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We investigate analytically and through stochastic simulations the motion of a particle in a periodic non-
symmetric ratchet potential driven by time-correlated forces. We examine the extreme monochromatic deter-
ministic case as well as the stochastic correlated noise case. Ratchet motion is found in both cases. In the
correlated noise case we derive a single analytical expression for the induced current at large correlation times
and compare it with numerical results. We also demonstrate numerically the occurrence of color-induced
current reversal of a rigid dimer moving in a ratci&g1063-651X97)06210-1

PACS numbse(s): 05.40:+j, 82.20.Mj, 87.15-v, 87.22—q

[. INTRODUCTION tion of a particle in a periodic non-symmetric potential

driven by a sinusoidal field. We show in Sec. Il that in this
The stochastic motion of a particle in a periodic but notcase of the “deterministic ratchet” the presence of true noise
symmetric potential has been the focus of attention of a numis not necessary for the occurrence of a macroscopic current.
ber of authors in the last few yedis-5]. The interest in this We present some analytical and numerical results in support

problem stems from the fact that under rather general corredf this assertion. The problem of the ratchet in the presence
lation conditions for the noiSE, the partide acquires net macof additive correlated noise is addressed in Sec. Ill. We show

roscopic motion in a specific direction. The noise correla-that the ratchet current for very long correlation times of the

tions induce dynamical symmetry breaking that results in roise can be_: calculatg:d from a simple analytical formula that
macroscopic nonzero current. The original motivation for thec@n be obtained straightforwardly through the use of Kram-
interest in this particle “ratchet effect” arose in a biological ©rS'S €scape theory. We present extensive numerical simula-
context: When a microtubular associated prot@ithP) ex- tlpns and compare the theoreucal current expression with the
ecutes motion on a microtubule, its diffusive dynamics has &imulation results. We find good agreement at large correla-
specified direction. This directionality in the protein motion tion times but poor quantitative agreement at small correla-
was associated with the nonsymmetric form of the periodidion times, as expected, even though the analytical expres-
potential of the microtubule and was thought to be inducecion recovers _the correct qualitative features of the s_mall
by the correlated character of the ATP hydrolysis mechaSorrelation regime as well. In Sec. IV we report numerical
nism. Since the original work on the correlated ratchet effecf€Sults on stochastic simulations of a dimer on a ratchet.
there has been an increased interest in the phenomenon, bdtfider the action of additive correlated noise we recover the
experimental and theoreticE]. On the experimental front, Main result obtained earlier for dlchotomou_s noise, namgly,
optical, electrical, and mechanical systems have been showWi€ Observe current reversal for a range of dimer interparticle
to have the ratchet property. On the theoretical front, therdengths[6]. Section V is a concluding summary.

have been several extensions of the ratchet effect such as in

compound objects and solitofi§—8]. In the context of the [l. DETERMINISTIC RATCHETS

original ratchet motivation that was related to protein motion We consider an overdamped particle under the influence
on a microtubule it was shown that a simple extension of thef Wo f } tial trical iodic f f
original idea could even lead to current reversal. This wag) WO forces. a spatial asymmetrical periodic ore) o

: . : o eriodL, f(x+L)=1(x), and a time-periodic forcg(t) of
accomplished by the introduction of an additional Iengthp . _ ;
scale in the problem. The motivation for the study of theper'OdT' g(t+T)=g(t). Both functions are assumed to be

motion of a constrained two-particle system driven by gi-pounded|f(x)[<fy, [g(t)|<gy . Furthermore, we take the

chotomous noise was the observation that different but simiconstant Fourier component g(t) to be zero, that is,
lar proteins may move in opposite directions on the same 1 rt
microtubule. lim _f g(t’)dt’ =0, (1)
In this paper we address the mechanisms that induce the t—e tJ0
ratchet effect in the presence of additigerrelated noise.
We consider first the limiting case where the “noise” hasso thatg(t) does not include a systematic forcing of the
only one(nonzerg frequency, that is, we deal with the mo- system in one direction or another.
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We seek solutions of the initial value problem prove that lim_.|o(t+a)—a(t)|=0 for every real finite
. numbera. Using Egs.(3) and (5) and the fact thaf(x) is
x=f(x)+g(t) with x(0)=Xxg. (2) bounded we find
The recent interest in ratchets has focused on systems of the G(t+a)‘ G(t)‘ 2|a|fy
form (2) where g(t) is a random(in general unbounded |o(t+a)—o(t)]= t+a |+ t | t+a (@)

