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Polylogarithms and Riemann’s £ function
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Riemann’s{ function has been important in statistical mechanics for many years, especially for the under-
standing of Bose-Einstein condensation. Polylogarithms can yield values of Riendadnnstion in a special
limit. Recently these polylogarithm functions have unified the statistical mechanics of ideal gases. Our par-
ticular concern is obtaining the values of Riemanti’function of negative order suggested by a physical
application of polylogs. We find that there is an elementary way of obtaining them, which also provides an
insight into the nature of the values of Riemang'$unction. It relies on two properties of polylogs—the
recurrence and duplication relations. The relevance of the limit process in the statistical thermodynamics is
described[S1063-651X%97)01510-9

PACS numbegps): 05.90-+m, 02.90+p

[. INTRODUCTION standard methods. It also lends an interesting insight into the
nature of the values of RiemannZsfunction.
Riemann’s{ function perhaps first appeared in statistical
mechanics in 1900 in Planck’s theory of the blackbody ra- Il. POLYLOGS AND THEIR PROPERTIES
diation and then in 1912 in Debye’s theory of the specific . ) ) . ]
heats of solid§1]. Subsequently, this function has played an 10 Show their relationship to Riemannisfunction, we
important role in the statistical theory of the ideal Bose gasShall introduce a convenient integral representation for poly-
especially for the understanding of Bose-Einstein condensd09s Lis(2) of complex numbers andz [6], defined by
tion (BEC) [2]. More recently, this function together with the
Mellin transform has become a powerful tool for the analysis Li(z)= . fl[lo o1 Ul 3
. ; s(2)= g(It)* * ——, Imt=0, (1
of the thermodynamic potential8,4]. It would be no sur- I'(s) Jo 1-zt
prise to find fruitful applications of Riemanngfunction in
other areas of today's theoretical physjié$. whenever this integral converges, i.e.,sR€, Re<1, and
Recently it was found that the statistical thermodynamicslsewhere by analytic continuation. It is understood that
of ideal gases can be given a unified picture through polylog#g(14) has its principal value. Evidently there is a branch
defined in terms of the fugacity and dimensiong [6].  cut fromz=1 to. Also if s=2, the standard expression for
There is richness that this unified picture reveals, such as tHée dilog is recovered10]. The above equatiofl) bears
anomalous physics in null dimensidi], the Fermi-Bose resemblance to an integral representation for Riematin’s
reflection ind=3 [8], and the Fermi-Bose equivalencedn function ¢(s) of a complex numbes [12].
=2 [9]. These physical results are consequences of some We shall now state a few useful properties for our pur-
special properties of polylogs. It has been long known that g@oses which follow directly from Eq(1).
polylog of integral order becomes Rieman@’'sunction of (@ Lig(z=1)=¢(s).
the same order when its argument attains ufli§]. Thus (b) If s=n=2,34..., Liy(z) are classical polylogs,
Riemann’s{ function can enter into the unified theory of the known, respectively, as the dilog, trilog, quadrilog, etc.
statistical thermodynamics via the polylogs quite naturally.(Throughout this work we shall reserveto denote real in-
Interestingly, we find that this formulation shows anothertegers, both positive and negative.
way of evaluating Riemann’g function, which is presented (0) lim, oz ! Lig(z)=1. There is a trivial fixed point at
in this work. the origin.
The classical theory of polylogs begins with Euler’s dilog  (d) Recurrence relation
and Landen’s trilog, and extends to higher order polylogs
such as the quadrilog. In physical applications the order of a . .
polylog is related to physical dimensiods Thus polylogs of z dz Lis+1(2)=Lis(2).
integral order lower than the dilog have been conceived,
such as the nil-log and the monolog for the physicsdin (e) Duplication relation
=0 and 2[6]. There have been suggestions that negative
dimensions can be of theoretical intergl]. They require Lig(z)+Lig(—2z)=2'"SLi(Z?).
the polylogs of still lower orders than the nil-log, departing
from the direction of the classical theory of polylogs. Whatlf s=n=2 and 3, one recovers Euler’s formula for the dilog
we find is that in these circumstances there exists even and Landen'’s for the trilog, respectivel40].
simpler relationship between the polylogs and Riemadn’'s  (f) |Lis(z= —1)|<c since the function is analytic a=
function. We can use this relationship to evaluate Riemann’s- 1.
¢ function very simply, perhaps more simply than by most (g) If |z]<1 ands=n=1 (also|z|=1 included ifn=2),
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i Li_g(2)=2(1+2)(1+ 562+ 2467%+ 5623+ z*)/(1—2)"=0,
Lin(2)= >, Z¥/K".
k=1 Li_(z)=2z(1+120z+ 11917+ 24167
(h) +11917%+ 120¢°+ 28)/ (1 2)®

