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Superroughening versus intrinsic anomalous scaling of surfaces
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We study kinetically rough surfaces which display anomalous scaling in local properties such as the rough-
ness or the height-difference correlation function. By studying the power spectrum of the surface and its
relation to the height-difference correlation, we distinguish two independent causes for anomalous scaling. One
is superroughening~global roughness exponent larger than or equal to 1!, even if the spectrum behaves
nonanomalously. Another cause is what we term an intrinsically anomalous spectrum, in whose scaling an
independent exponent exists, which induces different scaling properties for small and large length scales. We
show that in this case the surface does not need to be superrough in order to display anomalous scaling. The
scaling relations we propose for the structure factor and height-difference correlation for intrinsically anoma-
lous surfaces are shown to hold for a random diffusion equation, independently of the value of the global
roughness exponent below or above one.@S1063-651X~97!06910-9#

PACS number~s!: 05.40.1j, 05.70.Ln, 68.35.Fx
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I. INTRODUCTION

In recent years, an enormous amount of work has b
devoted to the study of the dynamics of growing surfa
@1–4#. Although in most cases the growth processes con
ered occur very far from equilibrium, it has been observ
that the surface fluctuations exhibit power law behavior si
lar to that found at second order transitions between equ
rium phases. For instance, if we measure the fluctuations
(d11)-dimensional interface by theglobal width

W~L,t !5Š^@h~xW ,t !2 h̄~ t !#2&xW
1/2

‹, ~1!

where^ &xW denotes spatial average over the whole subst
of sizeLd, h̄ (t)[^h(xW ,t)&xW is the average value of the heig
at timet, and^ & is an average over realizations of the nois
in many cases it is observed thatW(L,t) satisfies the dy-
namic scalingansatzof Family and Vicsek@5#,

W~L,t !5tx/zf „L/j~ t !…, ~2!

where the scaling functionf (u) behaves as

f ~u!;H const if u@1

ux if u!1.
~3!

The roughness exponentx characterizes the surface mo
phology in the stationary regime, in which the horizon
correlation lengthj(t);t1/z (z is the so-called dynamic ex
ponent! has reached a value larger than the system sizeL.
This happens for times larger than the saturation tim
t@ts(L), which scales withL as ts(L);Lz. The ratio
b5x/z is called the growth exponent and characterizes
short time behavior of the surface.

The existence of dynamic scaling is supposed to a
from the self-affine character of the interface. Scale inva
561063-651X/97/56~4!/3993~6!/$10.00
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ance implies that there is no characteristic length scale in
surface besides the system size, and thus all scales obe
same physics. In particular thelocal width measuring the
surface fluctuations over a window of sizel !L should scale
in the same way as Eq.~2!, hence

w~ l ,t !;H tb if t1/z!l

l x if l !t1/z.
~4!

Let us stress that this scaling behavior for thelocal width is
not guaranteed in general when Family-Vicsek scaling ho
for the global width~3!, since the self-affinity of the interface
is an additional independent condition.

Despite the success of the above scaling picture in
characterization of many growth models@1–4#, it has been
known that in the case of the so-calledsuperroughsurfaces,
i.e., for surfaces with a global roughness exponentx.1, the
usual assumption of the equivalence between the global
local descriptions of the surface is no longer valid@6–8#. In
these systems, the usual Family-Vicsek form~4! for the local
width has to be replaced by

w~ l ,t !;H tb if t1/z!l

l x loctb
* if l !t1/z!L

l x locLzb
* if l !L!t1/z,

~5!

wherex loc51 is the so-calledlocal roughness exponent an
b* 5(x2x loc)/z. This behavior has been termedanomalous
scalingin the literature@7,9# and lately different models hav
been studied in whichx loc andb* take values different from
1 andb21/z, respectively@10#. In the presence of anoma
lous scaling,x loc andx differ, hence not all length scales ar
equivalent in the system. The common understanding in
literature has been that anomalous scaling is related to
superrough character of the surfaces studied. However,
3993 © 1997 The American Physical Society
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recent paper@11# two of us have demonstrated that grow
models in whichx,1 may also exhibit an unconvention
scaling behavior with scaling relations between expone
similar to those in Eq.~5! @12#.