zero-centered noise of symmetric distribution, and it has

been shown that a systematic drift of the proce$ [or of  The |imit ast— of the right-hand side of Eq7) is zero
the overdamped particle whose positiorx{g) ] is induced  [recall condition(1)], so that the existence of the limi)
for certain statistical properties of the noise even thoughhas peen proved. Indeed, substituting the formal solu@on

there is no systematic force in either direction. In this sectionq Eq.(3) and taking the absolute value it is easy to prove
we takeg(t) to be deterministic and time symmetric, and our tpat

purpose is to show that even in this case one can induce a
Eystgmatlc drift along the ratchet for certain parameter com- lv..| = lim|a(t)|<fy . @)
inations. too
We define themean velocity of the particle at timeats

The mean velocity at infinity is thus bounded by the value

X(t,Xg) —Xg 1 ft. Nt 3 fo-
o(t)= t B t( Ox(t )dt' =X ©® The important point is this: if., is not zero, there is a net
drift of the particle to the right or to the lefdepending on
and themean velocity at infinityas the sign ofv.,). If, on the other hand;.,= 0 then the particle
oscillates arouna (these oscillations could have an ampli-
V= limo(t). (4) tude that increases with time but more slowly than linearly
t—oo and there is no net drift.

In order to display the behavior of the deterministic
Our first goal is to show that the limit in Eq4) always ratchet through numerical integration we choose the force

exists and that it is either zero or finite. f(x)=—-V’'(x) whereV(x) is the asymmetric periodic po-
The formal solution of Eq(2) is tential of Fig. 1. The potential in the figure is defined as
follows:
t
X(t)=xo+ G(t)+f f{x(t")]dt’, (5) X
0 Q(—) if 0<x=d,
d;
where V(x)= 9
dl_

1+

X
t ) |f d1$X$d1+d2.
G(t)=J g(t")dt'. (6) 2
0
This potential exerts two constant forces on the particle: one
Equation(5) in Eq. (3) provides a formal solution foo(t). equal tof;=—Q/d; on the shallower side of the potential
In order to prove that the limi¢4) exists, it is sufficient to andf,=Q/d, on the steeper side.
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force, with Q=0.5, d;=2.5, d,=0.5, v=0.2,
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A simple choice of a functiog(t) that satisfies condition chosen the frequenay=0.2 and in Fig. 4 we have fixed the

(1) is amplitude atA=2.0. We notice in both figures that the limit
(4) is either zero or finite and that it indeed never exceeds the
g(t)=Asin(wt). (100 valuefy=Q/d,=1.0 in agreement with conditio(8). The
interesting point, as noted earlier, is that for some parameter
We present some typical trajectorie@) in Fig. 2 with ini-  values the symmetric zero-average deterministic fay@g
tial conditionxy,=0 and frequency»=0.2 and for different induces a current to the right, while for others it does not.
values of the amplitudé. The sensitivity of the behavior to the particular parameter

The shape of the trajectories confirms the existence of thgalues is evident in the figures. The nonlinearity of E2),
limit (4). WhenA=1.0 andA=2.0 the particle acquires a even with the simple sawtooth potential of Fig. 1, does not
finite drift to the right (the trajectory oscillates about the allow the analytic prediction of the gaps and more generally
mean position, but the mean position clearly increases linef the highly irregular behavior that is evident in Figs. 3 and
early with timg. Thus there is a current to the right. The 4. This information appears accessible only via numerical
directionality is determined by the asymmetry of the ratchetintegration. However, it should be noted that the géhat
When A=3.0, on the other hand, the particle remains neais, the sets of parameter values for which there is no net
the initial position, oscillating to the right of it and returning. currenj are not a general feature of all deterministic ratchets

