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Kramers-Kronig relations with logarithmic kernel and application to the phase spectrum
in the Drude model
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Standard Kramers-Kronig relations are formulated on the premise that the response functions are well
behaved asymptotically. In certain physical problems in which the functions are logarithmic, one may then
need to reformulate these relations. This was recently pointed out very explicitly in an optical context by Nash,
Bell, and AlexandefJ. Mod. Opt42, 1837(1995]. Much earlier this issue was discussed more generally. We
examine in some detail the mathematical problem by considering the phase spectrum in the Drude model.
Comparison is made between the standard and the reformulated forms of Kramers-Kronig relations.
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[. INTRODUCTION where P means a principal-val@BV) integral andp(w) is
assumed even. This expression differs from the usual one

As is well known, Kramers-Kronig relations connect the only in the constant, the first term on the right-hand side of
real and imaginary parts of a response function such as thieq. (1).
dynamic susceptibility via integral transforms. These rela- Following their analysis, it is not difficult to write down a
tions are very general as they do not depend on properties general formula for a functioh, wheref(x)/x is assumed to
models (other than perhaps the Hermitianness impligitly behave well wherix|— c:
They are now among standard tools of analysis in dynamical

-parti X = f(y)d
theory of many-particle systenj4]. They lead to a number F0=F(0)+ = PJ’ y((;/)_)i/) .

@)

of useful sum rules, e.g., the susceptibility sum rule by which i
the validity of approximate theories may be assessed. For
examples of recent applications, see Miller and Richards i gne writesf=f,+if,,
high T. superconductivity{2], Peiponen and Vartianen in
optics[ 3], Gorges, Grosse, and Theiss in dielectric functions X = f,(y)dy
for mixtures [4], Tan and Callaway in conductivities for f1(x)=f,(0)+ — Pj —_—, (23
strongl I i i ™ YY)

gly correlated electrons and Sturm in optical sum rules
for inhomogeneous electron systefb$ and our work in the

relaxation theory of a semiclassical d&§. and

Usually Kramers-KronigKK) relations are derived with x © fy(y)d
an assumption that the response functions are well behaved fo(X)=f(0)— — pJ' M_ (2b)
asymptotically. That is, they vanish “sufficiently fast” as the — Y(Y—X)

frequency becomes very large. The susceptibility for an elec-

tron gas, for example, satisfies this condition very easily a&quation(1) corresponds to taking, =¥ with an everf, in

do other similar response functiofig. If these functions do  Eq. (2b). Observe that, may not be an odd function unless

not vanish “sufficiently fast,” it would appear that KK rela- f,(0)=0, butf; may be an even function. See Appendix A

tions must be reformulated. There may indeed be physicdbr an alternative derivation of Eq2).

problems for which this reformulation becomes necessary.  Nash, Bell, and Alexander do not make use of their new

Recently, Nash, Bell, and Alexandg8] in an interesting relation (1) to evaluate the phase directly. That would in-

work drew attention to such a possibility. If light impinges volve evaluating the PV log integral itself. Instead they use

normally on the surface of a metal, the complex reflectiorwell-known optical relationships to show that for the Drude

coefficientr may be expressed as-p exp¥, wherepis the  model there can indeed exist a nonzero constant term, which

amplitude and¥ the phase. The dispersion relation for the would be absent according to the usual form of KK relations.

phase¥ would then encounter nand this log function may Their demonstration of the existence of this constant term

not behave well. By reformulating KK relations they have lends credence to their original premise.

deduced the following expression: In this work we shall show that the PV integral can be
evaluated, recovering the result of Nash, Bell, and Alex-
ander. This work shows a new approach to solving these PV

(1) log integrals directly. In standard methods one evaluates this

0 (U—w?)’ kind of integral indirectly by using Cauchy’s theorem. Thus

\p(w)=x1r(0)—27w p[ " Inplwdu
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our alternative method may be of some interest and perhaps To eliminate the square root, we introduce two simple
even prove advantageous by being a direct approach. changes apparently due to Watsda]: First, let x=cos)
Before doing so, we should briefly point out some rel-and second, ta#2=y. Then,
evant history pertaining to this special situation. As is un-
doubtedly well known, the dispersion relation credited to — 2 = | c?+y?
I(a)zl(a)/ (;)zPJ In

