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Thermodynamics of phase equilibrium in nonuniform fields
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We obtain conditions of phase equilibrium of a substance in a nonuniform potential field of forces. If the
force per mass unit is phase dependent, the field may induce a shift of phase equilibrium. In this case, chemical
potentials of the substance do not coincide at the phase boundary with equal temperatures and pressures for
each phase. The equality condition at the phase boundary in the presence of the field for the full chemical
potentials of the phases, including the additional field component, can be reduced to the equality condition of
the chemical potentials under different pressures for each phase. Thus the field-induced phase equilibrium
becomes impossible for a given geometry, and the system has to change its phase abruptly when one of the
phases reaches its spinodal state. An example of such a transition is the case of a liquid current-carrying
conductor in its own magnetic field rapidly turning to a dispersion S@teps in vapoy. Similar phenomena
can occur at the final stage of electrical explosion of conductors. We also show that for a liquid dielectric in a
nonuniform external electric field the thermodynamical equilibrium state is liquid with vapor bubbles, the latter
being localized into the domain of the higher value of the fiEgl063-651X97)05510-4

PACS numbsgs): 64.10:+h, 05.70.Fh, 64.70.Fx, 64.96b

I. INTRODUCTION tem, in which the pressure gradient is balanced by the exter-
nal force. As is shown, the field not only leads to the
As is known, strong external fields penetrating inside aformation of a pressure profile but it also creates an addi-
body radically affect its thermodynamical properties. Ex-tional component in the full matter-field chemical potential
amples of general thermodynamical relations for the matterthat depends on the external force work. The thermodynami-
field system are given in the monogragiis2]. An elegant cal relations and the equation of state without the field are
sample of the application of these relations is provideBin  valid for both local values of substance chemical potential
where the problem of the condensation of an electricallyand the density-pressure dependence at every point.
charged drop is considered. At the same time the question of We also produce the corresponding functional for a two-
strong field influence on the thermodynamics of phase equiphase system. Its minimization gives conditions of the phase
librium is not quite clear, though the issue is practically im-equilibrium. They reduce to equality of the full chemical
portant in connection with the research of substance compotentials of phases at the phase boundary. The part of the
pression in a setup that uses pinch effect, electrical explosiopotential associated with the external field work is added to
of conductors, and a number of other applied problems. or subtracted from the substance chemical potential. If the
Recently a number of works were publishege, for ex- forces acting per mass unit for each phase differ then these
ample,[4-6]) in which the expected effects of dealing with field potentials differ too. It means that the substance chemi-
the shift of the phase equilibrium in a high density current-cal potentials at the phase boundary with identical tempera-
carrying conductor in the presence of an azimuthal magnetitures and pressures are not equal to each other. The equality
field were discussed. Nevertheless the self-consistent solef the full chemical potentials of the phases can be presented
tion of the problem of external field influence on the thermo-as the equality of the substance chemical potentials of the
dynamics of phase equilibrium is absent. phases with different pressures. For example, the shift of
In the present study we consider the effect of a nonuniphase equilibrium arises when either a current-carrying lig-
form potential field of forces on thermodynamics of phaseuid conductor is in its own magnetic field or a liquid dielec-
equilibrium. Assume the substance is uniform on the distric is an electrical field. However, in a field of gravitation
tances on the order of the correlation fluctuation density rathis effect is absent.
dius. The appropriate restriction on the force value will be  The possibility of the equality of the substance chemical
given below. potentials with identical temperatures and different pressures
First we consider a single-phase state. The expression f@g analyzed below qualitatively and also on the basis of the
the full thermodynamical potential of the matter-field systemvan der Waals equation. As shown for fields caused by
is written as a functional of substance density and field oforces of compression in the substance, densities and pres-
forces. Minimization of this functional leads to two condi- sures of the coexisting phases in the presence of the field are
tions. The first one is the constancy of the full chemicalhigher than those without it. Under thermodynamical equi-
potential throughout the system. The second one is the cotibrium, the phase with lower density is in the state that
dition of the mechanical equilibrium of the matter-field sys-without field is metastablésupersaturated vapotn the case
of fields creating forces of expansion in the matter, densities
and pressures of the phases at the phase boundary are lower
*Electronic address: Vorob’ev@theor.termo.msk.ru than those without the field. Moreover, the phase with higher
Electronic address: spm@litp.ivtan.msk.su density is in the state which corresponds to the metastable
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liguid branch of stategsuperheated liqujd In both cases, W(Ap?y=pkTpl—p(aPIdp)tm, (4)
there are limiting values of the potential of the volume den-

sity forces when one of the phases reaches its spinodal poinkhere(A p?) is the mean square of the density fluctuation,
The phase equilibrium in a given geometry and field is madés density,m is mass, and is temperature. The typical den-
impossible and the system has to change its state. So vgity variation associated with the external force can be writ-

have a field-induced phase transition. ten as

When a high density current-carrying conductor is in its
own magnetic field, the only possible state after transition is _(9p _[9p

