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Kramers-Kronig relations with logarithmic kernel and application to the phase spectrum
in the Drude model
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Standard Kramers-Kronig relations are formulated on the premise that the response functions are well
behaved asymptotically. In certain physical problems in which the functions are logarithmic, one may then
need to reformulate these relations. This was recently pointed out very explicitly in an optical context by Nash,
Bell, and Alexander@J. Mod. Opt.42, 1837~1995!#. Much earlier this issue was discussed more generally. We
examine in some detail the mathematical problem by considering the phase spectrum in the Drude model.
Comparison is made between the standard and the reformulated forms of Kramers-Kronig relations.
@S1063-651X~97!01310-X#

PACS number~s!: 05.90.1m, 78.20.Ci
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I. INTRODUCTION

As is well known, Kramers-Kronig relations connect th
real and imaginary parts of a response function such as
dynamic susceptibility via integral transforms. These re
tions are very general as they do not depend on propertie
models ~other than perhaps the Hermitianness implicitl!.
They are now among standard tools of analysis in dynam
theory of many-particle systems@1#. They lead to a numbe
of useful sum rules, e.g., the susceptibility sum rule by wh
the validity of approximate theories may be assessed.
examples of recent applications, see Miller and Richard
high Tc superconductivity@2#, Peiponen and Vartianen i
optics@3#, Gorges, Grosse, and Theiss in dielectric functio
for mixtures @4#, Tan and Callaway in conductivities fo
strongly correlated electrons and Sturm in optical sum ru
for inhomogeneous electron systems@5#, and our work in the
relaxation theory of a semiclassical gas@6#.

Usually Kramers-Kronig~KK ! relations are derived with
an assumption that the response functions are well beh
asymptotically. That is, they vanish ‘‘sufficiently fast’’ as th
frequency becomes very large. The susceptibility for an e
tron gas, for example, satisfies this condition very easily
do other similar response functions@7#. If these functions do
not vanish ‘‘sufficiently fast,’’ it would appear that KK rela
tions must be reformulated. There may indeed be phys
problems for which this reformulation becomes necessar

Recently, Nash, Bell, and Alexander@8# in an interesting
work drew attention to such a possibility. If light impinge
normally on the surface of a metal, the complex reflect
coefficientr may be expressed asr 5r expiC, wherer is the
amplitude andC the phase. The dispersion relation for t
phaseC would then encounter lnr and this log function may
not behave well. By reformulating KK relations they ha
deduced the following expression:

C~v!5C~0!2
2v

p
PE

0

` lnr~u!du

~u22v2!
, ~1!
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where P means a principal-value~PV! integral andr~v! is
assumed even. This expression differs from the usual
only in the constant, the first term on the right-hand side
Eq. ~1!.

Following their analysis, it is not difficult to write down a
general formula for a functionf , wheref (x)/x is assumed to
behave well whenuxu→`:

f ~x!5 f ~0!1
x

p i
PE

2`

` f ~y!dy

y~y2x!
. ~2!

If one writes f 5 f 11 i f 2 ,

f 1~x!5 f 1~0!1
x

p
PE

2`

` f 2~y!dy

y~y2x!
, ~2a!

and

f 2~x!5 f 2~0!2
x

p
PE

2`

` f 1~y!dy

y~y2x!
. ~2b!

Equation~1! corresponds to takingf 25C with an evenf 1 in
Eq. ~2b!. Observe thatf 2 may not be an odd function unles
f 2(0)50, but f 1 may be an even function. See Appendix
for an alternative derivation of Eq.~2!.

Nash, Bell, and Alexander do not make use of their n
relation ~1! to evaluate the phase directly. That would i
volve evaluating the PV log integral itself. Instead they u
well-known optical relationships to show that for the Dru
model there can indeed exist a nonzero constant term, w
would be absent according to the usual form of KK relatio
Their demonstration of the existence of this constant te
lends credence to their original premise.