Ty

d
Kramers and Kronig originated in optical scattering prob- 1_—);2 )
lems. In the 1950s there were already suggestions made that
the boundedness condition that had been required in formu- 5 . ) .
lating the dispersion relation might be too limiting. TheseWhere c*=(a+1)/(a—1), i.e, c>1 if a>1 (low fre-
considerations have been brought up in the context of thuency: c><0 if 0<a<1 (high frequency. We shall treat
scattering matrix theory of elementary particles. It would ap-the two different cases separately, but in a parallel manner to
pear that van KampeEg] m|ght have been the first to con- show whence the different behavior Or|g|nates.

sider explicitly a response function which behaves well only

in the form that we have given, i.ef(x)/x as|x|—«. He A. Low-frequency domain

obtained a formula essentially identical to E2). Somewhat

earlier Rohrlich and Glucksterri0] gave a dispersion rela- . . X .
tion for a function which include$(x) given above. A little integral but an ordinary integral ‘?nd als_o the abso_lute sign
later Toll[11] also indicated the existence of a constant term.becomes unnecessary. But we will retain the PV sign to be

There is a review given by Stefrl2] on these early devel- able to separate the log term in E@). We shall treat this

opments of the dispersion relations where one can gleat%)w—frequency case first. Then,

some aspects of this particular issue. Until Nash, Bell, and__ fx

The first case is simpler sind€a) is no longer a PV

d
Alexander, no one, to our knowledge, studied the dispersionl(a)=P _y 5.
relations with log functions explicitly. Please see the note

dy o0
In(c2+y?2 —Pf In(1+ c?y?
o ( y ) 1_y2 o ( y ) 1

added in proof. ®
Il. DRUDE MODEL By letting y— 1/y in the second integral of E@8), one may
' write it as
The Drude model is perhaps the simplest model of metals,
accounting for some of the basic properties of what may be _ ®
termed a free-electron mefdl3]. If light impinges normally I(a)=m2/2+ ZPJ' In(c?+y?) Ty
on its surface, the amplitude of the reflectivity for the Drude 0 y
model is given as followd8,13]: If w, is the classical = (2 arctanc— 7/2) = 7 arcsif(1/a). 9)
plasma frequency,
1 O<w<w See Eq(13) and Appendix B for an evaluation of the above
’ 5 Zp log integral. Fora>1 (i.e., ¢>>0), Eq. (6) may also be
plw)=1 @TN® 79 (3 solved by differentiation noting tha{a=o)=0. Hence
2° pe
o+ Jo’— wp _
I(a)=2 arcsifl/a), a>1. (10
Observe thap(w— )= (wp/w)2/4. Hence at large frequen-
cies,|In p| increases logarithmically witk.
Now Eg. (1) may be slightly rewritten as follows: B. High-frequency domain
Ut ol dinp Now we shall turn to the second case whered< 1, i.e.,

du. (4 ¢°<0.Letb?=—c?>0. As before, we can split E¢7) into

1 o
\I’(w)—‘l'(O)=—; Pfo In

u-w| du two terms, each of which is also well defined being a PV
integral,
Using the Drude model form fas given above, we obtain g
— * dy * dy
2+ Jute| du @=P| b=y 2 [ 1oy 12
«y(w)—\lf(O)z—Pf In—» | ——; 0 = Jo y
T Jo, UTO Ju-wp (11
2 © |ut+w| du AN i
2 Pf n —I, (5 Lety 1/y in the second integral. Then,
m 1 U—w u—1
) _ o — ” dy * s o 4y
where nowu andw are dimensionless. To simplify the above l(a)=-2 Iny m +P In[b”—y?| mz
integral, letu=1/x and alsow=1/a, wherea is to be re- 0 o
garded as a fixed number, i.@2>1 (low frequency and 0 =—2A+B. (12)
<a<1 (high frequency. Then,
5 L 4 d We shall evaluate the two integrads and B separately.
l(a)=— pf n arx _X_ (6) Observe thaA is an ordinary integral, also occurring in Eq.
m Jo |a=X| xy1-x? (9). It can be written as follows:
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A= [yl
“Jo Mi=y T 1y

T(a)= 2
dy=—Liy(1)+Liy(—1) I(a)=m/2. (14)

