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Ratchet motion induced by deterministic and correlated stochastic forces
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We investigate analytically and through stochastic simulations the motion of a particle in a periodic non-
symmetric ratchet potential driven by time-correlated forces. We examine the extreme monochromatic deter-
ministic case as well as the stochastic correlated noise case. Ratchet motion is found in both cases. In the
correlated noise case we derive a single analytical expression for the induced current at large correlation times
and compare it with numerical results. We also demonstrate numerically the occurrence of color-induced
current reversal of a rigid dimer moving in a ratchet.@S1063-651X~97!06210-7#

PACS number~s!: 05.40.1j, 82.20.Mj, 87.15.2v, 87.22.2q
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I. INTRODUCTION

The stochastic motion of a particle in a periodic but n
symmetric potential has been the focus of attention of a n
ber of authors in the last few years@1–5#. The interest in this
problem stems from the fact that under rather general co
lation conditions for the noise, the particle acquires net m
roscopic motion in a specific direction. The noise corre
tions induce dynamical symmetry breaking that results i
macroscopic nonzero current. The original motivation for
interest in this particle ‘‘ratchet effect’’ arose in a biologic
context: When a microtubular associated protein~MAP! ex-
ecutes motion on a microtubule, its diffusive dynamics ha
specified direction. This directionality in the protein motio
was associated with the nonsymmetric form of the perio
potential of the microtubule and was thought to be induc
by the correlated character of the ATP hydrolysis mec
nism. Since the original work on the correlated ratchet eff
there has been an increased interest in the phenomenon,
experimental and theoretical@5#. On the experimental front
optical, electrical, and mechanical systems have been sh
to have the ratchet property. On the theoretical front, th
have been several extensions of the ratchet effect such
compound objects and solitons@6–8#. In the context of the
original ratchet motivation that was related to protein mot
on a microtubule it was shown that a simple extension of
original idea could even lead to current reversal. This w
accomplished by the introduction of an additional leng
scale in the problem. The motivation for the study of t
motion of a constrained two-particle system driven by
chotomous noise was the observation that different but s
lar proteins may move in opposite directions on the sa
microtubule.

In this paper we address the mechanisms that induce
ratchet effect in the presence of additivecorrelated noise.
We consider first the limiting case where the ‘‘noise’’ h
only one~nonzero! frequency, that is, we deal with the mo
561063-651X/97/56~4!/3976~10!/$10.00
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tion of a particle in a periodic non-symmetric potenti
driven by a sinusoidal field. We show in Sec. II that in th
case of the ‘‘deterministic ratchet’’ the presence of true no
is not necessary for the occurrence of a macroscopic curr
We present some analytical and numerical results in sup
of this assertion. The problem of the ratchet in the prese
of additive correlated noise is addressed in Sec. III. We sh
that the ratchet current for very long correlation times of t
noise can be calculated from a simple analytical formula t
can be obtained straightforwardly through the use of Kra
ers’s escape theory. We present extensive numerical sim
tions and compare the theoretical current expression with
simulation results. We find good agreement at large corr
tion times but poor quantitative agreement at small corre
tion times, as expected, even though the analytical exp
sion recovers the correct qualitative features of the sm
correlation regime as well. In Sec. IV we report numeric
results on stochastic simulations of a dimer on a ratch
Under the action of additive correlated noise we recover
main result obtained earlier for dichotomous noise, nam
we observe current reversal for a range of dimer interpart
lengths@6#. Section V is a concluding summary.

II. DETERMINISTIC RATCHETS

We consider an overdamped particle under the influe
of two forces: a spatial asymmetrical periodic forcef (x) of
periodL, f (x1L)5 f (x), and a time-periodic forceg(t) of
periodT, g(t1T)5g(t). Both functions are assumed to b
bounded,u f (x)u< f M , ug(t)u<gM . Furthermore, we take the
constant Fourier component ofg(t) to be zero, that is,

lim
t→`

1

t E0

t

g~ t8!dt850, ~1!

so that g(t) does not include a systematic forcing of th
system in one direction or another.
3976 © 1997 The American Physical Society
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FIG. 1. Asymmetric piecewise linear ratche
potential~9!, with Q50.5, d152.5, andd250.5.
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We seek solutions of the initial value problem

ẋ5 f ~x!1g~ t ! with x~0!5x0 . ~2!

