on the surfacé¢thereby the tacit expectation of
spectrum shows severe finite size effects, to the extent that ¥~ 1) However, as seen abovand cf. Sec. Il), Eq. (12)
is not defined in the thermodynamic limit— . |mpI|-es Eq.(14) even wheny<1. psmg the hyperscaling

A scaling behavior such as Ed8), (12) for the structure  relationsz=2x+d, zs=2y,.+d valid for the conserved re-
factor does not affect the behavior of tjiebal width, which ~ 1axation rules of the models studi¢l], it can be seen that
preserves its Family-Vicsek formy(L,t) ~t# for t<LZand ~ K=Bs» Zs=2(1—2B,) and formula(16) becomes identical
W(L,t>L2)~LX. On the contrary, thiocal properties of the O the above Eq(14). ,
surface change dramatically $(k,t) scales as in Eq12). In view of th_e local sca}lmg, Eq.14), the structure factor
That can be seen by computing the height-difference correc@n P& conveniently rewritten as
lation function from Eg. (7), which as before gives
G(/,t)~t?# for times t</Z However, for intermediate t2x+d)z it ktl<1
times /?<t<L? the integral(7) now picks up a nontrivial
contribution from the behavior af,(u) at large arguments,
so that

S(k,t)~ Kk~ @xioct Dp20x—x00/2  jf  ktlz>1. a7

In this equation we can observe two interesting facts that
characterizéntrinsic anomalous scalingFirst, S(k>t~7,t)

—(2X10ct+ d) i —(2x+d)
Thus the complete scaling of the height-difference correlagecays ak” =Xee™7, and not following the k law

tion function(or, equivalently, the square of the local wiith charaptensnc of Famlly—Vlcsgk scahn@superrqughenmg
can be written as case included Second, there is an unconventional depen-

dence ofS(k>t~/,t) on time which leads to nonstationar-
28 if tY</<L ity of the structure factor. The combination of these two facts
allows us to distinguish between anomalous scaling due to
superrougheningx>1) and intrisic anomalous scaling.

G(/ )~/ x= 0200z (13

G(/ )~{ /2oet?Px if  /<tMP<L } = /2Xg, (/1£(1)),
/X 20 if <l <tYe

(14
IIl. NUMERICAL EXAMPLE: RANDOM
where&(t) ~tY# for t¥?<L, and&(t) =L for tY*>L. In Eq. DIFFUSION MODEL
(14), the local roughness and growth exponents are . . . . .
Xioe=X— 0, B, =61z=B— x1c/z, and the scaling function In this section we present numerical simulations of a par-
oC ’ * oC ]

ga(u) is not constant for small arguments, but behaves as ticular growth model in order to illustrate the theory we have

just discussed in the preceding section. We study a random
u2x—xed jf u<1l diffusion model in which one can tune the values of the
galu)~ u-2x (15 global exponenty, 8. We compare the exact solution of the
model with numerical integrations of the equation of motion.
By analyzing the structure factor, we will see that it consti-
tutes an excellent example of what we have termed intrinsic
anomalous scaling in the preceding section, independent of
the value ofy below or above one.
Let us consider the growth model in+11 dimensions
rovided by the stochastic diffusion equation with a random
iffusion coefficient

if u>1.

Note that, to derive Eqg14), (15), no use is made concern-
ing the value ofy below or above one.

The fact thatf+#0 in Eq. (12) yields a local roughness
exponenty,.# x and an anomalous growth exponegy
#0. Therefore there are nothree independent exponents
describing the scaling properties of the surface, whereas f(%
Family-Vicsek scalingeven in the presence of superrough-
ening there are only two. Contrary to the anomalous scaling
due to superroughening, where no relevant physics exists on dh(x,t) 9 d
small scalesp+0 implies nontrivial dynamics of the local Fram &( D(x)&h(x,t)) + 7(x,t). (18
fluctuations. The scaling behavi@t4) of the local width is
formally equivalent to that of superroughenitfgr that case
Xioc=1 and B, = 8—1/z), a fact which has produced some The diffusion coefficienD(x) >0 is distributed according to
confusion in previous works where both anomalies havehe probability densit;P(D)=N¢D*¢fc(D/DC), where the
been identified in some way. Nevertheless, some discretearametexp characterizes the intensity of the disordsy, is
models withy>1 have been studied in the context of epi- merely a normalization constant and the cutoff function is
taxial growth[9] in which the observed anomalous scaling of f.(y)=1 for y=<1 andf.(y)=0 fory>1. If $<0, disorder
G(/,t) has indeed been associated with an anomalous strugi the diffusion coefficient does not play any role and the
ture factor of the form(8), (12). Specifically, in those refer- Edwards-Wilkinsorf15] exponentsy= x o= 1/2, 8= 1/4 are
ences the following behavior has been proposed for theecovered. Thus the disorder is termedak On the con-
height-difference correlation function: trary, for strong disorder, 0<¢<1, the critical exponents
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X, B are disorder dependent through the valuegofFrom