. ) . o . . Ap=|—=]| AP=|—| frg, (5)
a dispersion mixture of liquid drops in vapor. We estimate P/, P/

the drop size and expansion speed of this mixture. We as-

sume that such a transition can be the direct reason for thgherer . is the correlation radius of density fluctuations. We

sharp increase of the conductor radius and the resistance @n state that

the final stage of electrical explosion of conductors taking

place in so-called fast regim¢g—9]. re~roVP/—p(dPldp)t, (6)
The phase equilibrium of a liquid dielectric in the pres- 13 ) i ,

ence of a nonuniform electrical external field has also beedherero~(m/p)™™ is the mean interparticle distance. Re-

given consideration. In this case there is vapor bubble forduiring Ap<+(Ap<), we obtain

mation in the domain of higher values of the electrical field.

P\ (p\¥® [kTp
—-pl—| | = >f. (7)
Il. PRELIMINARY REMARKS ap T\m mP

Consider a substance at constant temperature in a volume when inequality(7) is valid we may consider that gradi-
V in the presence of some nonuniform potential field ofent terms in the equation of state are of no significance.
forcesf(r). Heref(r) is the force per unit volume or the  Besides the chemical potential of the matter-field system
volume density of the force, is the position. The force on 4! in equilibrium must be constant throughout the system

the element of volume evidently is equalfV. [1,2]. It means that its full differential is equal to zero,
As is known, the matter will be at rest in a constant field
of forces if pdu'=pdu—f-du=0, )
VP=f, (1)  whereu is the chemical potential unit mass of the substance

without field, anddu is the vector of infinitesimal displace-

where P is the pressure of substance. The force per uniiment. The first term in Eq(8) is the chemical potential
volume is balanced by the pressure gradient. The field ofhange of the substance volume element. The second one is
forces can be presented as the gradient of a scalar functiothe infinitesimal work of the external force. The gradient
The pressure of the substance in equilibrium with the field oterms are absent in E¢B) because the substance is uniform
forces equals the potential of the field of volume densityon the distance in the order of the correlation radius of den-
forces taken with inverse sign. Our observations for thesity fluctuations. Integrating Eq10) by u from the point of
fields that have the potential of the volume density of forceghe zero field, we obtain
follow.

Direct integration of Eq(1) gives the pressure distribu- p(r)+e(r)=pu', 9

tion throughout the system, ) - -
where v=1/p is the specific volumeu' is the substance

P(r)+II(r)=P', (2)  chemical potential at the poimt=0 where the field is equal
to zero, and the substance chemical potential coincides with
whereP! is the substance pressure at the zero field point, anthe full chemical potential of the matter-field systepfr) is
II(r) is the potential of the volume density forces which isthe potential of the mass density forces which is equal to
determined from the expression r
go(l‘)=—f vf-du. (10

0

;

H(r):—j f-du. (3)
0

It should be noted that the full chemical potential is deter-

Generally, to find the pressure distribution one should usénined with a precision of an arbitrary constant.

the equation of state and integrate it taking into account that The line integral in Eq(10) does not depend on the path

the forcef can depend on the substance state. of integration due to the potentiality of the force field.
We shall restrict our consideration to the cases when th&hange in the substance chemical potential is associated

fields are not so intensive as to allow the nonuniformity to bewith the external field work per unit mass.

essential at the distance on the order of the correlation den- Replacingf-du with dP from Eq. (1) in Eq. (10 we

sity radius. In this case the equation of state obtained withougbtain the usual thermodynamical formula that connects the

field will be valid at every point. Let us find the requirement substance chemical potentials with different pressures.

for the value of force associated with this assumption. The |

typical scale_of_the densfty variation in uniform matter is M(P(r),T)ZM(P',T)—fP v dP. (12)

connected with its fluctuations P(r)
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It should be noted that the conditions of equilibrid)  The last expression leads to some restrictions of a magnetic
and (9) can be obtained from minimality condition of some field configuration.
functional. Consider the functiondr that is connected with

a full thermodynamical potential of the system by the rela- lll. PECULIARITIES OF THERMODYNAMIC
tion '=®—Am, wherem is the substance mass, EQUILIBRIUM OF CURRENT-CARRYING CONDUCTORS
AND LIQUID DIELECTRICS
¥= LP dVLu(r)+e(r)—A\]. (12) Depending on the sign of the work performed by the field

force, we consider two cases. 1fdu<O0, then the value
I1(r) is positive. The substance pressure is higher in do-
mains where the field is lower. According to E), the
external field work is added to the substance chemical poten-
tial and the valueu'>u. We have such a situation for a
cylindrical current-carrying conductor in its own magnetic
field. The current creates an azimuthal magnetic field. The
=0. (13 conductor is compressed by the ponderomotive fdree
—jH/c. The zero field point is located at the axis of the
conductor. In this case the distributions of the substance
ghemical potential and substance pressure have the form

