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Dynamics of low-dimensional dipolar systems
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Department of Physics, University of Central Florida, Orlando, Florida 32816
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Time decays of low-dimensional magnetic dipoles with anisotropic energy barriers were studied theoreti-
cally. We found that the dynamic behaviors are interaction specific. For a chain with ferromagnetic coupling,
a single mode dominates and the decay is essentially exponential. For antiferromagnetic coupling, the dynam-
ics can be characterized by two distinct groups of time scales. The spectrum results in a plateau in the decay
of remanent magnetization. This novel behavior differs from the prediction of the mean-field theory. For a
two-dimensional rectangular lattice, a transition between the bimodal decay and a quasilogarithmic decay
occurs when the ratio of length to width varies.@S1063-651X~97!06310-1#
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I. INTRODUCTION

Although slow relaxation is a universal phenomenon
complex systems such as glasses@1,2#, spin glasses@3,4#,
and disordered materials in general, microscopic mec
nisms that govern general features observed in diverse
tems are still poorly understood. Recent experiments on
dynamic susceptibilities@5# and magnetizations@6# of frozen
ferrofluids demonstrated that the dipole interaction betw
magnetic particles has a dramatic influence on the dynam
of the system and the effect might be accounted for
simple laws. Inspired by this work, it is our motivation
study dynamics based on similar dipolar systems.

For a noninteracting system, the decay of a physical qu
tity q(t) towards equilibrium can be described by a simp
exponential@7#. The time scale of the decay is described
a relaxation timet. It has been suggested that the nonex
nential decay is associated with the frustrated interaction
disorder, which leads to a broad distribution of relaxati
times @8#. Taking this distribution into account, the time d
pendence can be described by

q~ t !5E
0

`

w~t!exp~2t/t!dt, ~1!

wherew(t) is the distribution function fort. To incorporate
the effect of correlation in strong interacting systems, a h
archy among relaxation channels has been introduced@9#.
However, since such an approach is phenomenologica
nature, it provides no obvious link to the microscopic orig
of the distribution,w(t).

Microscopic understanding of the cooperative dynam
can be achieved through the study of various models@10–14#
which usually introduce specific transition rates. For e
ample, in dynamics for the Ising model, the transition r
for a spins to flip into 2s is chosen as@10,14#
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W~s→2s!5
1

2t0
@12s tanh~bH !#, ~2!

wheret0 is a characteristic time scale,b the Boltzmann fac-
tor, and H the effective field on the spins. Glauber has
succeeded in solving the one-dimensional case of Eq.~2! for
quantum spins exactly and great insight is obtained about
complex cooperative dynamics in interacting systems@10#.

The choice of transition rate depends on the specific s
tem studied. For classical system with an anisotropy barr
Néel’s flipping transition rate@15# is often used:

W~s→2s!5
1

t0
expF2bEbS 11

sH

2Eb
D 2G , ~3!

where Eb is the activation barrier. Equation~3! is well
known in the study of the relaxation process of magnetic fi
particle systems and has recently been used in the inves
tion of magnetic remanence of perpendicular media@16–19#.
A mean-field version of Eq.~3!, with no disorder assumed, i
able to reproduce the quasilogarithmic decay observed
perpendicular film media@17#. This is a clear indication tha
a broad spectrum of time scales, as implied by quasilogar
mic law, can exist in a uniform interacting system.

The present work addresses the dynamics of o
dimensional~1D! dipole rings based on Ne´el’s theory of flip-
ping transition in Eq.~3!. For antiferromagnetic coupling, th
model displays a novel bimodal relaxation, characteristica
different from the prediction of mean-field theory. Althoug
not reported experimentally yet, we stress that the phen
ena are observable in real perpendicular media under pr
conditions, as demonstrated by our Monte Carlo simulati
for the film geometry. In Sec. II we will describe our mod
and methods. Our model is based on a real system of su
paramagnetic fine particles similar to the ones in Ref.@5#.
The system had been suggested as a model for studying
glass transition@20#. The geometric arrangements includ
ferromagnetic chains with periodic boundary condition, an
ferromagnetic rings in which the spin orientations are p
pendicular to the plane on which they reside, and films
rectangular lattices with antiferromagnetic couplings. T
methods involve solving eigenproblems for smaller syste
and dynamic Monte Carlo simulations on large systems. T