Now combining both cases,

=—1?/4, (13
where Lj, denotes the dilog of Euldil5,16. See Appendix la)=1 " O<a<l (15
C. Now turning to the remaining integral, which is a PV 2arcsitl/a), a>1.
integral, we find thaB=0, proved in Appendix D. Putting
together our solutions foA andB, we obtain Finally, restoring the frequency unit,
|
v Y(0)+7=0 if 0>, (16a
(@)= g (0)+2 arcsifw/ w,) = — 7+ 2 arcsifw/w,)  if 0<w<w,. (16b)

This value ¥(0)=—# can be readily determined by the difference can be shown in another way: The roots of the log
boundary condition thaW (w—=)=0 [13]. This recovers arguments of Eq417) and (18) are imaginary and real, re-
the results obtained by Nash, Bell, and Alexanddr When  spectively. By this property one can transform the paths of
w=0, the reflection is total. Hence the phase is reversedntegration so that they do not follow along the real axis for
Whenw =, there is a total transmission. Hence the phase i€q. (17) but they do for Eq.(18). For the latter case, Eq.
unchanged. For the Drude model the total transmission of18), the parameter which appears as a scale factor in the log

course takes place 6> w, [13]. argument can be scaled out since the paths of integration
follow the real axis. For the former case, Ef7), this is not
Ill. CONCLUDING REMARKS possible.

_ _ o It is now interesting to ask whether the general expression
One can determine where the different behavior in thq2) reduces to the standard one if, pg—o0, f(x) were

high and low frequencies comes from by examining the tWomade to behave well. Let us denote suchfahy g, i.e.,

essential integrals involved. From Edg) and(11), g(x)—0 as|x|—c. Clearly g(x)/x—0 also in this limit.
" 21 x2 dx Hence Eq.(2) is applicable tay. For this class of functions
I(a> 1):Pf In| ——>—>| —— we know([1] that
0 1+c“xc) 1—x

1 w dy
g(x)= e Pleg(Y) y=x" (19

2 ” 2 2
=1 /2+2PfO In(x*+c?) 12"

(17) Hence, by writingg=g,+ig,,

wherec?=(a+1)/(a—1)>1, and 1 (= dy
g1(x)= p PJ g2(y) v—x (1939
I(0<a<1) ‘“
o[ b?—x?| dx and
_Pfo N1 052 1-x2 1 (= dy
92(X)=—— Pf_mgl(y) v (19b)

= 72[2+ 2Pf In|b%—x?| (18
0

2
1=x These are all well known and we have referred to them as the
whereb?=(1+a)/(1—a)>1, b2=—c2 Thus the different Standard expressions.
behavior in the high and low frequencies must come from NOW. by replacingf by g in Eq. (23
the log arguments in the right-hand side of E¢k7) and 1 . dy
(18). The PV log integral in Eq(17) is f|_n|te and_ remains g1(X)=g1(0)+ — pf galy) ———. (20)
parametea dependent. But the PV log integral in E4.8) T )= y(y—x)
vanishes, losing the parameteidependence altogether. o )

It should be remembered that whear>1, I(a), as As for g4(0), we canobtain it from Eq.(199 by settingx
pointed out earlier, really is not a PV integral, but an ordi- =0
nary integral. Such an integral is expected to retain the pa- .
rameter dependence. Whar(1, |(a) is truly a PV integral, g1(0)= i pJ ga(y) d_y (22)
which as a rule loses the parameter dependghicdg. This T J-w y
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which may be recognized as the static susceptibility sum rule

if g is the magnetic response function. If one substitutes Eq.