The W function has a minimum in the state of equilibrium if
its first variation is equal to zero. Br is the arbitrary dis-
placement of substance element in E#3), then the first
variation equals zero, when

or_ vf

or

op
S LD+ @) =X]+p

Terms in both square brackets in E@3) must be equal
to zero. The equality of the first term in the square bracket
to zero gives the conditio®) with A= u'. The equality for 1 (r
the second term in the square brackets wiith= vd P taken w(PHY=wP(r)+ = f vjH dr, (19
into account leads to the mechanical equilibrium condition of ¢ Jo
substance in the fieldl).

Consider specific examples of fields and forces. The force P'=P(r)+ E fer dr (20)
can depend on the thermodynamical functions of matter. For cJo ’
example, in the case of a centrally symmetric field of gravity

the force is given by where u' and P' are the values of the substance chemical
potential and pressure at the axis of the conductor. The full
m(r) chemical potential in this case is equal to the substance
f==yp—3 1. (14 chemical potential at the conductor axis. It follows from Egs.
(19) and (20) that the values.' andP' are maximal at the
whereg is the gravity constant. The value zero field point.

Let us give a graphical interpretation of the equilibrium
r conditions (19) and (20). The typical dependence of sub-
m(f):47TJ prédr (159  stance chemical potential on pressure under subcritical tem-
0 perature is drawn in Figs.(d and 1b). Different parts of
his dependence correspond to different states. The branch
Sis gas,SEis supercooled ga§Ais liquid, FS is super-
heated liquid,FE corresponds to the absolutely unstable
states. The poins is the point of phase equilibrium without
the field at the planar interface. The corresponding values of
E2 the pressure and chemical potential are designatéy asd

—ng, (16)

is the substance mass confined in a spherical volume of r
diusr.

As in [1] the force per unit volume in a liquid dielectric
The states of liquid conductor correspond to states lying

can be written
v E? de
8\ P ap) .
) o _ ) ) at the liquid branch of this dependence. The straight lihe
whereE is the strength of electric field andis the dielectric  gjves the full chemical potential value which is constant

f:

=

S

constant. _ . _ throughout the system. This line intersects the liquid branch
The force acting on a nonmagnetic current-carrying masga at the pointA with pressureP'. This state corresponds to
terial in a magnetic field has the form the zero field point which lies at the conductor axis. The
point B corresponds to the state of the conductor at the dis-
f= E i H 1 tancer from the axis with the pressufe=P'—1II and with
[i,H], (17) : >
c the chemical potentigh=u' — ¢.

If f-du>0, then the valudI(r) is negative. The sub-
wherec is the light speed is the current density, anid is  stance pressure is higher in domains where the field is higher
the magnetic field strength. too. The external field work is subtracted from the substance

We emphasize that volume density field of forces in anchemical potential, so that the valué< 1. Such a situation
arbitrary magnetic field may not be potential. It will be po- can be realized, for example, in a liquid dielectric in the
tential if the following condition is valid: presence of an external electric field at a distance from elec-
trodes. Consider a long cylindrical capacitor with external
and inner radii equal t&R andr . If the liquid dielectric is

1 1
rotf=c rofj H]= 7 rofrotH,H]=0. (18 | lized within the cylindrical capacitor, then the distribu-
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whereE(r) is the strength of the electric field at the surface

£ A of the inner electrode. The electrostriction force is equal to
------------------------ zero at this surfacgl0]. So the liquid pressure has a minimal
/C A W value at the electrode surface due to the expansion of the
5 : liquid by electrical forces. As the volume element of liquid
Hs| "/ < & moves away from the electrode the electrostriction force first

increases and then decreases. The latter is associated with a
fall of the strength of the electric field as the point moves
away from the electrode. So we have nonuniform pressure
distribution throughout the liquid due to the presence of the
electrical field. It is significant that the minimal value pres-
sure of liquid can be realized via an electrode with a higher
value of electric field strength. The zero field point can be
located somewhere outside the capacitor. The dependence of
the chemical potential on pressure for this case is shown in
Fig. 1(b). The pointr, corresponds to the liquid state at the
surface of the electrode with the higher value of the electric
E A field strength. The poinB corresponds to the liquid state
inside the capacitor at the point lying at a distance from the
electrode. The zero field poift= S coincides with the equi-
H librium one and the value of the substance chemical potential
at this point isu' = u..