i-
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56 3987DYNAMICS OF LOW-DIMENSIONAL DIPOLAR SYSTEMS
discussion of the results will be presented in Sec. III. O
calculations indicate that for a chain structure, unlike
Glauber model where the total magnetization always dec
exponentially, a distinction exists between ferromagnetic
antiferromagnetic chains. While ferromagnetic chains d
play a quasiexponential decay of remanence, the antife
magnetic chains show a more complex behavior. At la
antiferromagnetic couplings, the relaxation channels are
regated into two groups each with distinct time scales an
a result, a plateau in the decay of remanence appears.
Monte Carlo simulation suggests that inclusion of far-aw
neighbors does not modify our results significantly in o
dimension. Thus the features should be characteristic of
chain structure. For an antiferromagnetic square lattice, a
modal decay is observed if only nearest-neighbor interac
is considered. However, long-ranged interaction plays a v
important role in 2D by smearing the plateaus into a conti
ous quasilogarithmic decay. For films with rectangular l
tice, a transition between the bimodal decay and a quasilo
rithmic decay is predicted when the ratio of length to wid
varies. Experimental possibility of observing the effect
discussed.

II. THE MODEL

Our model is based on the frozen ferrofluids studied
Ref. @5#. It consists of single domained particles with a si
of 100 Å. Each particle has a magnetic moment for tempe
ture below the Curie point which tends to align with the ea
axis @5,6,21,22#. For simplicity, we assume that the applie
magnetic fieldH is along the easy axis, and the energy
each particle obeys@7,15,17#

E5KV sin2u2mH cosu, ~4!

where K is the anisotropic energy constant,V and m the
volume and the magnetic moment of the particle, resp
tively, andu the angle between the magnetization and e
axis. The local minima of Eq.~1! are atu50 andp. Thus
the moment of each particle is equivalent to that of a tw
level system. As a result, the moment can also be represe
by a variables5cosu, taking only two valuess51,21 for
u50,p. Thermal flipping of magnetization betweenu50
andp across an energy barrier occurs at a frequency obe
Néel’s formula @15#:

W~s→2s!5n0expF2
KV

kBT S 11
mHs

2KV D 2G , ~5!

where W is the transition probability of flipping from one
state to another in unit time, andn0 is the characteristic
frequency of the system at high temperature which has b
suggested by Ne´el @15# and confirmed by experiment@5# as
109 Hz. IdentifyingKV asEb , W has the exact form of Eq
~3!. Here the effective magnetic field comes from the ma
netic dipole-dipole interaction between particles:

HW 53rW i j ~rW i j •mW j !/r i j
5 2mW j /r i j

3 , ~6!

whererW i j is the vector of separation between particlesi and
j .
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First we consider a chain ofN equal-spaced particles wit
easy axes all parallel. The bond angleb, the angle between
rW i j and the easy axes, takes two values, 0 andp/2, which
correspond to ferromagnetic and antiferromagnetic coupl
respectively@23#. Periodic boundaries are imposed and on
the nearest-neighbor interaction is considered. Scaling t
by n0

21 and the energy by anisotropy energyKV, we have

W~s i→2s i !5expF2T21S 11
Js i~s i 211s i 11!

2 D 2G ,
~7!

where T5kBTunscaled(KV)21 and J52m2(KVr3)21,
2m2(KVr3)21 for b50,p/2. r is the separation betwee
particles. For a one-dimensional system with Ising-like s
variable and nearest-neighbor interaction, it has been sh
by Glauber that the general form of transition probability
@10#

W~s i→2s i !5 1
2 a$11ds i 21s i 11

2 1
2 g~11d!s i~s i 211s i 11!%, ~8!

where g5tanh(2J/T) is determined from detailed balanc
condition.a andd, however, cannot be determined witho
further specifying the system. In Eq.~8!, if we define

a5exp~21/T!@11exp~2J2/T!cosh~2J/T!#,

d5
exp~2J2/T!cosh~2J/T!21

exp~2J2/T!cosh~2J/T!11
, ~9!

then Eqs.~7! and~8! are the same. Glauber obtained analy
cal solution of Eq.~8! only for d50; the resulting decay o
the total magnetization is a simple exponential@10#. In the
present case,d is nonzero.