In Figs. 3 and 4 we have plotted the linoif, as a function but are in fact due to the “peculiarity” of the piecewise
of the parameteré and o, respectively. In Fig. 3 we have linear potential. For instance, consider instead the smoother
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FIG. 3. v, versusA, with «=0.2 and the
01| ratchet potential of Fig. 1.
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L-periodic asymmetric potential behavior ofv., is now somewhat smoothébut still rather
_ _ irregulan. Again, the interesting point is that a current to the
Vix) = 1 14 SiIN(2mx/L— ¢p¢) + bsin 2(2mx/L — ¢¢) | right is induced provided the amplitude gft) is sufficiently
(X)= 2Q Sin( ) +bsin(2¢,) large and/or the frequency gf(t) is not too high. We have

(11) not established the specific bounding relations between the
two that are required to produce a current.
of heightQ, where ¢.= arcco$(— 1+ 1+ 32b?)/8b). This
potential is a generalization to adjustable hei@hiperiodL,
and asymmetrp of the potential found ih9]. For |b|<0.5
the potential has exactly one minimum and one maximum It has been proposed recently that the unidirectional mo-
within a period, and its asymmetry increases with increasingion of certain proteins such as kinesin on cellular networks
b. For |b|>0.5 the potential is also asymmetric but it ac- can be understood in terms of a mechanism involving a bio-
quires a second minimum and maximum within each periodlogical ratchet operating at finite temperatufés?], where
Therefore the most asymmetric choice with a single mini-the protein acts as a Brownian particle executing a certain
mum and maximum per period correspondsbte 0.5, and random walk in this ratchet potential. The process has been
this is the case that is shown in Fig. 5. modeled by an equation of the form of E@) where the
Integration of Eq(2) using the potential11) leads to the deterministic forceg(t) is now replaced by a zero-centered
results displayed in Figs. 6 and 7; these should be comparatwise. This is the Langevin picture of such a process. Under
with Figs. 3 and 4, respectively, for the sawtooth potential.conditions of thermal equilibrium, the second law does not
The gaps are now gone, and although still quite irregular, th@ermit net particle motion in the ratchet. In the Langevin

Ill. PROBABILISTIC RATCHETS

1 FIG. 5. Asymmetric ratchet potentiafll),
with Q=1,L=1, andb=0.5.
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FIG. 6. v, versusA, with «=0.2 and the
ratchet potential of Fig. 5.
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picture, this is equivalent to the fact that white, uncorrelatedails of the asymmetric ratchet potential are drowned out by
fluctuations cannot induce symmetry breaking and thus arthe noise. If one stays away from this regime, one finds that
not able to induce a macroscopic current — the Langevirthe crucial environmental property lies in its temporal corre-
picture with white noise rests on a fluctuation-dissipationlation properties, which are in turn modeled by assuming that
balance that prevents such nonequilibrium effects. Wherhe noise driving the particle is colored. In this section we
there are time correlations in the noise, on the other handinalyze the properties of the Brownian current as a function
this balance is destroyed, the system becomes “open” in thef the color of the noise.
thermodynamic sense, and a nonzero current can arise due to Consider the basic “engine” equations in the Langevin
the asymmetry of the periodic potential. As a result the parpicture,
ticle can move in a specified direction even when the driving
fluctuations are completely symmetric. The particle effec- X
tively acts as an engine that operates in the Brownian regime. qr - T+ &),
The engine consumes energy extracted from the nonequilib-
rium fluctuations of the environment and transforms it into

X ; . o dé 1 1
mechan_lcal _Work, manlf_e_sted by its average net velocny ina — =Tt Zy(b). (12)
given direction. The efficiency of this engine is determined dt T T
mainly by two characteristics of the system: the asymmetry
of the ratchet potential, and the “environmental” featuresHerex again denotes the position of the Brownian particle in
such as the correlation properties of the nonequilibrium flucthe overdamped limit, and, as befofé¢x)=—V’(x) where
tuations and the ambient temperature. It is clear that the in¥(x) is a periodic nonsymmetric potential. The auxiliary
duced particle motion is a finite-temperature phenomenowariableé represents the coupling of the particle to the envi-
that disappears at very high temperatures since then the denment; if the noise variable(t) is Gaussian and corre-
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lated, (7(t) 7(t"))=D&s(t—t’), then &(t) is an Ornstein- though it is an asymptotic expression strictly valid only in
Uhlenbeck process, that isg(t) is Gaussian and the larges regime. The formula thus qualitatively correctly
exponentially correlated, captures the finite-dynamics: it is known, mainly from nu-
merical simulations, that there is indeed a maximum in the
current at intermediate correlations. We note that @d)
has a differentr dependence than the smallresult calcu-
lated in[4]. Our result(15) is consistent with the large
The white noise strengt® is proportional to the ambient expression obtained if#].