Chemical potential

P -

=
LY
o
[72]
w
C
=
o

Chemical potential

IV. PHASE EQUILIBRIUM IN THE PRESENCE OF FIELD

Let us assume that the matter breaks down into two
P phases. Phase 1 occupies the inner volipePhase 2 oc-
cupies the external volumé,. The location of the zero field
Py P point depends on the problem being considered. This point
Pressure can at times be localized into the inner domain of phase 1
and at other times at the periphery domain of phase 2 or even
qutside volumed/; andV,. The phase boundary is the sur-

(b)

FIG. 1. (a) relates to the case of negative values of paraniéter
(b) to the positive values of this parameter. Substance chemic .
potential dependence on pressure at the constant temperature. e P(ry). The functional¥ for the two-phase system has
values of equilibrium pressur, and substance chemical potential the form
s are marked as dotted lines. The values of pressures and chemical
potentials corresponding to the equilibrium in the presence of ex- _ _ ' '
ternal field are marked as solid lines. The limit values of the pres- v leldV[,ul(r)+<pl(r) Mt fvzpzdv Lua(r)

sure and the substance chemical potentials are marked as short dot- ,
ted lines. +@a(r')=N]+ S, (24)

tions of the substance chemical potential and substance pre§hereo is surface tensior is interface. The value
sure at a distance from electrodes, followir®, are

b
. oot =atr)— [ vofydu 9
M(P')=M(r)—g<%) ! (21) '
T is the potential at the point’ of phase 2. Minimization of
£2 /5 the functional(24) with respect tosr and ér’ leads to the
P'=P(r)— PE- <_8> (22) conditions of equilibrium(1) and(10) for each phase. More-
8w \dp/; over, the value\, is equal to\;=pu(0). Since the full
chemical potentials of each phase are constant, we write
Herex' andP' are values of the substance chemical potendown the thermodynamical potential of the system
tial and pressure at the zero field point. It should be noted
that near the electrodes the sign of force changes. There is a D=myuq(0)+ Myl ua(ry) +o(r)]+0S, (26
force at the boundary of a charged metallic body penetrating
inside a dielectric liquid. This force moves apart the capaciwherem;, m, are phase masses. When minimizing E2f)
tor plates and expands the liquid. As a result, the pressur#ith respect tom; provided there is constancy of the total
drop appears at the boundary between liquid and charge@ass of both phasesln, = —dm,), we obtain the condition

metallic body. This pressure drop can be writterf 240 of equilibrium of the two-phase system in the form
E*(ro) )
P'=P(ro)+ B e(e—1), (23 Ho(r1) +@a(ry) = pa(ry) +@a(ry) + am, (27)



56 THERMODYNAMICS OF PHASE EQUILIBRIUM N . .. 3963

Assuming thato does not depend om,, after usual trans- boundary is determined by E(R9). In this case the value of
formations the surface term in E€R7) can be rewritten as  the phase 2 chemical potential at the phase boundary coin-
cides with the value of the full chemical potential of the
system. The latter is determined with the precision of an
arbitrary constant.
Thus there is a shift of phase equilibrium parameters due
whereR; andR, are the main curvature radii of the interface to the presence of an external field described by E2@8)-—
at the pointr;. Then the formulg26) can be presented as (33). (We emphasize that the free energy functional is used
in [4] for the calculation of the work of new phase nucleus
p2(T,Pa(r))+@a(ry) =pma(T,Pa(r))+¢a(r), (29  formation in the presence of a magnetic field. However, the

. magnetic field energy change connected with the nucleus
whereP4(r;) andP,(r,) are substance pressures at the in- g gy g

terface. Their difference causes surface effects and e ualsformation for a particular size is only minimized. Such an
' q approach does not give the necessary equilibrium conditions

for the current-carrying conductor in its own magnetic field
. (30) and leads to a number of erroneous conclusjofisere is a
need to add Eqg28)—(32) to equations of state at the phase
boundary and at the point phase 1 with the pressutdl.

aS
omy

1 1

o R—1+R—2 , (28

)Zovl

1
— 4 —

Pi(ry)—Pa(ry))=o R, R,

The formula(29) is the condition of the phase equilibrium in
the presence of the external field. If the external field is ab-
sent, then Eq(29) turns into the usual equality of the phase

chemical potentials with different pressures due to the cur- _ . _ )
vature of the interface. In the presence of the field, theVherevy is the specific volume of phase 1 at the points with

chemical potentials of the substance phases do not coincidd€SSure? +1II. The system of equation@8)—(33) is deter-

at the phase boundary. The difference of these potentials Cgﬂlned by the substance densities at the phase boundary if the
be written as parametedl is given.