. {(n) if >1 =17/16,
Ln(D=1% it n=1.

Li_g(2)=2z(1+2z)(1+ 2462+ 404722+ 115723+ 4047%*

The property(h) is the basis for the existence of BEC if

5 6 _ 9
d=3 and for the absence if<2 [1]. It should be noted that +246°+2°)/(1-2)

if s=n>1, there is thus no difference in|(il) between the -0.

one given in(h) and the other given ifg). If n<1, however,

by Li,(1) we shall mean simply the integrél), which then The numerical values given on the right-hand side of Eq.
becomes undefined as shown above because of the singul@s are the polylogs evaluated at — 1. There seems to be

ity in Li,(z) atz=1. However, one can obtain {(i.), s= no general closed form expression recognizable from these

—m, m>0, by analytic continuation in the manner 6fs  lower order polylogs. One can, however, obtain the polylog
=-—m<0). To denote this latter case— and to avoid theof any desired lower order. Thus our results may perhaps be
possible confusion we shall usgs) in place of Li(1) considered all but complete. These polylogs of onderO,

whenever analytic continuation is implied. Sinee —1 is  —1,—2,... have shed log character. We might call them
not a singular point of L{z), this kind of distinction need polypseudologs, e.g., Li(z) the dipseudolog. This distinc-
not be made for L{—1). tion will be found useful.
We can easily verify that these polypseudologs satisfy
Il. POLYLOGS OF NEGATIVE INTEGRAL ORDER: several important functional properties of polylogs stated in
POLYPSEUDOLOGS Sec. Il (i) The recurrence relatiofd) is satisfied.(ii) The
duplication relation(e) is satisfied.(iii) They are finite atz
If z=1 in the duplication relatiorfe), we obtain together —_1 gee (). (iv) If |z|]<1, the expansions of polyp-
with (a), seudologs are also given lg). Hence the conditiors=n
£(s)= (25— 1) 1Liy(~1). @ =1 given therein may be relaxed g=n. In addition, the

polypseudologs Li,(z), n>0 show the following proper-
ties.(v) They have a pole of order+ 1 atz=1. Seeh). (vi)
They are factorable by [see(c)] and also by £+1) if n is
an even numberii) The numerical coefficients add up to

Thus it is possible to evaluat&s) if Li 4(z) can be given at
z=-1. If s=n=2, for example, we recover the familiar
result £(2)=72/6, given that Lj(—1)=—m?/12. See the

y el - . n!. (viii) Evidently Li_,(=1)=0 if n=2,4,6..., and
Appgnd|x for Li(—1). n—2,4,6.. - .» obtained purely frqm some numbers relatable to Bernoulli's numbers rif
the inversion property of classical polylogs. Hence it is eI-_1 3 Th | b d btain th |
ementary to evaluaté(s=n) if n—2,4.6 Toevaluate L~ ,5....These results may be used to obtain the values

e of Riemann’s{ function /(s=n), n<1 to any desired lower

{(s=n) whenn<1, we need to know first the form of {(iz)
for s=n=1,0,—1,—2, etc. These lower order polylogs can
be obtained from any one of the higher order ones through

repeated differentiation. See the recurrence relatidn IV. REIMANN'S - £ FUNCTION

Hence it is sufficient to know one polylog function in closed  \ye shall first consider one or two special cases#1
form. By settings=n=1 in Eqg. (1), we immediately obtain ;, Eq. (2),

the form for the monolog,

order.