temperature. In order to study the effects of the color of the Our next order correction of the rate can be obtained if we
noise&(t), that is, the effects of on the induced Brownian also take into account the “rolling time” of the Brownian
motion, we will again use the periodic asymmetric piecewiseparticle from the top of the barrier to the next potential mini-
linear potential shown in Figl — most studies of noise- mum[12]. From the condition that the correlation time of the
induced Brownian motion on ratchets have used this as moise must be at least equal to the total rising plus rolling

D ,
(E(DEt))= 2—Te—'t—t I, (13

model potentia[1-3]. time, we obtain new critical fluctuation values fér
When 7 is exactly zero there is no current; in the limit

D—0 and forr very small the induced current also essen- . e 0 Q d;

tially vanishes[3,4]. In the other limit, that is, wher>1, §1=&1t 7:d_1+ T

we can evaluate an asymptotic expression for the current

using the following argumenjtLQ]. Let us initially place the d, Q d,

Brownian particle at the bottom of the potential. For ex- E=¢——=————. (16)

tremely correlated noise, i.e., whes1, the effect of the T do 7

Whm,a .r10|se77(t) |.n th? e'vo'lutlon of, given in Eq.(12), is Upon substitution into Eq.14) we obtain a modified expres-
negligible. Thus in this limit we can sé&t0. The net force sion for the net rate out of the well:

acting on the particle is then simply the quasistatic force

f+&. The forceé does fluctuate, but it does so extremely [ 1 1
slowly. The particle escapes to the next well, left or right, R= =~ - 1 (17)
when a fluctuation leads to(guasiconstantvalue of¢ of the 2[Ty(£) T

appropriate size to cancel the force due to the potential. The

particle is thus brought to the “top of the barrier.” The value

of & must remain essentially constant for the time that itin Fig. 8 we plot the net rate given by E(.7) as a function
takes the particle to reach this position. Once there, the paof the correlation timer for different values of the noise
ticle can immediately “roll down” to the next minimum in a strengthD.

time that is small compared to the time it has waited for the We note that Eq(17) leads to a current that is always to
appropriate fluctuation. In this picture, the average time thathe right on the ratchet as drawn in Fig. 1. The current in-
the particle waits before passing from one well to another isreases with increasing correlation timereaches a maxi-
given by the mean first passage time for the ndise reach mum, and then decreases back to zero at large values of the
the appropriate critical valué; to cancel the effects of the correlation time. The maximum current increases with in-
potential. For the particle to escape to the right, the noisereasing noise intensity paramet®r (but only for suffi-
must reach the critical valug=Q/d,, and to escape to the ciently smallD; as noted earlier, if the noise is too intense it
left the critical value of the noise &= —Q/d,. The mean swamps out the ratchet effect entirelit is noteworthy that
first passage time for the Ornstein-Uhlenbeck progéesto  the result(17) leads to the same general important features,

reach a value? is [10,11] in particular, the nonmonotonic dependence of the current on
7 as in[4], even though our result was obtained from a very
N iCZT simple asymptoticargument. This same argument has been
Ti(&) = & oD | (14 found to be useful in a number of cases in regimes earlier
i

than the asymptotic for which it was desigridd@,14]. Other
features to be noted about our res{il) include the rela-
tively mild (albeit exponentialdecay of the rate withr be-
Tause the dominant term in the exponent is proportional to
only the first power ofr. Although there is no reason to