(21) for the first term on the right-hand side of EQO), we C

at once recover Eq19g, the standard expression.
Also replacingf by g now in Eq.(2b),

(X)=02(0) XPf y) "
02(X)=02(0)— — 9.y ®
o —X
™ y(y—x) R S/ R
=g»,(0 ! wa —dy 22
=02(0) P _wgl(Y) y—x’ (22
where we have assumed tligtis an even function. If we let FIG. 1. The path of integratio for Eq. (A1) indicated by

arrows in the upper half plane. HeReis assumed very large. The
indented path about forms a very small semicircle. The path
encloses the singular point at

|X|—>oo,

1 o0
0:00-%)=0:0+ —P| au(ydy
o N=n+ik (see also p. 462, Refl]), resulting in a sign
=05(0)+gy(Xx—), (23)  difference in the phase. Also note that for GE(w=0)
=0 sincex(w=0)=0. Hence the general existence of this
where the second term on the right-hand side of 3)  constant could not have been detected by their experiments.
follows from Eq.(19b), the standard expression. By compar- We thank Professor G. D. Mahan for drawing our attention
ing both sides of Eq(23), we see thag,(0)=0. Hence Eg. to the existence of these earlier works and Dr. H. R. Philipp
(22) is the same as Eq19b). Thus if f behaves well, Eqs. for an informative discussion on the first applications of the
(28) and(2b) reduce to Eqs(19a and(19b), respectively. KK analysis to optical properties of solids.
If f(x) behaves well, there is no constant term in the

imaginary part off =g. One can see at once from H49b)
that if x=0, ACKNOWLEDGMENTS

1 " d We thank Dr. M. Lax for informing us of several early
(x=0)=——P (y) _y. (24) references on Kramers-Kronig relatiofi®efs.[9—12)). They
92 g1y
T J-w y have been very useful for our work. One of (Md.H.L.)
) ] ) . ] thanks Dr. E. B. Brown and Dr. P. L. Nash for discussions

It vanishes sincey, is an even function. But if behaves g the work of Ref[8], and Dr. K. T. R. Davies for corre-
well only asf(x)/x, f,(x=0) does not have this form and is spondence on PV integrals. This work has been supported in
generally nonvanishing. In fact, 48— 0, part by NATO (Grant No. CRG 921268

X % dy
fa(x)=12(0)— - Pf,xfl(y) y2 (25 APPENDIX A: KRAMERS-KRONIG RELATIONS
BY ROHRLICH AND GLUCKSTERN

but We shall reproduce here Kramers-Kronig relations given

X w0 dy earlier by Rohrlich and Gluckstefd 0], slightly modified for

go(X)=—— Pf g1(y) —. (26)  our problem on hand. Since this derivation depends only on
TS y a general property of functions, it can be compared with the

derivation due to Nash, Bell, and Alexand8t. In any event

one may regard it as an alternative to the work of Nash, Bell,

and Alexander.

By Cauchy’s theorem for an analytic function

Thus the constant terifip(0) exists if the functiorf (such as

a log function is asymptotically well behaved in the form

f(x)/x but not in itself otherwise. This constant is thus a

telltale sign, which appears in the phase spectrum in the

Drude model. Our conclusion complements the physical dis-

cussion on the origin of the constant term by Nash, Bell, and 1 ds

Alexander. W(2)=5— f CW(S) s—z (A1)
Note added in prooflt would appear that F. C. Jahoda

[Phys. Rev.107, 1261 (1957)] was the first to express the

reflectivity by an amplitude and a phase to use them a$or a closed contouC. Now suppose that takes on real

complementary variables inKK analysis of barium oxide. values only, and also assume that the funciéms analytic

Thereafter H. R. Philipp and E. A. TafPhys. Rev.113  in the upper half planéa critical assumption We can then

1002 (1959] and H. R. Philipp and H. Ehrenreidiithys.  choose the patle of integration in the plane of to follow

Rev. 129 1550(1965] have developed and extensively ap- along the real axis o from —R to R but indented around

plied this idea to Ge and others. In these experimental workg=x with a small arc in the positive direction and finally

the complex index of refraction ill=n—ix, « being the along a large arc of radiurR in the upper half plane of to

extinction coefficient, whereas in the work of Nashal, complete a circuit. See Fig. 1. Then,



9]

-R -1 1

FIG. 2. The path of integratio© for Eq. (B1) indicated by
arrows in the upper half plane. HeReis assumed very large. The
indented paths about 1 and 1 form very small semicircles. The
path C encloses no singularities. The wiggly line fromic to
—io, ¢>0, denotes a branch line of the log term in Eg1). The
path from—R to R may also be deformed to make a great semi-

poles at— and 1.