1) =i 1-s_ 1\ 1y (— .
Li;(z)=—log(1-2), z#1. 3 {(s=1) ll_,ml(z S ) ©

By applying the recurrence relation to the above form of theFrom Eq. (3), Li;(—1)=—log 2. Also, (2 5—1)——(s
monolog and repeating it over and again, we have obtained 1)log2 ass— 1. Hence{(s—1)=1/(s—1), s—1, a well-

the lower order polylogs given below to orde+ — 8: known result. Ifs=1 in Eq. (2),

Li(2)=2/(1-2)=-1/2, @) ((B)=(Va+1)Liy(~1)=—140..., (8

Li_((2)=2/(1-2)*=-1/4, where by (90 Liy(—1)=—1+1NV2—1A3+ ...=

) 3 —0.6048. .., aslow but converging serid43,14. This re-
Li_x(2)=2(1+2)/(1-2)°=0, sults, Eq.(6), cannot be obtained by the reflection formula of

) 5 4 Riemann[12].
Li_y(z)=2z(1+4z+2°)/(1-2)"=1/8, From Eq.(2) we see that the coefficient standing before
_ ) 5 Ligs(—1) is always finite ifs is a negative real number.
Li_4(2)=2z(1+2)(1+10z+2z%)/(1-2)°=0, Hence from Eq(4) we obtain at once that

Li_g(2)=2z(1+ 262+ 6622+ 2623+ z%)/(1—2)%= — 1/4, (—2m)=0, m=1.2,... . 7
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For the others we can evaluate one by one. By using4q.
in Eq. (2), we obtain at once/(0)=—3%, {(—1)=—135,
L(—3)=155, {(—5)=—5%5, {(—7)=3555, etc. According
to Titchmarsh’s bool15], {(—2m)=0 and {(1—2m)=
(-=1)™B,,/(2m), m=1,2,...,whereB,, are the Bernoulli

1 1 1 1 5
numbers, e.gB;=5, Bo= 35, B3= 315, B4= 35, Bs= 35, etc.
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spectively, for the massive Bose and Fermi gases, where
denotes the fugacity and the number of physical dimen-
sions. One finds in the Bose gas in lower dimensions a con-
dition equivalent to taking thel/2—1 limit first. If z—1,
then the divergence of h(z=1), d=2, implies that BEC
does not occur in lower dimensions. But for the Fermi gas

Insofar as we have determined, we recover the values af=1 is not a singular point of-Liy,(—2z). Hence the two

Riemann’s{ function very simply.

limits may be exchanged harmlessly, indicating the regular-

Observe the remarkable difference between the twamess of the Fermi thermodynamics. In higher dimensions,

classes of numbers¢(n), n=-1-3,-5,... andn
=2,4,6 ... . Theformer are rational numbers, whereas the
latter are not, containing even powers®f This difference

where there are no divergent singular points, these gases at
z=1 have a special significance, being a source of reflection
symmetry. At this point the chemical potentials vanish and

can be traced to polypseudologs having lost log character bitoth gasegexcluding kinematical factoyshave the same
polylogs retaining it. Also see the Appendix for the source ofuniversal entropy, a constant made up of Riematgrfisnc-

.

V. CONCLUDING REMARKS

Riemann’s{ function of a negative number is not ordi-
nary, being defined only through analytic continuation. Thi
condition no doubt limits the number of possible avenues o

approach to it. As far as we know, there is only one direct

method of obtaining the values df(n<0), given in the

tion. When the chemical potential of a gas vanishes, it im-
plies of course that the gas has no control over the flow of
particles when in contact with a particle reservoir. These
fundamental properties of the ideal gases are manifested in
Riemann’s{ function, reached through the special limits of

sPolylogs.
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peculiar to polylogs, one of which corresponds to Riemann’s

¢ function.