The color-induced current is proportional to the net fRtef
escape from a well. Inserting the appropriate critical value
of &, this rate is then given by

il 1 1 (1 2 expect the result to be accurateras 0, the expression does
=_ — 9 —exp — Q' remain analytic and continuous even in that limit.
2 Ti(&) Tu(&)| 2y2aD T_dl 2Dd§ Our results lead directly to a simple description of the

effect of the color of the noise on the Brownian particle in
2 the ratchet. In the limit of large correlation time;—, the
—iex _ Q' _ (15)  hoise acts like a constant force that at tinieben it takes on
d> 2Dd§ the appropriate valug®pposes the action of the ratchet po-
tential. This effect was described earlier in this section. Since
it is more likely for the noise to attain the value needed to
The rate(15) exhibits a maximum at a finite value af  counteract the smaller force exerted on the partiole the
(whose specific value depends on the other parameteen  right-hand side of the potential minima in our particular ex-
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FIG. 8. Color-induced rat®, which is pro-
portional to the current, as a function of the cor-
relation timer given by Eq.(17). The parameter
values areQ=0.5, d;=2.5, d,=0.5, and (a)
D=0.3,(b) D=0.4,(c) D=0.5.
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ample, the particle is moved by the noise more often to theparison. The curves clearly agree well for large Both
right than to the left, thus leading to a net current. As thecurves start from the origin and both display a maximum for
correlation timer becomes smaller, two “opposite” effects finite correlation times. However, our theory does not lead to
begin to play a role. On the one hand, as the noise changé&ge quantitatively correct location of the maximum obtained
value more rapidly, the difference between the number ofrom the simulationgour value of7 being too sma)l and
trajectories going to the right and going to the left dimin- our result leads to a current that is too large in this region.
ishes. On the other hand, this same more rapid change leadgis quantitative disparity is not surprising; what is more
to a reduction in the mean exit time from a wél either ~ noteworthy is that our results lead to the correct qualitative
direction because larger values of the noise are more frebehavior for all correlation times, particularly in its predic-
quently attainedalbeit retained for a shorter timevithin a  tion of a maximum in the current as a function gf even
given time period. The maximum current occurs when thesé¢hough it relies only on rather simple largeasymptotic ar-
two effects are optimized together in the way typical of op-guments.

posing tendencies. As becomes smaller the current again ~ Our simulation resultgboth that in Fig. 9 and those to
diminishes until, in the white noise limit—0, there is no follow) were obtained by solving Eq12) N times for dif-

net current since the rates of escape to the left and to thierent realizations of the colored noigét) and computing

right become equal. and plotting
Ours is an asymptotic result whose validity for decreasing N
7 is less than certain. We show in Fig a typical simulation _1 ‘ _Xi(t,X0) = Xo
. . J - 2 J| ] 'J| - (18)
result together with that obtained from our theory for com- NAi=1 t
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FIG. 9. Comparison of our theor@) and nu-
merical simulationgb) for the net rateR of the
Brownian particle as a function of the correlation
time 7. The parameter values ar@®=0.5,

m d1:2.5,d2:0.5, andD:05
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. FIG. 10. Simulation results for the current on
003 b . @ . the sawtooth ratchet as a function of the correla-
tion time 7 of the noise, for two different values
| of the noise intensity parametdd. Parameter
=, B T values areQ=0.5, d,=2.5, d,=0.5, and (a)
] D=0.5,(b) D=0.3. Simulation error bars are ex-
0.01 I - plicitly indicated for one of the simulations.
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[cf. Eg.(4)]. Ideally N— o~ andt—ce, but of course we have results shown earligithe current rises, but it then decreases
to be content with large but finitd andt. Simulation results whenD becomes comparable to the potential barrier height.
for the current obtained with different values of the noiseThe fluctuations in this figure could of course also be re-
intensity parameteD are shown in Fig. 10. duced by using larger ensembles and/or longer trajectories
For D=0.5 we have explicitly indicated the numerical but, again, as displayed it adequately conveys the intended
error to convey the limits of accuracy of our simulations. It is information. _ o
not difficult to decrease the error by simulating each trajec- Ve note that the behavior of the current as shown in Figs.
tory for a longer time and/or repeating the simulation for al0 @nd 11 displays the same features as those fouf@l,in
larger number of trajectories, but it is very time costly to dowhere the results of simulations for superpositions of white