The dynamic evolution of the system is governed by
stochastic master equation:

d

dt
p~s1•••sN ,t !52(

i
W~s i→2s i !p~s1•••s i•••sN ,t !

1(
i

W~2s i→s i !

3p~s1•••2s i•••sN ,t !, ~10!

wherep(s1•••sN ,t) is the probability that the spins take o
the set of values (s1•••sN) at time t. With d nonzero, the
analytic solution of Eq.~10! is impossible for arbitraryN.
For smallN, however, it is possible to solve its eigenmod
numerically. To eliminate nonmagnetic modes which d
scribe deviation from equilibrium without change of magn
tization, we observe from Eq.~10! that

d

dt
^s i 1

•••s i k
&522^s i 1

•••s i k
@W~s i 1

→2s i 1
!

1•••1W~s i k

→2s i k
!#&, ~11!
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3988 56J. M. SUN AND WEILI LUO
where^A&5(s1•••sN
A(s)p(s1•••sN ,t) denotes the expec

tation value ofA at time t. In particular, magnetization is
M5( i 51

N ^s i&. Using Eq. ~11!, one-spin functions such a
M5( i 51

N ^s i& will be coupled to three-spin functions such
G315( i 51

N ^s i 21s is i 11&, which will in turn be coupled to
other spin correlation functions. The process will be tru
cated automatically as the correlation functions approach
size of the chain. In this way, a much smaller eigensystem
obtained. ForN510, we have a 34334 matrix, compared to
the otherwise 102431024 matrix from the original maste
equation. The complete sets of matrix elements are obta
in this way forN<10.

Systems of longer chains (N;10 000) and film geometry
can be explored by Monte Carlo simulation. The effect
long-ranged interaction is also investigated. For film str
ture, we consider a rectangular lattice with easy axis of
particles normal to the plane. This introduces an antifer
magnetic coupling among particles. We adopt the algorit
2 of Binder@24#, which may be summarized as follows. F
an assembly ofN particles, the transition rate of the syste
R is defined as the probability per unit time that a flippi
occurs, which is equal to the sum of transition rate of in
vidual particleW(s i):

R5(
i

W~s i !. ~12!

The probability that the earliest flipping occurs betweent
and t1dt for the i th spin is

Pi~ t !dt5W~s i !exp~2Rt!dt. ~13!

In practice, this is realized through the following steps.
~1! Set t50.
~2! Samplet i for each spin according to the distributio

W( i )exp@2W(i)t#.
~3! Set t5t1min$ti%, in which a particular spin is chose

according totn5min$ti%.
~4! Spin n is allowed to flip.
~5! Steps~2!–~4! are repeated.
The algorithm is very efficient for dynamic process i

volving time scales much longer than the basic unit sc
n0

21.
All our calculations involve the remanent decay@25#. The

spins are initially up in the presence of a saturation field. T
field is removed att50 and the decay begins. The norma
ized magnetization is

m~ t !5
M ~ t !