We see from Eq(33) that the field-induced phase equi-
r librium leads to the equality of phase chemical potentials
Ap(ry)=ei(r)—@o(ry)= —f (vafy—vofy)-du. with different pressures. Let us investigate the possibility of
0 such equilibrium when paramethris given. Differentiating
(31 o ; )
quality (33), we obtain

Generally the differenc€3l) is not equal to zero for an ar-
bitrary field. It is equal to zero if the mass densities of the vy v19P1/dvy 35
forces acting upon the phases are equal,i.g;=v,f,. The a_yl  vdP, vy (39
last equality is valid for a gravitational field. Therefore the
gravitational field does not influence the phase equilibriumThe value of the derivativev,/dv, is equal to zero or in-
and we have the ordinary condition of phase equilibriumfinity at the spinodal points wher&P/dv=0. These values
when the substance chemical potentials of the phases coiare not compatible with the mass conservation law. As a
cide at the phase boundary. At the same time, this differencgesult, a two-phase system in the presence of an external field
may not be equal to zero either in an electrical field or in apecomes unstable at the spinodal points and a field-induced
magnetic field. In this case the field-induced shift of phasehase transition may occur.
equilibrium parameters will occur. Now let us use the van der Waals equation to research a

The calculation ofAu offers a special problem. It is con- field-induced matter state in greater detail.
venient to present the substance chemical potential differ-

ence at the phase boundary as an equivalent change of pha\§e
1 chemical potential '

P+II=1(T,»;), P=1(T,vp), (34)

INVESTIGATION OF PHASE EQUILIBRIUM ON BASE
VAN DER WAALS EQUATION

" Py 411 The field-induced phase equilibrium problem allows exact
fo— vof -duzfl dpP. 32 1€ e P d m pr
fo (vaf = vaf2) Py 1 32 solution if the van der Waals equation is used. In reduced
_ units, this equation is
This formula is the definition of the parameidr Using Eq.

(32 we can rewrite the phase equilibrium conditi@9) as . 8T’ 1 3 36
B

pa(T,P+I1)=po(T,P)=u', (33) v v

In Eq. (35 the values areP’'=P/P., T'=T/T,, v’

whereHzPl—P+ﬁ. -
So we can see that formally the field influence shows_ vlve, whereP., T, v are critical pressure, temperature,
d specific volume. Below the primes will be omitted. Us-

ftself as an additional dlspllacement .Of. phasg 1 pressure Om Eq. (34), the temperature can be expressed as a function
the value ofll. We emphasize that this is nothing more than "

. - ) of the phase densities
a convenient form of the general conditi(@0) presentation.
Moreover, the equality33) corresponds to the choice of the 1
phase 2 potential whetp,=0 at the phase boundary. The T== (Pl_PZ)(3_p1)(3_PZ)[1
difference of the chemical potentials of phases at the phase 8

IT

- 3(,35—,35)} 37
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The pressure can be expressed as a function of the phase

densities too. Then we obtain 8

4 o
(3= p2)p1

P+II= 3—potp)— 5—, 38 i
p2p1(3—patp1) 31— py) (38 2]

< 0

(3= p1)p2 = !
P= 3—pr—p1)— 55— 39 L

p2p1(3—p2—p1) 3(p1—pa) (39 -2
The system37)—(39) is determined by the temperature and L
pressures via the phase densities. The value the param- 6l

eter. In particular, ifll=0 and all densities are equal to
unity, then the systenB6)—(38) gives correct values of the
critical temperaturél =1 and pressur®= 1. Equation(33) TIT,
will be one more equation to add to the syst@W—(39). To
obtain it, we write the free energy in van der Waals ap-
proach,

05 06 07 08 09 10

FIG. 2. Dependencies of the limit pressufés on reduced tem-
peratures obtained on the basis of the van der Waals equation.

8T [ o(T)) 3 This dependence is also depicted in Fig. 2. The area between
f=— In( p— 1/3) -, (40) the limit positive and limit negative values b’ determines

3 v the domain where the field-induced two-phase system may

where ¢(T) is a function of temperature. Using Eqé0),  €Xist as stable. _
(36), and the thermodynamical relatign=f+ P», we can The phase densityFig. 3) and phase pressul&ig. 4)

write the phase equilibrium conditia33) in the form

3.0
— n _ _ —_— ———————————
3 w1 PP 3= (3=p2) 25F
) , . 20
Equations(36), (37), (39), and(40) permit us to find the o
densities, temperature, and pressure when the paratieter a
has the same value. 1.5
First of all, we calculate the limit value of the parameter
IT" allowing the equality of the phase chemical potentials 1.0
with different pressures. Here one of the phases reaches its
spinodal state wheredP/dv)+=0. Using Eq.(35) to calcu- 0.5
late this derivative we obtain that the temperature and pres-
sure at the spinodal line have to satisfy the equations 0.0 : . :
0.4 0.6 0.8 1.0
Psp:P2(3_ZP)= Tspzp(s_P)ZM'- (42) (a) T/ Tc
Let us havell >0. Setting temperatur€87) equal to the 3.0