The recent interest in ratchets has focused on systems o
form ~2! where g(t) is a random~in general unbounded!
zero-centered noise of symmetric distribution, and it h
been shown that a systematic drift of the processx(t) @or of
the overdamped particle whose position isx(t)# is induced
for certain statistical properties of the noise even thou
there is no systematic force in either direction. In this sect
we takeg(t) to be deterministic and time symmetric, and o
purpose is to show that even in this case one can indu
systematic drift along the ratchet for certain parameter co
binations.

We define themean velocity of the particle at time tas

s~ t !5
x~ t,x0!2x0

t
5

1

t S E0

t

ẋ~ t8!dt82x0D ~3!

and themean velocity at infinityas

v`5 lim
t→`

s~ t !. ~4!

Our first goal is to show that the limit in Eq.~4! always
exists and that it is either zero or finite.

The formal solution of Eq.~2! is

x~ t !5x01G~ t !1E
0

t

f @x~ t8!#dt8, ~5!

where

G~ t !5E
0

t

g~ t8!dt8. ~6!

Equation~5! in Eq. ~3! provides a formal solution fors(t).
In order to prove that the limit~4! exists, it is sufficient to
the

s

h
n
r

a
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prove that limt→`us(t1a)2s(t)u50 for every real finite
numbera. Using Eqs.~3! and ~5! and the fact thatf (x) is
bounded we find

us~ t1a!2s~ t !u<UG~ t1a!

t1a U1UG~ t !

t U1 2uau f M

t1a
. ~7!

The limit as t→` of the right-hand side of Eq.~7! is zero
@recall condition~1!#, so that the existence of the limit~4!
has been proved. Indeed, substituting the formal solution~5!
into Eq. ~3! and taking the absolute value it is easy to pro
that

uv`u5 lim
t→`

us~ t !u< f M . ~8!

The mean velocity at infinity is thus bounded by the val
f M .

The important point is this: ifv` is not zero, there is a ne
drift of the particle to the right or to the left~depending on
the sign ofv`). If, on the other hand,v`50 then the particle
oscillates aroundx0 ~these oscillations could have an amp
tude that increases with time but more slowly than linearl!,
and there is no net drift.

In order to display the behavior of the determinis
ratchet through numerical integration we choose the fo
f (x)52V8(x) whereV(x) is the asymmetric periodic po
tential of Fig. 1. The potential in the figure is defined
follows:

V~x!55 QS x

d1
D if 0<x<d1

QS 11
d12x

d2
D if d1<x<d11d2 .

~9!

This potential exerts two constant forces on the particle:
equal to f 152Q/d1 on the shallower side of the potentia
and f 25Q/d2 on the steeper side.
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FIG. 2. Typical trajectoriesx(t) for the
ratchet potential of Fig. 1 and a sinusoidal drivin
force, with Q50.5, d152.5, d250.5, v50.2,
andA51.0, 2.0, 3.0.
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A simple choice of a functiong(t) that satisfies condition
~1! is

g~ t !5Asin~vt !. ~10!

We present some typical trajectoriesx(t) in Fig. 2 with ini-
tial conditionx050 and frequencyv50.2 and for different
values of the amplitudeA.

The shape of the trajectories confirms the existence of
limit ~4!. When A51.0 andA52.0 the particle acquires
finite drift to the right ~the trajectory oscillates about th
mean position, but the mean position clearly increases
early with time!. Thus there is a current to the right. Th
directionality is determined by the asymmetry of the ratch
When A53.0, on the other hand, the particle remains n
the initial position, oscillating to the right of it and returnin

In Figs. 3 and 4 we have plotted the limitv` as a function
of the parametersA andv, respectively. In Fig. 3 we have
e

-

t.
r

chosen the frequencyv50.2 and in Fig. 4 we have fixed th
amplitude atA52.0. We notice in both figures that the lim
~4! is either zero or finite and that it indeed never exceeds
value f M5Q/d251.0 in agreement with condition~8!. The
interesting point, as noted earlier, is that for some param
values the symmetric zero-average deterministic forceg(t)
induces a current to the right, while for others it does n
The sensitivity of the behavior to the particular parame
values is evident in the figures. The nonlinearity of Eq.~2!,
even with the simple sawtooth potential of Fig. 1, does
allow the analytic prediction of the gaps and more genera
of the highly irregular behavior that is evident in Figs. 3 a
4. This information appears accessible only via numeri
integration. However, it should be noted that the gaps~that
is, the sets of parameter values for which there is no
current! are not a general feature of all deterministic ratch
but are in fact due to the ‘‘peculiarity’’ of the piecewis
linear potential. For instance, consider instead the smoo
FIG. 3. v` versusA, with v50.2 and the
ratchet potential of Fig. 1.