In this paper we complete the picture presented in R
@11#, showing that the mechanisms which lead to anomal
scaling behavior can be separated into two classes, acco
to the behavior of the structure factor or power spectrum
the surface,S(k,t), to be defined below. One of the mech
nisms is superroughening, which occurs whenS(k,t) has the
Family-Vicsek form but x.1. The second independen
mechanism corresponds to what we termintrinsic anomalous
scaling of the structure factor, where an independent ex
nent appears which measures the difference between
short and large length scale power laws, namely, the dif
ence between the local and global roughness exponentsx loc
andx. We will show how to identify the scaling by extrac
ing the independent critical exponents from the correlat
functions. Intrinsic anomalous scaling of the structure fac
has been already measured in some discrete growth mo
@9# relevant to epitaxial growth of surfaces. However, sin
all the surfaces studied featuredx.1, a clear distinction had
not been made concerning the origin of their anomalous s
ing, which had been implicitly associated with supe
roughness. Here we show that, on the contrary, surfaces
anomalous spectra display anomalous scalingno matterwhat
their value of the global roughness exponent is, eitherx.1
or x,1.

The paper is organized as follows. In Sec. II we pres
the two different shapes of the structure factor which c
give rise to anomalous scaling of the local width, namely
Family-Vicsek structure factor withx.1 and an intrinsically
anomalous power spectrum, and comment on the relatio
similar scaling relations already proposed in the literat
@9#. In Sec. III we present numerical simulations of an an
lytically solvable model which features intrinsic anomalo
scaling independent of the value of its global roughness
ponent x. We show that the model has an intrinsica
anomalous structure factor. Finally, we present some gen
conclusions in Sec. IV.

II. ANOMALOUS DYNAMIC SCALING

A convenient way of investigating the scaling of a surfa
is to compute the height-difference correlation function

G~ l ,t !5Š^@h~ lW 1xW ,t !2h~xW ,t !#2&xW‹. ~6!

This correlation function scales in the same way as
square of the local width,G(l ,t);w2(l ,t), and provides an
alternative method to determine the critical exponents.

The complete dynamic scaling can also be obtained
studying the Fourier transform of the interface height in
system of linear sizeL ~see, e.g.,@1#, and references therein!,

ĥ(kW ,t)5L2d/2(xW@h(xW ,t)2 h̄ (t)#exp(ikW•xW). In this representa-
tion, the properties of the surface can be investigated
calculating the structure factor or power spectru

S(k,t)5^ĥ(kW ,t)ĥ(2kW ,t)& , which contains the same infor
mation on the system@13# as the height-difference correla
tion functionG(l ,t) defined in Eq.~6!, both of them being
related by
ts
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G~ l ,t !}E ddkW

~2p!d
@12cos~kW•lW !#S~k,t !, ~7!

where the momentum integral is limited to 2p/L<k<p/a
and represents a continuum approximation to the sum o
the discrete set of modes. In a discrete growth model,a is
identified with the lattice spacing.

A. Superroughening

When expressed in terms of the structure factor, Fam
Vicsek scaling reads

S~k,t !5k2~2x1d!sFV~kt1/z!, ~8!

with sFV the following scaling function:

sFV~u!;H const if u@1

u2x1d if u!1.
~9!

Indeed, Eqs.~8! and~9! can easily be seen to be equivalent
Eqs. ~2! and ~3!, by noting that the global width is nothing
but the integral ofS(k,t), i.e.,

W2~L,t !5
1

Ld(
kW

S~k,t !5E ddkW

~2p!d
S~k,t !. ~10!