M ~0!
5N21(

i 51

N

^s i&5 (
k51

l

wkexp~2lkt !,

~14!

wherelk is the eigenfrequency of channelk and for finite
system the integral overt in Eq. ~1! is replaced by a sum
mation over discrete channelk. The nonlinear relaxation
time tnl is defined as@11,12#

tnl5E
0

`

dt m~ t !5 (
k51

l

wktk , ~15!

wheretk5lk
21 is the relaxation time of channelk.
-
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III. RESULTS AND DISCUSSION

A. Analytical results for N51,2,3

For the cases ofN51,2, time decays are easily calculate
from Eqs. ~5!, ~9!, and ~10! and are shown to be simpl
exponential:m(t)5e2lt. For N51, l52e21/T. For N52,
l52 exp@2T21(11J/2)2#. Here the interaction simply in-
creases the relaxation timet5l21 for ferromagnetic cou-
pling J.0 and decreases the relaxation timet for antiferro-
magnetic couplingJ,0. ForN>3, the dynamics is complex
We begin with the case ofN53. The case can be reduced
a 232 eigenproblem and is exactly solvable. The soluti
exhibits important features of bimodal decay which pers
even for largeN.

For three particles, uses of Eq.~11! on ^s i& and
^s i 21s is i 11& produce two coupled equations relatingM
5( i^s i& andG5( i^s i 21s is i 11&:

d

dat S M
G D5S 211g~11d! 2d

3@g~11d!2d# 23D S M
G D . ~16!

Eigenvalues and eigenvectors can be easily computed
this set of equations. To determinewk for the remanent de-
cay, we note that att50, (G

M)u t505(3
3). This can be ex-

pressed as a linear combination of right eigenvectors. In
way, we find

l1,25a/2@42g~11d!6U#,

w1,25
1
2 $16U21@2d222g~11d!#%,

U5A@42g~11d!#2212~12g!~12d2!. ~17!

Now suppose that interactionuJu is larger than thermal en
ergy but both are smaller than anisotropic energyKV. Then
we have 2uJu/T.1, exp(22uJu/T)!1, and exp(2J2/T);1.
Using Eq.~9! and to the leading term ofO@exp(22uJu/T)#, we
have forJ.0,

l1'exp@2~12J!2/T#,

l2'12 exp@2~114J!/T#,

w1'0,

w2'1, ~18a!

and forJ,0,

l1'3 exp@2~12uJu!2/T#,

l2'4 exp~21/T!,

w1' 2
3 2 4

9 exp@2~2uJu2J2!/T#,

w2' 1
3 1 4

9 exp@2~2uJu2J2!/T#. ~18b!

An important difference is observed in dynamics betwe
ferromagnetic and antiferromagnetic coupling from Eq
~18a! and ~18b!. For J.0, the slower channel has near
100% weight and is thus dominant. The corresponding de
can be approximated as simple exponential with a relaxa
time t25l2

21 which increases exponentially withJ. On the
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56 3989DYNAMICS OF LOW-DIMENSIONAL DIPOLAR SYSTEMS
other hand, forJ,0, the two channels of decay are comp
rable and the dynamics will be characterized by two ti
scalest1 andt2 . While the shorter timet1 decreases expo
nentially with increasinguJu, the longer timet2 is nearly
fixed. At large uJu, w1 and w2 approach their asymptoti
values of2

3 and 1
3 , respectively. In this limit,t2@t1 and the

nonlinear relaxation time is@see Eq.~15!#

tnl'w2t2'~1/12!exp~1/T! ~19!

independent ofJ. In Fig. 1, w1 and w2 are plotted as a
function of J at TB , the blocking temperature of a sing
magnetic dipole.~TB50.04, or in real dimensionKV/kBT5
25.! From Fig. 1, we see that the dominance of the slow
channel over the faster channel is established for the e
range of ferromagnetic couplingJ.0.

B. Numerical results for 3<N<10

The above features are typical of the dynamics for ch
structures. ForN larger than 3 and for large antiferroma
netic couplings, the bimodal character remains. By using
~11! for various correlation functions,t i5l i

21 andwi can be
determined numerically by solving the matrix for eigenv
ues. For 3,N,10, the time decay of the remanence
trivial for the ferromagnetic coupling—the dominant chann
accounts for over 96% of the total weight. This results fro
the fact that, at the early stage, the remanence rela
through the slowest channel, i.e., the longest time scale
contrast, for antiferromagnetic coupling, the shortest ti
scale is responsible for the initial decay and a two-chan
decay is observed.