now on, we will restrict ourselves to this latter nontrivial 03 1

case. —
There are two major features that make mod@) inter- = 07

esting. First, it is linear and can be solved exafil§,11]. As =

a consequence, exponents are dependent on the parafneter 3, -7

in a known way. Specifically, in the case of interest here C%

(0< ¢<1) it was shown irf11] that o 27

1 3 1 1 19 —
P9 Xaag Yz W e

T 05t

As we see, the global roughness exponemian take a con- i}

tinuous range of values fromp=1/2 to y=« when varying = _10

the intensity of disorder fromp=0 to 1. It is a curious 2,

property of model18) that x;,.= 1/2 remains constant when c% o=1/3

changing the intensity of the disorder, in contrast to the wide o o7

range of variation existing ity. This is a feature also found
for many models of rough epitaxial growt0]. -2.0
The second feature that adds to the interest of the random
diffusion model(198) is that, as shown in Ref11], it always
exhibits anomalous scaling for<0¢<1. Hence anomalous
scaling occurs for surfaces with roughness expogent as
well asfor those withy<<1. In particular, as seen above, the

a_momalgus growth exponept, is given by the scaling rela- having slopes—3/2 (dashedl and —1 (solid). For ¢=1/3 (lower
tion B, = B— Xioc/2, and from Eq(19) B, depends oRp &S ane) the data show a good collapse fpr=3/4, z=2.42. The

Bi=¢l(4—29). straight lines have slopes 0.25 (solid) and —0.75 (dashegl In
Let us take as examples the casepef2/3 and¢=1/3.  poth panels the scaling agrees with form(1a).

In the former, the above formulas vyielg=3/2>1 and
anomalous local width with3, =1/4. In the latter case IV. CONCLUSIONS

x=3/4<1, however, one still gets anomalous scaling with ) _ )

B, =1/10#0. All these exponent values are consistent with 1€ main conclusion of the present work is that anoma-
a numerical integration of Eq18), see[11]. We have deter- 10U scaling of rough surfaces is a more genesad inde-
mined the scaling functiog,(u) of the local width for these P€Ndent phenomenon than those cases associated with su-
two values of¢=2/3,1/3 through the data collapse shown in

Fig. 1, in which the above exponents have been used. For 8.0
both degrees of disordet=2/3 and 1/3, the corresponding

scaling functions we obtain are exactly of the form expected

1/2.1-0 2.0

010
log,, (I/t™)

FIG. 1. Data collapse of the local width for the random diffusion
model. In the upper panel)(= 2/3), the exponentg=3/2,z=4.08
have been used. The straight lines are plotted as a guide to the eye

a obA
o opA A
a opA

in the case of intrinsic anomalous scaling, Ef5), with §2-° I
Xioc=1/2, x=3/2, andy=3/4, respectively. o

Next we show that the anomalous scaling of the height- o °c °°
difference correlation for all values of 0¢<1 in the 107 6=2/3

present model is due to an intrinsically anomalous structure
factor. We have calculate®(k,t) in systems of sizes
L=16,...,512. Figure 2 shows our results for=128, and
200 realizations of the disorder. For both values of the dis-
order parameter ¢=2/3,1/3 the spectrum decays as 20t
k= (2xioc*1) (not ask~(?¥*1)) and is clearly shifted for differ-
ent times. This scaling behavior is the one in E), which

we associated in Sec. Il with that of growth models having
an intrinsic anomaly. This can be better appreciated when
collapsing the curves of Fig. 2 as shown in Fig. 3, which
displays theS(k,t) data collapses fop=2/3,1/3, and yields

a scaling functions,(u) with a form consistent with the 15 10 05 00 05

intrinsic anomalous form Ed12), andnot with the Family- log,, k

Vicsek one, Eq.(9) [17]. As we see, mode(18) clearly

shows that intrinsic anomalous power spectra induce anoma- FiG. 2. Structure factor of the random diffusion model for two
lous scaling of the height-difference correlation function gitferent degrees of the disorder and times1?, 3x 10, 5x 10,
equivalently the local widthboth in the case of a global 7x 102 9x10% Upper panel, results fop=2/3 (y=23/2). Lower
roughness exponent>1 (e.g., for¢=2/3) andin the case panel, data forp=1/3 (y=3/4). The shift in time reflects the in-
of x<1 (e.g., for¢=1/3). trinsic anomalous character of the scaling.