Note as well that Eq.~9! implies that, forkt1/z@1, the spec-
trum doesnot depend on time, and hence at saturati
(t1/z@L), S(k,t) is a pure power law independent of syste
size. Going back to real space, Eq.~9! implies, using Eq.~7!,
the usual Family-Vicsek scaling form~4! for G(l ,t).

In the case of growth models generating superrough
faces (x.1), but with astructure factor fulfilling Family-
Vicsek scaling, the integrals in Eq.~7! are divergent in the
limit l !t1/z for L→`, given the strong singularity at th
origin of integration. Taking the limitl !t1/z first for fixed
a, L, one obtains

G~ l ,t !;H l 2t2~x21!/z if l !t1/z!L

l 2L2~x21! if l !L!t1/z,
~11!

so that comparing with Eq.~5! x loc51 andb* 5b21/z. In
the early time regimet1/z!l !L, G(l ,t);t2x/z. As has
been remarked in Refs.@8,14#, the fact thatx loc cannot ex-
ceed 1 for superrough surfaces (x.1) is a purely geometric
property which follows from definition~6!. A very well-
known example of the scaling~11! is the so-called linear
molecular beam epitaxy equation@6,7#.

B. Intrinsic anomalous scaling

There exist growth models —an example of which is d
cussed in the following section, and see also@9#— for which
the the structure factorpresents an unconventional scalin
not described by Family-Vicsek~9!. Let us consider a dy-
namic scaling form forS(k,t) as in Eq. ~8! but with the
scaling functionsFV(u) replaced by

sA~u!;H u2u if u@1

u2x1d if u!1,
~12!
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where the labelA denotes intrinsic anomalous spectru
Hereu is anewexponent which ‘‘measures’’ the anomaly
the spectrum. In a system of sizeL, Eqs.~8!, ~12! hold only
up to the saturation timets(L)5Lz, after which the system
sizeL replaces the correlation lengtht1/z in all expressions.
In particular, at saturation the structure factor depends
S(k,t);L2uk2u2(2x1d). As a consequence, the stationa
spectrum shows severe finite size effects, to the extent th
is not defined in the thermodynamic limitL→`.

A scaling behavior such as Eqs.~8!, ~12! for the structure
factor does not affect the behavior of theglobal width, which
preserves its Family-Vicsek form,W(L,t);tb for t!Lz and
W(L,t@Lz);Lx. On the contrary, thelocal properties of the
surface change dramatically ifS(k,t) scales as in Eq.~12!.
That can be seen by computing the height-difference co
lation function from Eq. ~7!, which as before gives
G(l ,t);t2b for times t!l z. However, for intermediate
times l z!t!Lz the integral~7! now picks up a nontrivial
contribution from the behavior ofsA(u) at large arguments
so that

G~ l ,t !;l 2~x2u!t2u/z. ~13!

Thus the complete scaling of the height-difference corre
tion function~or, equivalently, the square of the local widt!
can be written as

G~ l ,t !;H t2b if t1/z!l !L

l 2x loct2b
* if l !t1/z!L

l 2x locL2u if l !L!t1/z
J 5l 2xgA„l /j~ t !…,

~14!

wherej(t);t1/z for t1/z!L, andj(t)5L for t1/z@L. In Eq.
~14!, the local roughness and growth exponents
x loc5x2u, b* 5u/z5b2x loc /z, and the scaling function
gA(u) is not constant for small arguments, but behaves a

gA~u!;H u22~x2x loc! if u!1

u22x if u@1.
~15!

Note that, to derive Eqs.~14!, ~15!, no use is made concern
ing the value ofx below or above one.