A spectrum for antiferromagnetic coupling atN510 and
different J is shown in Fig. 2. A prominent feature of th
spectrum is its two distinct channels—the fast and the s
modes. With increasinguJu, the fast modes shift toward
small t while the slow modes are nearly fixed in weight a
relaxation timet, insensitive to the variation ofuJu. This
indicates that most spin flips occur around two distinct ti
scales:t1,t2 and a plateau in between. In Fig. 3, decays
remanent magnetizations for differentN at T50.04 andJ
520.32 are plotted. After the sudden drop at the early tim
each system retains a finite residual magnetizationmr ,

FIG. 1. The distribution of two relaxation channelsw1 andw2

as a function of coupling strengthJ ~J.0, ferromagnetic coupling
and J,0, antiferromagnetic coupling! for N53, and the blocking
temperatureTB50.04.
-
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which does not decay until a much later time that represe
the free relaxation of a single particle. In large coupli
limit, similar to N53, we havet2@t1 and the nonlinear
relaxation time is

tnl'mrt2 ~20!

independent ofJ and solely determined by the slower tim
scale. The only exception is forN54 where only a group of
two fast modes is found.

We interpret the bimodal feature in the following wa
There are two distinct time scales,t1!t2 , wheret1 corre-
sponds to the flip time of a spin under the influence of

FIG. 2. The distribution of relaxation channels versust i for N
510 andT50.04. ~a! A spectrum showing two relaxation chan
nels atJ520.2. ~b! As uJu increases from 0.08 to 0.32, the fa
channels consistently shift towards small relaxation times while
slow channels appear to be fixed. Note that at the right end of
spectrum~slow modes!, three types of symbols representing diffe
ent J’s overlap with each other and are difficult to distinguish.

FIG. 3. Time decays of remanence for differentN at T50.04
and J520.32. A plateau inm(t), that extends to four decade
exists in all cases. Note the curves are nearly indistinguishable f
each other forN>8.
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TABLE I. The plateau heightmr at finite N. The mr* are evaluated by spectrum decomposition
T50.04 andJ520.32.

N 3 5 6 7 8 9 10 11 12

mr as fraction 1/3 1/5 1/9 1/7 2/15 11/81 71/525 67/495 1151/85
mr ’s value 0.333 33 0.200 00 0.111 11 0.142 86 0.133 33 0.135 80 0.135 24 0.135 35 0.1
mr* 0.333 33 0.200 00 0.111 11 0.142 86 0.133 33 0.135 80 0.135 24
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interaction andt2 is the relaxation time of the free particle
blocking temperature. Spins which can flip at time sc
aroundt1 are considered as superparamagnetic while s
which can flip at time longer thant2 are considered a
blocked. So a spin is superparamagnetic only if the t
neighboring spins are parallel to it. As a result, in the tim
window of t1 , the flipping is completely irreversible. Fo
any N, we start with the spin-all-up configuration and pr
ceed every parallel flipping event with equal probability un
all spins are blocked inside the time window oft1 . The
magnetization of the blocked state, divided byN, gives the
value of mr . Following examples demonstrate howmr is
determined~we represent a chain of spins by↑—spin up and
↓—spin down!. For a 1D chain,mr cannot exceed1

3 , the
value corresponding to a configuration of repetition of trim
such as↑↑↓. Keeping the periodic boundary condition
mind, we realize that every spin in this configuration
blocked and this is exactly the case forN53.

For N.3, due to the stochastic nature of the flipping,mr
is reduced and approaches to a convergent value wheN
;10. To illustrate the method, the cases ofN54, 6, and 9
are presented~recall the periodity of the boundary!:

↑↑↑↑⇒↑↑↓↑⇒↓↑↓↑⇒blocked, ~21a!

↑↑↑↑↑↑⇒↑↑↓↑↑↑⇒ 1
3↑↑↓↑↑↓1 2

3↓↑↓↑↓↑⇒blocked,
~21b!