so. For example, to decrease the error by a factor ¢La/ and colored noise are presented. We also note that it appears
. Pie, . ya very difficult to improve on the analytical predictidf?).
requires that we run each trajectory for ten times as long as An exact analytic solution of the two-dimensional

we have done. Our comparison with theory does not requir o xer- Planck equation corresponding to the Langevin

a finer level of accuracy than we have implemented. NOt%quations Eq(12) seems impossiblE9,15-17; the “effec-
that as with our theoryand as is to be expectedhe current e Fokker Planck equation” for smait to order 2 gives

for these relatively small values &f increases with increas- expressions that are not finite in some regions due to the
ing D. To confirm that strong noise does drown out all|ocal nonexistence of the first and second derivatives of the
ratchet effects we _show in Fig. 11 simulation results for thepotential of Fig. 1. The expression of Millonas and Dykman

current as a function of the noise paramefer For small  [4] for small 7 obtained using path integral methods breaks

values ofD (such as those used in our theory and simulatiordown for this potential for the same reason.
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FIG. 11. Simulation results for the current as
a function of the noise parameter, with Q=0.5,
d;=2.5,d,=0.5, andr=0.5.
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0005 FIG. 12. Simulation of the current as a func-

tion of the length of the rigid Brownian dimer on
the sawtooth ratchet. Parameter values are
Q=1.0,d,;=0.55,d,=0.45,7=0.1, andD =0.5.
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IV. CURRENT REVERSAL ministic problem the direction of the current is the same as in
a stochastic ratchet driven by, say, Gaussian colored noise:
Current reversal that arises on ratchet systems as a congée particle moves in the direction in which the slope of the
guence of a number of modifications that can be made to thgotential is milder.
problem as stated above has also been of interest. We men- We then studied the ratchet effect in the presence of
tion in particular the current inversion found when in placehighly correlated Gaussian noise. Based on straightforward
of a point particle the Brownian particle is an extended(@d asymptotic arguments, we derived a simple expression for
rigid dimer). The dimer consists of a Brownian particle of the current in the large correlation time regime and compared
lengthl that experiences a net potenti4x) that is a super- jt with stochastic simulations. We find good agreement be-
position of the periodic ratchet potenti(x) evaluated ak  tween theory and simulations in the large correlation time
and atx+1, i.e., V(x)=V(x)+V(x+1) whereV(x) is an  regime. The analytical formula breaks down quantitatively at
asymmetric periodic potential such as that given in@yor  small correlation times but exhibits the correct qualitative
in Eq. (11). Current inversion has been observed for a dimemproperties throughout: if the noise is not too strong the cur-
on the ratchet9) when the driving noise is dichotomo[8].  rent increases with increasing noise intensity, there is a maxi-
The results shown in Fig. 12 confirm this behavior when themum current at a particular correlation time, and the current
driving noise is Gaussian colored noise. For very short rodganishes in the small correlation time limit. The dependence
(not unlike point particlesand for long rods the currentis to of the maximum current and the correlation time at this
the right, but for rods of intermediate length there is a regim&yaximum on the other parameter values is not predicted cor-

where the ratchet current, driven by the same Gaussian noisgycly by our theory, but it is noteworthy that its existence is
is actually to the left. We have carried out the simulations;q|,ded in our asymptotic result.

here for the same rod lengths used6i and find the current Finally, we investigated the effect of colored noise on a

Inversion range to_be approxma_tely th_e Same as in the_ Ca%%mpound object consisting of two particles joined by a rigid
of dichotomous noise. In these simulations an increase in threod that is, a rigid dimer. In an earlier pagé] we found
number of simulations and/or of the lengths of the trajecto-, ! ! 9 i P

. . that current reversal for such an object can occur for some
ries would again smooth out the results and would more J

clearly display the fact that the current is symmetric about 4ange of parameters when the system is driven by dichoto-
dnous noise. Here we have shown that the same system

figure. driven by Gaussian correlated noise demonstrates similar
current reversal, indicating that the effect is robust and not
V. SUMMARY dependent on very specific noise statistics.

We have explored a number of issues related to the so-
called “ratchet effect,” whereby a process in an asymmetric ACKNOWLEDGMENTS
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