The fact thatuÞ0 in Eq. ~12! yields a local roughnes
exponentx locÞx and an anomalous growth exponentb*
Þ0. Therefore there are nowthree independent exponent
describing the scaling properties of the surface, whereas
Family-Vicsek scaling~even in the presence of superroug
ening! there are only two. Contrary to the anomalous scal
due to superroughening, where no relevant physics exist
small scales,uÞ0 implies nontrivial dynamics of the local
fluctuations. The scaling behavior~14! of the local width is
formally equivalent to that of superroughening~for that case
x loc51 andb* 5b21/z), a fact which has produced som
confusion in previous works where both anomalies ha
been identified in some way. Nevertheless, some disc
models withx.1 have been studied in the context of ep
taxial growth@9# in which the observed anomalous scaling
G(l ,t) has indeed been associated with an anomalous s
ture factor of the form~8!, ~12!. Specifically, in those refer
ences the following behavior has been proposed for
height-difference correlation function:
.
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G~ l ,t !5l 2x loct2kg~ l /t ~122k!/zS!, ~16!

where the scaling function behaves asg(u);const. foru!1
andg(u);u22x for u@1. It has been argued in@9# that this
scaling behavior should be expected whenever large slo
develop on the surface~thereby the tacit expectation o
x.1). However, as seen above~and cf. Sec. III!, Eq. ~12!
implies Eq. ~14! even whenx,1. Using the hyperscaling
relationsz52x1d, zS52x loc1d valid for the conserved re
laxation rules of the models studied@9#, it can be seen tha
k5b* , zS5z(122b* ) and formula~16! becomes identica
to the above Eq.~14!.

In view of the local scaling, Eq.~14!, the structure factor
can be conveniently rewritten as

S~k,t !;H t ~2x1d!/z if kt1/z!1

k2~2x loc1d!t2~x2x loc!/z if kt1/z@1.
~17!

In this equation we can observe two interesting facts t
characterizeintrinsic anomalous scaling. First,S(k@t21/z,t)
decays ask2(2x loc1d), and not following the k2(2x1d) law
characteristic of Family-Vicsek scaling~superroughening
case included!. Second, there is an unconventional depe
dence ofS(k@t21/z,t) on time which leads to nonstationa
ity of the structure factor. The combination of these two fa
allows us to distinguish between anomalous scaling due
superroughening (x.1) and intrisic anomalous scaling.

III. NUMERICAL EXAMPLE: RANDOM
DIFFUSION MODEL

In this section we present numerical simulations of a p
ticular growth model in order to illustrate the theory we ha
just discussed in the preceding section. We study a rand
diffusion model in which one can tune the values of t
global exponentsx, b. We compare the exact solution of th
model with numerical integrations of the equation of motio
By analyzing the structure factor, we will see that it cons
tutes an excellent example of what we have termed intrin
anomalous scaling in the preceding section, independen
the value ofx below or above one.

Let us consider the growth model in 111 dimensions
provided by the stochastic diffusion equation with a rand
diffusion coefficient

]h~x,t !

]t
5

]

]xS D~x!
]

]x
h~x,t ! D1h~x,t !. ~18!

The diffusion coefficientD(x).0 is distributed according to
the probability densityP(D)5NfD2f f c(D/Dc), where the
parameterf characterizes the intensity of the disorder.Nf is
merely a normalization constant and the cutoff function
f c(y)51 for y<1 andf c(y)50 for y.1. If f,0, disorder
in the diffusion coefficient does not play any role and t
Edwards-Wilkinson@15# exponentsx5x loc51/2,b51/4 are
recovered. Thus the disorder is termedweak. On the con-
trary, for strong disorder, 0,f,1, the critical exponents
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x,b are disorder dependent through the value off. From
now on, we will restrict ourselves to this latter nontrivi
case.

There are two major features that make model~18! inter-
esting. First, it is linear and can be solved exactly@16,11#. As
a consequence, exponents are dependent on the paramef
in a known way. Specifically, in the case of interest he
(0,f,1) it was shown in@11# that

b5
1

2~22f!
, x5

1

2~12f!
, x loc5

1

2
. ~19!

As we see, the global roughness exponentx can take a con-
tinuous range of values fromx51/2 to x5` when varying
the intensity of disorder fromf50 to 1. It is a curious
property of model~18! thatx loc51/2 remains constant whe
changing the intensity of the disorder, in contrast to the w
range of variation existing inx. This is a feature also found
for many models of rough epitaxial growth@10#.