56 3979RATCHET MOTION INDUCED BY DETERMINISTIC AND . . .
FIG. 4. v` versus frequencyv, with A52.0
and the ratchet potential of Fig. 1.
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L-periodic asymmetric potential

V~x!5
1

2
QS 11

sin~2px/L2fc!1bsin@2~2px/L2fc!#

sin~fc!1bsin~2fc!
D

~11!

of heightQ, wherefc5arccos@(211A1132b2)/8b). This
potential is a generalization to adjustable heightQ, periodL,
and asymmetryb of the potential found in@9#. For ubu,0.5
the potential has exactly one minimum and one maxim
within a period, and its asymmetry increases with increas
b. For ubu.0.5 the potential is also asymmetric but it a
quires a second minimum and maximum within each peri
Therefore the most asymmetric choice with a single m
mum and maximum per period corresponds tob50.5, and
this is the case that is shown in Fig. 5.

Integration of Eq.~2! using the potential~11! leads to the
results displayed in Figs. 6 and 7; these should be comp
with Figs. 3 and 4, respectively, for the sawtooth potent
The gaps are now gone, and although still quite irregular,
g

.
-

ed
l.
e

behavior ofv` is now somewhat smoother~but still rather
irregular!. Again, the interesting point is that a current to t
right is induced provided the amplitude ofg(t) is sufficiently
large and/or the frequency ofg(t) is not too high. We have
not established the specific bounding relations between
two that are required to produce a current.

III. PROBABILISTIC RATCHETS

It has been proposed recently that the unidirectional m
tion of certain proteins such as kinesin on cellular netwo
can be understood in terms of a mechanism involving a b
logical ratchet operating at finite temperatures@1,2#, where
the protein acts as a Brownian particle executing a cer
random walk in this ratchet potential. The process has b
modeled by an equation of the form of Eq.~2! where the
deterministic forceg(t) is now replaced by a zero-centere
noise. This is the Langevin picture of such a process. Un
conditions of thermal equilibrium, the second law does n
permit net particle motion in the ratchet. In the Langev
FIG. 5. Asymmetric ratchet potential~11!,
with Q51, L51, andb50.5.
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FIG. 6. v` versusA, with v50.2 and the
ratchet potential of Fig. 5.
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picture, this is equivalent to the fact that white, uncorrela
fluctuations cannot induce symmetry breaking and thus
not able to induce a macroscopic current — the Lange
picture with white noise rests on a fluctuation-dissipat
balance that prevents such nonequilibrium effects. W
there are time correlations in the noise, on the other ha
this balance is destroyed, the system becomes ‘‘open’’ in
thermodynamic sense, and a nonzero current can arise d
the asymmetry of the periodic potential. As a result the p
ticle can move in a specified direction even when the driv
fluctuations are completely symmetric. The particle effe
tively acts as an engine that operates in the Brownian reg
The engine consumes energy extracted from the nonequ
rium fluctuations of the environment and transforms it in
mechanical work, manifested by its average net velocity i
given direction. The efficiency of this engine is determin
mainly by two characteristics of the system: the asymme
of the ratchet potential, and the ‘‘environmental’’ featur
such as the correlation properties of the nonequilibrium fl
tuations and the ambient temperature. It is clear that the
duced particle motion is a finite-temperature phenome
that disappears at very high temperatures since then the
d
re
in

n
d,
e
to

r-
g
-
e.

ib-

a

y

-
n-
n
e-

tails of the asymmetric ratchet potential are drowned out
the noise. If one stays away from this regime, one finds t
the crucial environmental property lies in its temporal cor
lation properties, which are in turn modeled by assuming t
the noise driving the particle is colored. In this section w
analyze the properties of the Brownian current as a func
of the color of the noise.

Consider the basic ‘‘engine’’ equations in the Langev
picture,

dx

dt
5 f ~x!1j~ t !,

dj

dt
52

1

t
j1

1

t
h~ t !. ~12!