↑↑↑↑↑↑↑↑↑⇒↑↑↑↑↓↑↑↑↑

⇒ 1
3↑↑↑↓↑↓↑↑↑1 1

3↑↑↓↑↑↓↑↑↑

1 1
3↑↑↓↑↑↑↓↑↑

⇒ 1
3↑↓↑↓↑↓↑↑↓1 1

9↑↑↓↑↑↓↑↑↓

1 2
9↓↑↓↑↑↓↑↓↑1 1

3↓↑↓↑↓↑↓↑↑

5blocked. ~21c!

These givemr5
1
9 and 11

81 for N56 and 9. Equation~21a!
also shows thatmr50 for N54, an anomalous case with n
plateau character. Results for differentN were compiled in
Table I for N up to 12. Also shown in Table I ismr* , the
value of mr determined by the spectrum decomposition
T50.04 andJ520.32 by summing the distribution weight
of the slow channels: mr5Sslow modeswi . Both methods
give identical result ofmr to the displayed accuracy. Thi
intuitive diagrammatic approach also suggests that spins
one neighboring spin up and one neighboring spin do
experiencing no local field, decay freely only at time sc
t2 .
e
s

o

l

r

t

th
,

e

Figure 3 suggests that results for largeN might converge
to a unique curve, an important implication for macrosco
systems. Themr in Table I exhibits an oscillatory conver
gence withN. From this convergent character, it is co
cluded that the value ofmr for infinite long chain is between
0.135 33 and 0.135 35. At large coupling limit, this value
solely determined by the statistics of irreversible flipping a
cording to a simple mathematical rule and is independen
physical parameters.

C. Monte Carlo simulations

1. Antiferromagnetic chain

In order to decide the effect of long-range dipole intera
tion from all neighbors on the results from the precedi
section, in which only the nearest neighbors are includ
and to confirm the convergence of the decay curves, Mo
Carlo simulation of remanence decay was performed
much larger systems. Although the discrete spectrum is l
a meaningful comparison can be made with previous an
sis for finiteN.

In Fig. 4 simulated remanence decays forN510 000 at
J520.32 and blocking temperature ofT50.04 are shown
along with numerical calculation ofN510. Also shown is
the simulated decay with the long-range interaction cons
ered for all spins. For nearest-neighbor interaction,
Monte Carlo simulation and analytical calculation forN
510 show remarkable agreement (mr'0.135). Inclusion of

FIG. 4. The decay of remanence from Monte Carlo simulat
for a chain withN510 000,T50.04, andJ520.32. N.N. includes
nearest-neighbor interaction only while dipolar interaction includ
all the long-range contributions. Also included is theN510 result
from direct calculation of eigenmodes. For the N.N. case, the res
of N510 and 10 000 show perfect agreement. Inclusion of dipo
contribution beyond nearest neighbor produces minor modifica
in 1D.
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56 3991DYNAMICS OF LOW-DIMENSIONAL DIPOLAR SYSTEMS
far-away-neighbor contributions produces min
modification—the curve shifts towards smallt at early time
andmr is slightly larger. This indicates that the contributio
beyond the nearest neighbor is less important in 1D dyn
ics and justifies our use of nearest-neighbor approximat
Snapshots taken from pieces of the chain within the ti
range of the plateau confirm the previously mentioned p
ture: The spins that have not yet decayed~the residual spins!
are caught between antiparallel spins and experience no
ing force even though the average field, or the mean field
not zero at the time.

The mean-field theory forJ,0 predicts a quasilogarith
mic remanent decay. For a system to be quasilogarith
over decades,w(t) must extend over decades and be u
formly distributed over logarithmic scale oft @26#, in con-
trast to the composition ofw(t) of the above model. This
disagreement is due to the low dimensionality of the mo
and the breakdown of the mean-field assumption.