The second feature that adds to the interest of the ran
diffusion model~18! is that, as shown in Ref.@11#, it always
exhibits anomalous scaling for 0,f,1. Hence anomalous
scaling occurs for surfaces with roughness exponentx.1 as
well asfor those withx,1. In particular, as seen above, th
anomalous growth exponentb* is given by the scaling rela
tion b* 5b2x loc /z, and from Eq.~19! b* depends onf as
b* 5f/(422f).

Let us take as examples the cases off52/3 andf51/3.
In the former, the above formulas yieldx53/2.1 and
anomalous local width withb* 51/4. In the latter case
x53/4,1, however, one still gets anomalous scaling w
b* 51/10Þ0. All these exponent values are consistent w
a numerical integration of Eq.~18!, see@11#. We have deter-
mined the scaling functiongA(u) of the local width for these
two values off52/3,1/3 through the data collapse shown
Fig. 1, in which the above exponents have been used.
both degrees of disorderf52/3 and 1/3, the correspondin
scaling functions we obtain are exactly of the form expec
in the case of intrinsic anomalous scaling, Eq.~15!, with
x loc51/2, x53/2, andx53/4, respectively.

Next we show that the anomalous scaling of the heig
difference correlation for all values of 0,f,1 in the
present model is due to an intrinsically anomalous struc
factor. We have calculatedS(k,t) in systems of sizes
L516, . . .,512. Figure 2 shows our results forL5128, and
200 realizations of the disorder. For both values of the d
order parameter f52/3,1/3 the spectrum decays a
k2(2x loc11) ~not ask2(2x11)) and is clearly shifted for differ-
ent times. This scaling behavior is the one in Eq.~17!, which
we associated in Sec. II with that of growth models hav
an intrinsic anomaly. This can be better appreciated w
collapsing the curves of Fig. 2 as shown in Fig. 3, whi
displays theS(k,t) data collapses forf52/3,1/3, and yields
a scaling functionsA(u) with a form consistent with the
intrinsic anomalous form Eq.~12!, andnot with the Family-
Vicsek one, Eq.~9! @17#. As we see, model~18! clearly
shows that intrinsic anomalous power spectra induce ano
lous scaling of the height-difference correlation function~or
equivalently the local width! both in the case of a globa
roughness exponentx.1 ~e.g., forf52/3) and in the case
of x,1 ~e.g., forf51/3).
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IV. CONCLUSIONS

The main conclusion of the present work is that anom
lous scaling of rough surfaces is a more general~and inde-
pendent! phenomenon than those cases associated with

FIG. 1. Data collapse of the local width for the random diffusi
model. In the upper panel (f52/3), the exponentsx53/2, z54.08
have been used. The straight lines are plotted as a guide to the
having slopes23/2 ~dashed! and 21 ~solid!. For f51/3 ~lower
panel!, the data show a good collapse forx53/4, z52.42. The
straight lines have slopes20.25 ~solid! and 20.75 ~dashed!. In
both panels the scaling agrees with formula~15!.

FIG. 2. Structure factor of the random diffusion model for tw
different degrees of the disorder and timest5102, 33102, 53102,
73102, 93102. Upper panel, results forf52/3 (x53/2). Lower
panel, data forf51/3 (x53/4). The shift in time reflects the in
trinsic anomalous character of the scaling.
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perroughening. In this sense several issues associated
anomalus scaling remain to be clarified. One of them is
relation and/or interplay with the phenomena of multifrac
lity and intermittency, known to take place in the superrou
case @18,19#. Moreover, we have seen that the intrins
anomalous surfaces display a novel type of spectrum thu
not considered for self-affine geometries, which are usu
defined as having a Family-Vicsek spectrum@20#. An out-
standing issue in this regard is to clarify the physical me
ing of the exponentu, as well as extending the current
available renormalization group techniques to be able to
culate the value of this exponent. On the phenomenolog
side, when performing experiments or interpreting numer
simulations of discrete growth models, we believe the ex
tence of intrinsic anomalous scaling is a very relevant iss
On one hand, in the presence of intrinsic anomalous sca
the various correlation functions behave somewhat simila
to the Family-Vicsek case. However, there are important
ferences. For instance,S(k,t) scalesask2(2x loc11), andnot
ask2(2x11), the graphs ofw( l ,t) andS(k,t) are shifted for
different times, etc. There do exist data collapses, but ag
they are different from the usual Family-Vicsek type. F