Herex again denotes the position of the Brownian particle
the overdamped limit, and, as before,f (x)[2V8(x) where
V(x) is a periodic nonsymmetric potential. The auxilia
variablej represents the coupling of the particle to the en
ronment; if the noise variableh(t) is Gaussian andd corre-
FIG. 7. v` versus frequencyv, with A53.5
and the ratchet potential of Fig. 5.
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lated, ^h(t)h(t8)&5Dd(t2t8), then j(t) is an Ornstein-
Uhlenbeck process, that is,j(t) is Gaussian and
exponentially correlated,

^j~ t !j~ t8!&5
D

2t
e2ut2t8u/t. ~13!

The white noise strengthD is proportional to the ambien
temperature. In order to study the effects of the color of
noisej(t), that is, the effects oft on the induced Brownian
motion, we will again use the periodic asymmetric piecew
linear potential shown in Fig. 1 — most studies of noise
induced Brownian motion on ratchets have used this a
model potential@1–3#.

When t is exactly zero there is no current; in the lim
D→0 and fort very small the induced current also esse
tially vanishes@3,4#. In the other limit, that is, whent@1,
we can evaluate an asymptotic expression for the cur
using the following argument@10#. Let us initially place the
Brownian particle at the bottom of the potential. For e
tremely correlated noise, i.e., whent@1, the effect of the
white noiseh(t) in the evolution ofj, given in Eq.~12!, is
negligible. Thus in this limit we can setj̇'0. The net force
acting on the particle is then simply the quasistatic fo
f 1j. The forcej does fluctuate, but it does so extreme
slowly. The particle escapes to the next well, left or rig
when a fluctuation leads to a~quasiconstant! value ofj of the
appropriate size to cancel the force due to the potential.
particle is thus brought to the ‘‘top of the barrier.’’ The valu
of j must remain essentially constant for the time tha
takes the particle to reach this position. Once there, the
ticle can immediately ‘‘roll down’’ to the next minimum in a
time that is small compared to the time it has waited for
appropriate fluctuation. In this picture, the average time t
the particle waits before passing from one well to anothe
given by the mean first passage time for the noisej to reach
the appropriate critical valuejc to cancel the effects of the
potential. For the particle to escape to the right, the no
must reach the critical valuej1

c5Q/d1, and to escape to th
left the critical value of the noise isj2

c52Q/d2. The mean
first passage time for the Ornstein-Uhlenbeck processj(t) to
reach a valuej i

c is @10,11#

Ti~j i
c! 5

A2pDt

uj i
cu

expS j i
c2t

2D D . ~14!

The color-induced current is proportional to the net rateR of
escape from a well. Inserting the appropriate critical valu
of j, this rate is then given by

R5
1

2F 1

T1~j1
c!

2
1

T2~j2
c!

G5
Q

2A2pDt
F 1

d1
expS 2

Q2t

2Dd1
2D

2
1

d2
expS 2

Q2t

2Dd2
2D G . ~15!

The rate~15! exhibits a maximum at a finite value oft
~whose specific value depends on the other parameters! even
e
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though it is an asymptotic expression strictly valid only
the large-t regime. The formula thus qualitatively correct
captures the finite-t dynamics: it is known, mainly from nu-
merical simulations, that there is indeed a maximum in
current at intermediate correlations. We note that Eq.~15!
has a differentt dependence than the smallt result calcu-
lated in @4#. Our result~15! is consistent with the larget
expression obtained in@4#.

Our next order correction of the rate can be obtained if
also take into account the ‘‘rolling time’’ of the Brownia
particle from the top of the barrier to the next potential min
mum@12#. From the condition that the correlation time of th
noise must be at least equal to the total rising plus roll
time, we obtain new critical fluctuation values forj:

j1
t5j1

c1
d1

t
5

Q

d1
1

d1

t
,

j2
t5j2

c2
d2

t
52

Q

d2
2

d2

t
. ~16!

Upon substitution into Eq.~14! we obtain a modified expres
sion for the net rate out of the well:

R5
1

2F 1

T1~j1
t !

2
1

T2~j2
t !

G . ~17!

In Fig. 8 we plot the net rate given by Eq.~17! as a function
of the correlation timet for different values of the noise
strengthD.

We note that Eq.~17! leads to a current that is always t
the right on the ratchet as drawn in Fig. 1. The current
creases with increasing correlation timet, reaches a maxi-
mum, and then decreases back to zero at large values o
correlation time. The maximum current increases with
creasing noise intensity parameterD ~but only for suffi-
ciently smallD; as noted earlier, if the noise is too intense
swamps out the ratchet effect entirely!. It is noteworthy that
the result~17! leads to the same general important featur
in particular, the nonmonotonic dependence of the curren
t as in@4#, even though our result was obtained from a ve
simple asymptoticargument. This same argument has be
found to be useful in a number of cases in regimes ear
than the asymptotic for which it was designed@13,14#. Other
features to be noted about our result~17! include the rela-
tively mild ~albeit exponential! decay of the rate witht be-
cause the dominant term in the exponent is proportiona
only the first power oft. Although there is no reason t
expect the result to be accurate ast→0, the expression doe
remain analytic and continuous even in that limit.