temperature determined by the expresdidh), we find the
value

, 3(p1—p2)
II :3_—m(p§+p1p2+3p2—3p1—2p§)- (43

plp,

Substituting expressiof¥3) in Eq. (37), from Eq. (41) we
obtain the equation containing only the densifigsandp,.
Solving this equation numerically and using the expressions
(37) and(43) we find the value§ andIl’. The dependence
I’ versus temperature is shown in Fig. 2. The vallé
tends to zero when the temperature is close to the critical
point. This value grows when the temperature decreases.
A similar procedure gives the following expression for the

limit negative valuell’ when the higher density phase (b) TIT,
reaches its spinodal state:

0.0 1 e 1 1 (]
03 04 05 06 07 08 09 10

FIG. 3. Phase reduced density dependencies versus reduced
3(p1—pa) temperature with the different values of the paraméierl—II
17~ P2 -n- . . . _ . _ ;
= S (2pf+3p2—p§—p1p2—3p1). (44) =0; 2—0.1; 3—0.5; 4—1; 5-(—0.5); 6—(—1). The points at
p2 the limit temperature values are connected by short dotted lines.
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dependencies in Figs. 3 and 4 correspond to fixed values of
parameterlI>0 (&) and II<0 (b). Curves 1 withII=0
correspond to the absence of field. Curves 2—4 correspond to
increasing positive values &, curves 5 and 6 to increasing
negative values ofl.

Two density curves are given for every valueldf The
lower one corresponds to the lower density phase at the
phase boundary with pressupe the upper one to the higher
density phase at the point with pressite I1. The curves
converge to curves for the case without field when the tem-
perature becomes lower. For the positive valuedlothe
deviation of curves 2—4 from curve 1 takes place in the
domain of higher densities as the temperature decreases. For
negative values deviation takes place in the domain of lower
densities. The deviates are the largest when the temperature
reaches the value which corresponds to the liquid or gas in
its spinodal staté¢see Figs. 3 and 4 for the spinodal lines
The field-induced phase equilibrium is impossible when the FIG. 5. Surface of reduced densities for field-induced two-phase
temperature exceeds this value. There is a limit temperaturgates on reduced temperature and paraniétérhe upper part of
for every value offlI when the curves break. This limit tem- this surface is related to quuid. state, Fhe lower one to the.gas state.
perature decreases when the absolute valuésgow. The ~ The space curvedl) is the binodal in the absence of fieldI(
phase pressure curve corresponds to every vallkiofrig.  —9) (2) is the gas spinodal3) is the liquid spinodal. CP is the
4. As we can see from Fig. 4, the phase boundary pressur@ tical point. Five curves W|t_ﬁ':_ const are also shown. The parts
converge to pressure without the field when the temperatur% these curves shown as thin lines are related to unstable states.
decreases. The curves break when the phase pressures reach
the values corresponding to liquid or gas spinodal state. ~have the surface of field-induced two-phase states which is

Equality of the chemical potential82) can be presented restricted by the liquid and gas spinodals and their projec-
as an equatiofr (T,II,p) =0. This equation gives a surface tONs. o .
in the plane of variable3-II (Fig. 5. The top part of this It shou_lc_i be _noted t_hat_ the_ Iqu_ud and gas spinodal curves
surface relates to the liquid state. The liquid state domain i€0rm a critical line. This line is singular for substance ther-
limited by the liquid spinodal curve 2. The lower part of this Modynamical functions just as an ordinary critical point is
surface relates to the gas state. It is restricted by the gadhgular in the absence of the fiefd]. The field-induced
spinodal curve 3. The liquid and gas spinodals come togethdWo-phase system becomes unstable when one of the phases
at the critical point(CP). The part of the surface between réaches the critical line. _ o
liquid 2 and gas 3 spinodals corresponds to unstable states. FOr every couple of value®-II we can find the liquigh,
Projection of the liquid spinoddturve CP-G,) on the gas and gasp, densities belonging to the upper and lower parts
state surface restricts the domain of gas states which can I8¢ the surface. These densities characterize the two-phase
in equilibrium with liquid in the presence of the field. The State with given values-II. The gas density, belongs to
same is true of the gas spinodal projection on the liquid statée point at the phase boundary with the presdereThe
surface(curve CP-L,). The plane curve 1 in this picture liquid densityp, corresponds to the phase 1 state with the
corresponds to the ordinary binodal without the field ( Pressure®+I1I. The fiveS-shaped curve$=const are also

=0). In the presence of the field instead of the plane line wghown in this picture. Consider, for example, the isotherm
with T=0.5. The top part of this curvie,L, is related to the

liquid state, the lower paiG,G, to the gas state; the states
lying between pointd., andG; are unstable. The points,
andG, determine the values of phase densities without field
(IT=0). The pointsL,; and G; give the phase densities at
the greatest possible positive value of paramEtemhe gas
stateG; in this case lies on the gas spinodal 3. The pdints
andG, correspond to the limit possible two-phase state with
6 the negative value of parametdr The pointL, lies on the
liquid spinodal in this case.