We have alluded that i§;<sy=1, the order of two pos-
sible limiting processes in polylogs—s; andz—1) may
not be exchanged. We can illustrate the difference throug
the following examples. Consider J(¥) taken in two differ-
ent orders o andz, whens;=1 and O:

limlimLig(z)=¢(s—1)=1/(s—-1), s—1 (8a
s—1z—1
but
limlimLi(z)=—log(1-2), z—1. (8b)
z—1s—1
Also,
lim limLiy(z)=¢(0)=—%, (9a)
s—0z—1
but
imlimLi(z)=1(1-2), z—1. (9b)

z—1s—0

In both cases we obtain quite different results depending o
the order of limits taken. This difference extends to all lower
order polylogs(i.e., polypseudologssince Li(z), s=n=
—-1,-2,..., all have poles of order-n+1 at z=1,
whereag/(n) has been found finite. In the z plane, there is
a line of singularity fors=n<1 atz=1.

This difference in the limit process is important to the
statistical thermodynamics, formulated iLigy,(*2), re-

APPENDIX : EVALUATION OF Li ,(—-1)
FROM THE INVERSION RELATION

There are only two general relations known for polylogs,
ﬂwe duplication and inversion formulas, the former given be-
fore[see(e)] and the latter to be given below. It is possible to
obtain the values of L{—1), n=2,4,... from the inver-
sion formula, hence purely from properties of classical poly-
logs. To our knowledge, these values are ordinarily obtained
from Riemann’s{ function through(a) and Eq.(2), hence
indirectly. See p. 188 of Lewin’s bodK.0].

The inversion relation is known—it is not difficult to es-
tablish it using the integral representatiéf). Instead of
writing down a general fornfsee Lewin’s booK10] or Ref.
[6]), it will suffice for our purpose to express it as follows:

Lins1(—1/2)=(—1)"Lips1(—2)+(—D)"a"" YT'(n+2)

+Kpiq(a), n=12,... (A1)
where a=logz and K,,,; is a polynomial ina in which
Lin(—=1), Li,_o(—1), ... areits coefficients. The first few

are listed below:
n

K,=2Liy(—1), (A2a)
Ky=—2aLi,(—1), (A2b)
K,=2[Li(—1)+(a2)Li(—1)], (A20¢)
Ks=—2[aLis—1)+(a%3!)Liy(—1)],  (A2d)
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Ke=2[Lig(—1)+(a%/2)Li,(— 1)+ (a*/4)Li,(—1)],
(A2e)

K,=—2[aLig(— 1)+ (a%3!)Liy(—1)+(a%5!)Liy(—1)],
(A2f)

etc. Observe that iz=—1 and n=2,4,6... (i.e., even
numbersg, Eqg. (Al) becomes

a""YI'(n+2)+K,,(a)=0, (A3)

where nowa(z=—1)=ix. If n=2, we havea®/3!+K,
=ad%/3!—2aLi,(—1)=0. Hence Lj(—1)=-=?/12 and
£(2)=216 by Eq.(2).

If n=4, we havea®/5!+Kz;=0. Hence using EqA2d)
we find that Li(—1)=—7#%6!, recoveringZ(4)= 7*/90.
Similarly if n=6, we obtain Li(—1)=—317%/7!6, recov-
ering £(6)=75/945. In this way it is possible to obtain any
desired values of L{(—1) and hence also{(n), n
=2,4,8 ... directly from the two general properties of poly-
logs. Also observe that the source of in Z(n), n
=2,4,6... islog(z=—1). It is interesting to note that we
can obtain in this way Riemanngfunction of only positive
even integral order.

M. HOWARD LEE
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In the classical theory of polylogs the values of,Li
(—=1),n=1,2,..., arealso obtained by combining the in-
version relation with the duplication relation. See pp. 172
and 173 of Lewin's boo10]. As a result, the ease and
transparency of our approach are not easily seen, which is
based on the inversion property alone.

Perhaps the simplest method of obtaining the values of
Z(2n), n=1,2,... is thefollowing one, evidently due to
Euler [16]. Since the zeros of sim are x=zxkr,
k=0,1,2 ... one canvrite

oo 0 2
sik= 2, (=)™ Y (2m+ 1)t =x]] {1_(i) }
m=0 k=1 ka
(A4)

If the coefficients o&?™*1, m=1 are now equated, the val-
ues of{(2m) follow immediately. It is certainly much sim-
pler than the standard method of obtaining them by contour
integration[17]. More generally one can obtaiti(n), n

>1, by Riemann’s self-reflection formula sinéé€l—n) can

be evaluated through the Hurwitz functiph2,15.
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