Our results lead directly to a simple description of t
effect of the color of the noise on the Brownian particle
the ratchet. In the limit of large correlation time,t→`, the
noise acts like a constant force that at times~when it takes on
the appropriate values! opposes the action of the ratchet p
tential. This effect was described earlier in this section. Si
it is more likely for the noise to attain the value needed
counteract the smaller force exerted on the particle~on the
right-hand side of the potential minima in our particular e
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FIG. 8. Color-induced rateR, which is pro-
portional to the current, as a function of the co
relation timet given by Eq.~17!. The parameter
values areQ50.5, d152.5, d250.5, and ~a!
D50.3, ~b! D50.4, ~c! D50.5.
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ample!, the particle is moved by the noise more often to t
right than to the left, thus leading to a net current. As
correlation timet becomes smaller, two ‘‘opposite’’ effect
begin to play a role. On the one hand, as the noise cha
value more rapidly, the difference between the number
trajectories going to the right and going to the left dimi
ishes. On the other hand, this same more rapid change l
to a reduction in the mean exit time from a well~in either
direction! because larger values of the noise are more
quently attained~albeit retained for a shorter time! within a
given time period. The maximum current occurs when th
two effects are optimized together in the way typical of o
posing tendencies. Ast becomes smaller the current aga
diminishes until, in the white noise limitt→0, there is no
net current since the rates of escape to the left and to
right become equal.

Ours is an asymptotic result whose validity for decreas
t is less than certain. We show in Fig. 9 a typical simulation
result together with that obtained from our theory for co
e
e

es
f

ds

-

e
-

he

g

-

parison. The curves clearly agree well for larget. Both
curves start from the origin and both display a maximum
finite correlation times. However, our theory does not lead
the quantitatively correct location of the maximum obtain
from the simulations~our value oft being too small!, and
our result leads to a current that is too large in this regi
This quantitative disparity is not surprising; what is mo
noteworthy is that our results lead to the correct qualitat
behavior for all correlation times, particularly in its predi
tion of a maximum in the current as a function oft, even
though it relies only on rather simple large-t asymptotic ar-
guments.

Our simulation results~both that in Fig. 9 and those to
follow! were obtained by solving Eq.~12! N times for dif-
ferent realizations of the colored noisej(t) and computing
and plotting

J5
1

N(
n51

N

Ji , Ji5
xi~ t,x0!2x0

t
~18!
n

FIG. 9. Comparison of our theory~a! and nu-
merical simulations~b! for the net rateR of the
Brownian particle as a function of the correlatio
time t. The parameter values areQ50.5,
d152.5, d250.5, andD50.5.
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FIG. 10. Simulation results for the current o
the sawtooth ratchet as a function of the corre
tion time t of the noise, for two different values
of the noise intensity parameterD. Parameter
values areQ50.5, d152.5, d250.5, and ~a!
D50.5, ~b! D50.3. Simulation error bars are ex
plicitly indicated for one of the simulations.
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@cf. Eq. ~4!#. Ideally N→` andt→`, but of course we have
to be content with large but finiteN andt. Simulation results
for the current obtained with different values of the no
intensity parameterD are shown in Fig. 10.

For D50.5 we have explicitly indicated the numeric
error to convey the limits of accuracy of our simulations. It
not difficult to decrease the error by simulating each traj
tory for a longer time and/or repeating the simulation fo
larger number of trajectories, but it is very time costly to
so. For example, to decrease the error by a factor of 1/A10
requires that we run each trajectory for ten times as long
we have done. Our comparison with theory does not req
a finer level of accuracy than we have implemented. N
that as with our theory~and as is to be expected!, the current
for these relatively small values ofD increases with increas
ing D. To confirm that strong noise does drown out
ratchet effects we show in Fig. 11 simulation results for
current as a function of the noise parameterD. For small
values ofD ~such as those used in our theory and simulat
-

s
re
e

l
e

n

results shown earlier! the current rises, but it then decreas
whenD becomes comparable to the potential barrier heig
The fluctuations in this figure could of course also be
duced by using larger ensembles and/or longer trajecto
but, again, as displayed it adequately conveys the inten
information.