FIG. 3. Data collapse of the graphs in Fig. 2. The expone
used for the collapse in the upper panel (f52/3) arex53/2 and
z54.08. The straight lines have slopes 2.2~solid! and 4~dashed!. In
the lower panel (f51/3) the exponents used for the collapse a
x53/4 andz52.42. The straight lines have slopes 0.6~solid! and
2.5 ~dashed!. In both panels the scaling function is described by E
~12!.
d

n-
ith
s
-
h

ar
ly

-

l-
al
l
-

e.
g

ly
f-

in
r

instance, if instead of plottingw(l ,t)/l x vs l /t1/z as rec-
ommended in@10# and done here in Fig. 1 one chooses
representw(l ,t)/tb vs l /t1/z as frequently done in the lit-
erature, one gets, in the Family-Vicsek case,

w~ l ,t !

tb
;H const if l /t1/z@1

S l

t1/zD x

if l /t1/z!1,
~20!

whereas for intrinsic anomalous scaling

w~ l ,t !

tb
;H const if l /t1/z@1

S l

t1/zD x2u

5S l

t1/zD x loc

if l /t1/z!1,

~21!

that is, in both cases there is data collapse with a very sim
shape of the scaling function. However, the slopes of
corresponding scaling functions for large arguments are
ferent. In the Family-Vicsek case, the slope coincides w
the value of the exponent assumed to achieve the collaps
the data. However, in the anomalous case it doesnot. There-
fore it is crucial to check whether the slope of the scali
function does or does not coincide with the assumed ex
nents. We believe this has not always been done when
lyzing data from experiments and/or numerical simulatio
and may have added to certain confusion existing in the
erature in the identification of universality classes. Moreov
the intermediate time regime existing in surfaces w
anomalous scaling introduces difficulties in the evaluation
exponents through the common use of local measurem
such as the local width, frequently employed in experime
and numerical simulations. This may lead to the assignm
of erroneous effective values~see a discussion in@11#! to the
exponents of surfaces hypothesized to behave in the sim
Family-Vicsek fashion, while a more accurate description
their true scaling properties may come through the use of
anomalous scaling ansatz.

ACKNOWLEDGMENTS

We thank E. Moro and A. Sa´nchez for discussions an
encouragement and K. B. Lauritsen for a careful reading
the manuscript. J.M.L. acknowledges the Postdoctoral
gram of Universidad de Cantabria for support at Instituto
Fı́sica de Cantabria where most of this work has been do
R.C. also acknowledges warm hospitality at Instituto de´-
sica de Cantabria. This work has been supported by DGIC
of the Spanish Government under Project No. PB93-00
C02-02.

ts

.

@1# A.-L. Barabási and H. E. Stanley,Fractal Concepts in Surface
Growth ~Cambridge University Press, Cambridge, Englan
1995!.

@2# J. Krug and H. Spohn, inSolids Far From Equilibrium, edited
by C. Godre´che~Cambridge University Press, Cambridge, E
gland, 1991!.
,
@3# P. Meakin, Phys. Rep.235, 189 ~1993!.
@4# T. Halpin-Healey and Y.-C. Zhang, Phys. Rep.254, 215

~1995!.
@5# F. Family and T. Vicsek, J. Phys. A18, L75 ~1985!.
@6# J. Amar, P.-M. Lam, and F. Family, Phys. Rev. E47, 3242

~1993!.



. E

ys

a
y

e
l-
ll.

fine
ys.

er.

ab-
rt in

s
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