ds
W(x)——Pf W(s) =+ 3 W(x)
ds
2 Juor " 5% -

If R—o, one may les—x—s in the third term on the right-
hand side of Eq(A2). Now sinceW(s) is analytic in the

upper half plane, the path of integration along the arc of
radiusR may be deformed to coincide with the real axis,

going fromR to —R except ats=0, where it is indented in
the positive direction. Hence

1 0
N ) i
W(x)=W(0)+ Pj W( )—+—Pf W(s)—

(0)+—Pf W(s) (A3)

s(s X) '
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is interesting to compare the assumptionsfoand W at-
tached. Nash, Bell, and Alexander require that their function
f be such thaf(x)/x—0 sufficiently fast agx|— . Rohr-
lich and Gluckstern require that their functioM be regular

in the upper half plane.

APPENDIX B
PJJ In(x2+ c2)[dx/(1—x?)]= — = arctaril/c), c¢>0.
0

To prove the above, let us define an integvhlby

M ZJ In(z+ic) ﬁ’

where the contou€ denotes a closed path along the real axis
indented atz=—1 andz=+1 and a semicircle enclosing

c>0 (B1)

ethe upper half of the plane. See Fig. 2. There is a branch

cut running fromz=—ic, ¢>0, to z=—iw, which is thus
outside the contou€. Now M =0 since the contour does not
enclose any singularitiel is contributed by integrals along
the small indented paths abaut —1 and 1, and the remain-
der of the real axis, which forms a PV integral fronw to
®, i.e.,, M=M_;+M;+M, in obvious notation. They may
be separately evaluated:

) 1+ic
—1EMy=(mi/2)in| = S + 72[2= — w[arctanc— /2]

This is the result given by Rohrlich and Gluckstern except

for the contribution at the origikV(0). This term was absent
as they have assumed thaf(s)/s is regular ats=0. By
writing W=W; +iW,, we obtain at once

X o0
Wi (x) =W, (0)+ — PleWZ(S) e p— (A4)
and
X o]
W,(X) =W,(0) - p PJloowl(S) S(s—x) (AS5)
Equation (A3) corresponds to EQ.(2). If we take

W;=f;=Inp andW,=f,=¥, Egs.(1) and(A5) are identi-
cal provided of course th&¥,(x) is an even function of. It

=q arctarfl/c), c>0 (B2)
M —PJm In(x+i dx —ijl x2+c?
p— i n(X IC) 1_X2_ o ( C ) 1— X2'
(B3)
Hence we obtain
o dx
Pf In(x2+cz)ﬁ2=—7rarctar@1/c), c>0. Q.E.D.
0 _
(B4)

The validity of the solution can be tested by comparing
the expansions of both sides in powers df,lile., c large.
To do so, one may not simply expand the log term on the
left-hand side of Eq(B4). Instead letx—cXx in the PV inte-
gral in Eqg. (B4), which breaks the PV integral into two
terms. The one containingdf however, vanishes. The other
can now be expanded simply in powers of,11o0 yield the
expansion of the right-hand side of E@4). One may also
differentiate both sides of EqB4) with respect toc. The
resulting PV integral is elementary to evaluate since it is no
longer a log integral.
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APPENDIX C: DILOG OF EULER

The dilog of Euler is a transcendental function, denoted
Li, [15]. It may be defined by the following integral repre-

sentation:

Liz(z)=—fZ In(1-2) d_z

) : (D
This function is complex iz=x>1, but real if —oo<x<<1.
Whenz=x=1 or —1 (also for a few otheps the dilog has a
special value. For example, A(il)=7?/6, Liy(—1)=

— ar?/12. There are also a family of functional relations due
to Euler, e.g., duplication, inversion, reflection relations.
After the dilog, there is the trilog of Landen, denoted by. Li

For recent physical applications, see Réb.

APPENDIX D: PROOF THAT B=0

The integralB, defined in Eq(12), is a PV integral:
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o dy
szjiw In|b2—y2| W
—Pfoc In|lb+ 1 + 1 d D1
=P] n[b+y| Ty T1vy Y (D1)

where we assume without loss of generality that+ 1. Let

y—y—b. Then lety—py andy—qy, respectively, in the
first and second terms of E4D1), wherep=b+1 andq

=b-1, i.e.,p,g>0. Then,

(D2)

One can give more rigorous proof for this type of problem.
See Appendix A of Ref[17].
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