We note that the behavior of the current as shown in F
10 and 11 displays the same features as those found in@9#,
where the results of simulations for superpositions of wh
and colored noise are presented. We also note that it app
very difficult to improve on the analytical prediction~17!.

An exact analytic solution of the two-dimension
Fokker- Planck equation corresponding to the Lange
equations Eq.~12! seems impossible@9,15–17#; the ‘‘effec-
tive Fokker Planck equation’’ for smallt to ordert2 gives
expressions that are not finite in some regions due to
local nonexistence of the first and second derivatives of
potential of Fig. 1. The expression of Millonas and Dykm
@4# for small t obtained using path integral methods brea
down for this potential for the same reason.
s
FIG. 11. Simulation results for the current a
a function of the noise parameterD, with Q50.5,
d152.5, d250.5, andt50.5.
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FIG. 12. Simulation of the current as a func
tion of the length of the rigid Brownian dimer on
the sawtooth ratchet. Parameter values
Q51.0,d150.55,d250.45,t50.1, andD50.5.
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IV. CURRENT REVERSAL

Current reversal that arises on ratchet systems as a co
quence of a number of modifications that can be made to
problem as stated above has also been of interest. We m
tion in particular the current inversion found when in pla
of a point particle the Brownian particle is an extended rod~a
rigid dimer!. The dimer consists of a Brownian particle
lengthl that experiences a net potentialṼ(x) that is a super-
position of the periodic ratchet potentialV(x) evaluated atx
and atx1 l , i.e., Ṽ(x)5V(x)1V(x1 l ) where V(x) is an
asymmetric periodic potential such as that given in Eq.~9! or
in Eq. ~11!. Current inversion has been observed for a dim
on the ratchet~9! when the driving noise is dichotomous@6#.
The results shown in Fig. 12 confirm this behavior when
driving noise is Gaussian colored noise. For very short r
~not unlike point particles! and for long rods the current is t
the right, but for rods of intermediate length there is a regi
where the ratchet current, driven by the same Gaussian n
is actually to the left. We have carried out the simulatio
here for the same rod lengths used in@6#, and find the current
inversion range to be approximately the same as in the
of dichotomous noise. In these simulations an increase in
number of simulations and/or of the lengths of the trajec
ries would again smooth out the results and would m
clearly display the fact that the current is symmetric abou
rod length of 0.5 for the potential parameters used in
figure.

V. SUMMARY

We have explored a number of issues related to the
called ‘‘ratchet effect,’’ whereby a process in an asymme
potential driven by colored noise can exhibit a net curr
although the noise is totally symmetric. Since our contrib
tion here is an analytic theory valid in the limit of highl
colored noise, we first considered a particle in an asymme
potential under the influence of an external determinis
monochromatic force. We showed that such a system
also exhibit a net current, that is, that stochastic forces
not necessary in order to produce a net current. In the de
se-
e

en-

r

e
s

e
se,
s

se
he
-
e
a
e

o-
c
t
-

ic
c
an
re
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ministic problem the direction of the current is the same as
a stochastic ratchet driven by, say, Gaussian colored no
the particle moves in the direction in which the slope of t
potential is milder.

We then studied the ratchet effect in the presence
highly correlated Gaussian noise. Based on straightforw
asymptotic arguments, we derived a simple expression
the current in the large correlation time regime and compa
it with stochastic simulations. We find good agreement
tween theory and simulations in the large correlation ti
regime. The analytical formula breaks down quantitatively
small correlation times but exhibits the correct qualitati
properties throughout: if the noise is not too strong the c
rent increases with increasing noise intensity, there is a m
mum current at a particular correlation time, and the curr
vanishes in the small correlation time limit. The dependen
of the maximum current and the correlation time at th
maximum on the other parameter values is not predicted
rectly by our theory, but it is noteworthy that its existence
included in our asymptotic result.

Finally, we investigated the effect of colored noise on
compound object consisting of two particles joined by a rig
rod, that is, a rigid dimer. In an earlier paper@6# we found
that current reversal for such an object can occur for so
range of parameters when the system is driven by dich
mous noise. Here we have shown that the same sys
driven by Gaussian correlated noise demonstrates sim
current reversal, indicating that the effect is robust and
dependent on very specific noise statistics.
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