log,, S(k.t)
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4.0 - — instance, if instead of plottingv(/,t)//X vs //t** as rec-
ommended if10] and done here in Fig. 1 one chooses to
- 20t $=2/3 . represenw(/,t)/t? vs /1t as frequently done in the lit-
gf\_/ erature, one gets, in the Family-Vicsek case,
<z % ; const if //t¥>1
L WD L (20)
o tA (_) it //tte<1,
o tl/Z
- (o]
/ whereas for intrinsic anomalous scaling
— 201 6=13 ] PRNTY.
g,; o const if //t7*>1
q ' W(/’t)~ / x—0 / Xloc
X o0} ] th — = — if /lt2<1,
C‘Q' tl/Z tl/Z
R y ¢ . (21
2 20 o . . that is, in both cases there is data collapse with a very similar
-1.0 1.0 2.0

1z shape of the scaling function. However, the slopes of the

corresponding scaling functions for large arguments are dif-
o ferent. In the Family-Vicsek case, the slope coincides with
FIG. 3. Data collapse of the graphs in Fig. 2. The exponentshe yalue of the exponent assumed to achieve the collapse of
used for the collapse in the upper pangl<2/3) arex=3/2 and  ne gata. However, in the anomalous case it dugsThere-
z=4.08. The straight lines have slopes @s8lid) and 4(dashedl In - ¢0 it is crucial to check whether the slope of the scaling
the lower panel ¢=1/3) the exponents used for the collapse areg,ion does or does not coincide with the assumed expo-
X=3/4 andz=2.42. The straight lines have slopes @s6lid) and 1o “\ne pelieve this has not always been done when ana-
2.5(dashedl In both panels the scaling function is described by Eq.IyZing data from experiments and/or numerical simulations,
(2. and may have added to certain confusion existing in the lit-
perroughening. In this sense several issues associated wi ature in th((aj}dentlﬂcatlon qf umver_sa]ny c_Iasses]; Moreoye;,
anomalus scaling remain to be clarified. One of them is jtd"e Intermediate time regime existing in surfaces wit
relation and/or interplay with the phenomena of multifracta-anomalous scaling introduces difficulties in the evaluation of
lity and intermittency, known to take place in the superroughe)(ponents through _the common use of Iocal_ measurements
case[18,19. Moreover, we have seen that the intrinsic such as the_ Ioca_l W'dth' freque_ntly employed in expe_rlments
anomalous surfaces display a novel type of spectrum thus fa?rnd numerical S|ml_JIat|ons. This may Ieaq fo the assignment
not considered for self-affine geometries, which are usuall)?]c erroneous effective valugsee a discussion [rll]) to the_
defined as having a Family-Vicsek spectr(ig®]. An out- I(ixpo_?e(}t_s ofksfurfﬁf:es h);]plothesmed to behavz In the_smpfle
standing issue in this regard is to clarify the physical mean;[ham'ty' 'Csel, ashion, ‘;V lle a more aitrllurateh tt;scrlptlor]:tc;1
ing of the exponen®, as well as extending the currently elr true scafing properties may come through the use ot the
available renormalization group techniques to be able to Car'_inomalous scaling ansatz.
culate the value of this exponent. On the phenomenological
side, when performing experiments or interpreting numerical
simulations of discrete growth models, we believe the exis- We thank E. Moro and A. Sehez for discussions and
tence of intrinsic anomalous scaling is a very relevant issueencouragement and K. B. Lauritsen for a careful reading of
On one hand, in the presence of intrinsic anomalous scalinghe manuscript. J.M.L. acknowledges the Postdoctoral Po-
the various correlation functions behave somewhat similarlyyram of Universidad de Cantabria for support at Instituto de
to the Family-Vicsek case. However, there are important difFisica de Cantabria where most of this work has been done.
ferences. For instanc&(k,t) scalesask™ (®oc*1) andnot  R.C. also acknowledges warm hospitality at Instituto de Fi
ask™(x*1 the graphs ofv(l,t) andS(k,t) are shifted for  sica de Cantabria. This work has been supported by DGICyT
different times, etc. There do exist data collapses, but agaiof the Spanish Government under Project No. PB93-0054-
they are different from the usual Family-Vicsek type. For C02-02.
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