1.0

PIP,
"
w
-~
0

VI. PHASE EQUILIBRIUM IN LIQUID CURRENT-
0.0 ' f . CARRYING CONDUCTOR AND LIQUID DIELECTRIC IN
0.2 0.4 0.6 0.8 1.0 THE PRESENCE OF FIELD

TIT, Let us use the results obtained above to investigate a
FIG. 4. Phase reduced pressure dependencies on reduced teliguid-gas equilibrium for a liquid current-carrying conduc-
perature with different values of the parametdr 1—I1=0; tor. We suggest that this conductor is surrounded by its own
2—0.1; 3—0.5; 4—1; 5-(—-0.5); 6—(—1). vapor and is in equilibrium with it under certain field param-
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eters. Let the interface be a cylindrical surface. We neglect P,) v, /v,<Pg. The inequality is valid far from the critical
the effects induced by the curvature of the surface, so thpoint, wherev,/v,<1. As a resultPg~P. The pressure
phase pressures coincide at the interface. Besides, the matjfference between the liquid and the gas is compensated by
netic field created by the current has practically no influencehe surface effects. The typical drop size can be found from
on the gas state. So the full chemical potential coincides witlthe Laplace relation
the chemical potential of the gas phase.

As before, it is very convenient to ugg(P) dependence A 20(T) 46)
[Fig. 1(a)]. The straight lineu' = const giving the full chemi- Psp—Pg’
cal potential value intersects the liquid bran8\ at the
point A with pressureP+II corresponding to the zero field where o(T) is the surface tension. The drop numbers per
point. The intersection poin€ of this line with the gas unit of cylinder length are given by the expression
branchSE determines the gas state at the phase boundary
with pressureP. The pointB corresponds to liquid state at N=27-rr§/ 4_77 ad. (47)
this pressure. The phases can coexist along a planar interface 3

at this pressure. The poing and C give the values of the ) ] ) o
liquid chemical potentiajz; and gas chemical potential, The chemical potential difference between liquid and gas

at the phase boundary with the press@eand with i, existing before transition is partially expended on the drop
—w,=Ap. formation and partially converted into kinetic energy of the

The state of the substance changes in the following waydrops. Writing the corresponding energy balance, we obtain

The liquid phase state changes along &t branch till the
valueP at the phase boundary. There is the chemical poten- 27rr|2A,u= N(47rr2(r+
tial jump at the poinB to the value at the poir€ of the gas
branch. The poinC corresponds to gas statthe pressure
;?balg)g';es due to the external field in the gas phase are nega-nd using expressior{g6), (47), we obtain from the expres-

In the case being considered the liquid in the presence ot'on (48) that
the field is in equilibrium with the supersaturated vapor. _ — —
(This conclusion differs from the one made by the authors of U=yl 3(Psp=P9/2)/py. (49)
[4-6]. According to[4-6], the thermodynamical stability The estimation on the basis of the van der Waals equation
fails due to the attainment of the limit superheated state byp s thatP.— Ps~0.2P, at the range of temperatures
the liquid phase. From what has been said, it might be as= g 5_g ). Using this condition, we obtain that the val-
sumed that this is impossible for the compressive fo}ces.ues for the pressure drop ai@~P.~8000 atm ando

. Cc

The latter how becomes stable. So we see that in the pres: dyn/cm. These values are typical for such liquid met-
ence qf the field, metastable states may be stablg. als as Al or Cu. From Eq46) we obtain that the typical drop

Notice that the pressure at the conductor axis become ze is~10"7—10"® cm, and from Eq(48) we have that the
higher if the magnetic field strength increases. Therefore th '

4mpy , u?
r —
3 2

: (48)

Ylv_hereU is the expansion velocity. Knowing thAtu ~I1/p4

fypical velocity of expansion is equal to hundreds of meters

value fOf the full chenglcal potehnnadc Incrl_ea'_ses tloo. A}S LS per second. Orders of magnitude of these values correspond
seen from Fig. (a), there is the same limit value of the with those of experimental daf,9].