2. 2D film with perpendicular anisotropy

To study the effect of dimensionality, time decay of r
manence for a 2D antiferromagnetic film is simulated. T
geometric arrangement is such that all particles embedde
the film have anisotropic axis normal to the plane. This is
geometry used in most particulate normal recording me
@17–20#. Figure 5 shows simulated decays for a 40340
square lattice withJ520.22 and blocking temperatureT
50.04. With the nearest-neighbor approximation, the de
can be characterized by a trimodal behavior~that is, two
plateaus! with t1!t2!t3 andw1;0.73,w2;0.21, andw3
;0.06. For each spin with four nearest neighbors, these t
scales are easily identified with the three stages of re
ations corresponding to different neighboring configuratio
~1! relaxation att1 is for spins with four neighbors paralle
~2! the one att2 is for spins with three neighbors parallel an
one antiparallel, and~3! free relaxation att3 is for spins with
two neighbors parallel and two antiparallel. However, t
long-ranged coupling plays a very important role in 2D b

FIG. 5. The decay of remanence from Monte Carlo simulat
for a 40340 square lattice.T50.04 andJ520.22. For nearest-
neighbor approximation~N.N.!, two plateaus~trimodal! are dis-
played with heights 0.27 and 0.06. The heights are determined f
the plotting data. Dipolar contribution beyond nearest neighbo
much more important in 2D and the resulting decay is quasilo
rithmic, in accordance with the mean-field prediction.
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cause a larger number of configurations leads to more re
ation channels. This will result in a continuous quasilogari
mic decay in agreement with the mean-field theory, as sho
in Fig. 5. Inclusion of a 737 array of neighbors has show
convergence in this case and the quasilogarithmic law is
hibited over nine decades.

Finally we consider a special geometry which allows
transition of dynamics between quasilogarithmic and bim
dal. The construction uses a stretchable rectangular la
with a length-to-width ratioR @21# ~R51 for square lattice!.
For R.1, the effective dimensionality is reduced with a
unbalanced coupling. Figure 6 shows remanent decays f
40340 lattice with J520.22 and blocking temperatureT
50.04 for differentR. For R51, the decay is quasilogarith
mic. IncreasingR to 2.2, the decay shows bimodal charac
with a decayless plateau extending about three orders
magnitude, separating the fast and slow decays. The
distribution of the fast decay is broader as a result of
lateral coupling.

For monodispersed spherical cobalt particleHK53 kOe
and a typical diameterD564 Å, the blocking temperature
T50.04 corresponds to a temperature of 84 K whileJ5
20.22 corresponds to an interparticle spacing of 85 Å. F
film morphology with magnetic micropore deposition whe
the reversal mechanism is known to be incoherent@19#,
smallerT should be used due to the overestimate ofK. Other
realistic complications may also arise, for example, polyd
persity, geometric correction, and so on. However, the fe
bility of such experimental observation is possible. So
only quasilogarithmic time dependence has been reporte
systems used as recording media@16,18#.

IV. CONCLUSIONS

Effects of interaction on the dynamics of dipolar syste
are studied by analytical, numerical, and the Monte Ca
simulation. The dramatic difference was found between
ferromagnetic and the antiferromagnetic couplings in o
dimensional systems. For ferromagnetic interaction, the t
decay of the remanent magnetization is essentially expon
tial, while for antiferromagnetic interaction, two distinct tim
scales were found; the plateau between the two times co

n

m
is
-

FIG. 6. Decays of remanence from Monte Carlo simulation fo
40340 stretchable rectangular lattice with a length-to-width ra
R. T50.04 andJ520.22. IncreasingR from 1 to 2.2, a transition
from quasilogarithmic to bimodal decay is observed.
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sponds to the blocking of spins. The bimodal feature w
found to cross over to a quasilogarithmic decay when
dimensionality is increased. There is a similarity between
current model and the mode-coupling theory@27# in which
decoupling of relaxation channels was also found.

We would like to point out that a notable difference exis
between the present model and the particular choice
Glauber’s solution. Withd50, the ratio of antiferromagnetic
relaxation timet1 and the free decay timet2 is t1

21:t2
21

5@11 tanh(2uJu/T)#:1, so that for any value ofuJu, the ratio
is between 1 and 2 and the bimodal segregation is not
ck

ng

te
s
e
e

of

s-

sible, in contrast to the case of Eq.~7! wheret1 andt2 can
differ by many orders of magnitude foruJu.T.
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