pressure gnd corresp_qnding value (?f qugid chemical POten- consider now a long cylindrical capacitor. This capacitor
tial in Whlch_the equilibrium can still exist. This happens s filed with a dielectric liquid. As is seen from Fig(l), a
when the pointC reaches gas spinodal state at the p&@int ie|ectric liquid in an electrical field cannot be in equilibrium

with the pressurés,. The dotted lines in Fig. () corre-  \ith its own vapor along a planar interface due to the exist-
spond tp this IS|tuat|on. The 'equmbrlu_m of the 'two—phaseing pressure drop between the poidtsand C. The phase
system in a given geometry is made impossible. The tWog,eyistence is possible only when vapor bubbles are inside

phase system has to change its state. In this case the trans?ﬁé liquid. Let us assume that the vapor nucleus is formed at

to anew state Is aqcor_nplished by exp.ansion o_f.th.e conductey gistance from the axis. The electrical field has no influ-
and formation of liquid drops. The final equilibrium state ence on the gas state. Assume thata, wherea is the
may be only a dispersion liquid-vapor system practically oy, o cteristic transversal size of a nucleus. The minimum of
without current. The chemical potential and pressure of the, o ¢ thermodynamic potential of the two-phase system

liquid in this state will be equal to the chemical potential andWith = const andT = const determines a minimal value for

pressure of the liquid at the phase boundary before deca%apor bubble work formation. In long dielectric the mini-

Psp(T)- mum of the absolute value of the bubble formation work is

T_he _chemi_cal p_otentials of a drop and vapor which is inyyaineq for a thin long bubble of lengh®-a oriented in the
equilibrium with this drop are equal to each other and to th irection of the dielectric axis. Thus the bubble formation

chemical potential of the liquid before decay. The pressure, o per unit of length of the capacitoW is given by the
of the vapor can be found from the relation expression

P P
f pvld p:f GV2d P. (45) W=2nrga—ma’[Ps—P(r)], (50)
Py P
° wherePg is gas pressure at the zero field pagtThe criti-
From the expressior(45) it follows that Ps—Ps~(Ps, cal dimension of a nucleus can be determined from the con-
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dition 9W/9a=0. The latter condition and formul&0) yield  near an electrodgl1,12. Now we can see that this effect is
the equilibrium size of the bubble and the value of its mini-a result of the phase equilibrium shift due to the presence of

mal formation work, the latter being of the form an electrical field.
o? VII. CONCLUSION
W=7 ———-. (51 . . .
(Ps—P) The preceding analysis demonstrates that the conditions

. . - . . of phase equilibrium substantially change when external
This work will be minimal when the differenc®s—P is  oqniform fields lead to appearance of mass forces having
maximal, i.e., at the surface of the inner electrode. Usingjifferent effect on the phases. A field-induced domain of
expression$22) and(23) we obtain the following expression siaple states of a substance is extended up to corresponding
for the minimal nucleus formation work in the presence of angpinodal curves. The domain of temperatures, pressures, and
electrical field: phase densities, corresponding to thermodynamic equilib-
2 2 rium of the two-phase system in the presence of a field, is
W= 870 (52) extended too. There is a loss of stability of the two-phase
E2(r0)s(s— 1)’ system when one of the phases reaches its spinodal state. A
) ) configuration phase transition of the two-phase system into a
The size of the bubbles can be found from the relation  dispersion state occurs in this case. The phase spinodal lines
) form the critical line of these transitions. The critical point
a= 87" (53) belongs to the line in the absence of the field.
E2(ro)e(e—1)" We also demonstrated the occurrence of several peculiar
effects which accompany phase transitions in the presence of
From Eqgs.(51) and (52) it follows that the work of the  an external nonuniform field. The first of them is connected
nucleus formation is minimal where the externally appliedwith the formation of the domain of instability of both
electric field is maximal. This is the general conclusion in-phases in a current-carrying conductor leading to sharp ex-
dependent of a system geometry. So we obtain the explangansion of the conductor and its transformation into a fine
tion of the mechanism of vapor bubble formation near ardispersion mixture of liquid drops in vapor. This mechanism
electrode. can be the reason for electrical explosion of conductors, in
Let us compare the values of bubble size which followthe so-called fast regimgg—9].
from the expressiort52) with ones from[12] obtained as a The second effect occurs in a liquid dielectric penetrated
result of experimental investigation of prebreakdown pheby an electrical field. The appearance of vapor bubbles in the
nomena in nitrobenzol. Using the values=36.4 ande  domain of the high value of this field is caused by the change
— 43.9 dyn/cm for nitrobenzol and taking frofh2] the char-  ©f the phase equilibrium conditions due to the field. o
acteristic value of electrical field strength near the electrod?ari'vl"“ny of the aspects of these problems have direct simi-

E(ro)=5%10° V/cm, we obtain from Eq(52) that the typi- ty o the problem of _phase transition accompqnie_d by
cal bubble size is equal @~ 105 cm. This value correlates melting processes, chemical reaction, and polymerization in

well with the data fron{12]. the presence of the external field.
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