In this work we shall show that the PV integral can
evaluated, recovering the result of Nash, Bell, and Ale
ander. This work shows a new approach to solving these
log integrals directly. In standard methods one evaluates
kind of integral indirectly by using Cauchy’s theorem. Th
3891 © 1997 The American Physical Society
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3892 56M. HOWARD LEE AND O. I. SINDONI
our alternative method may be of some interest and perh
even prove advantageous by being a direct approach.

Before doing so, we should briefly point out some r
evant history pertaining to this special situation. As is u
doubtedly well known, the dispersion relation credited
Kramers and Kronig originated in optical scattering pro
lems. In the 1950s there were already suggestions made
the boundedness condition that had been required in for
lating the dispersion relation might be too limiting. The
considerations have been brought up in the context of
scattering matrix theory of elementary particles. It would a
pear that van Kampen@9# might have been the first to con
sider explicitly a response function which behaves well o
in the form that we have given, i.e.,f (x)/x as uxu→`. He
obtained a formula essentially identical to Eq.~2!. Somewhat
earlier Rohrlich and Gluckstern@10# gave a dispersion rela
tion for a function which includesf (x) given above. A little
later Toll @11# also indicated the existence of a constant te
There is a review given by Stern@12# on these early devel
opments of the dispersion relations where one can g
some aspects of this particular issue. Until Nash, Bell, a
Alexander, no one, to our knowledge, studied the dispers
relations with log functions explicitly. Please see the n
added in proof.

II. DRUDE MODEL

The Drude model is perhaps the simplest model of met
accounting for some of the basic properties of what may
termed a free-electron metal@13#. If light impinges normally
on its surface, the amplitude of the reflectivity for the Dru
model is given as follows@8,13#: If vp is the classical
plasma frequency,

r~v!5H 1, 0,v,vp

v2Av22vp
2

v1Av22vp
2

, v.vp .
~3!

Observe thatr(v→`)5(vp /v)2/4. Hence at large frequen
cies,u ln ru increases logarithmically withv.

Now Eq. ~1! may be slightly rewritten as follows:

C~v!2C~0!52
1

p
PE

0

`

lnUu1v

u2vU d lnr

du
du. ~4!

Using the Drude model form forr given above, we obtain

C~v!2C~0!5
2

p
PE

vp

`

lnUu1v

u2vU du

Au22vp
2

→
2

p
PE

1

`

lnUu1v

u2vU du

Au221
[I , ~5!

where nowu andv are dimensionless. To simplify the abov
integral, letu51/x and alsov51/a, wherea is to be re-
garded as a fixed number, i.e.,a.1 ~low frequency! and 0
,a,1 ~high frequency!. Then,

I ~a!5
2

p
PE

0

1

lnUa1x

a2xU dx

xA12x2
. ~6!
ps
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To eliminate the square root, we introduce two simp
changes apparently due to Watson@14#: First, let x5cosu
and second, tanu/25y. Then,

Ī ~a![I ~a!Y S 2

p D5PE
0

`

lnU c21y2

11c2y2U dy

12y2 , ~7!

where c25(a11)/(a21), i.e., c2.1 if a.1 ~low fre-
quency!: c2,0 if 0,a,1 ~high frequency!. We shall treat
the two different cases separately, but in a parallel manne
show whence the different behavior originates.

A. Low-frequency domain

The first case is simpler sinceI (a) is no longer a PV
integral but an ordinary integral and also the absolute s
becomes unnecessary. But we will retain the PV sign to
able to separate the log term in Eq.~7!. We shall treat this
low-frequency case first. Then,

Ī ~a!5PE
0

`

ln~c21y2!
dy

12y22PE
0

`

ln~11c2y2!
dy

12y2 .

~8!

By letting y→1/y in the second integral of Eq.~8!, one may
write it as

Ī ~a!5p2/212PE
0

`

ln~c21y2!
dy

12y2

5p~2 arctanc2p/2!5p arcsin~1/a!. ~9!

See Eq.~13! and Appendix B for an evaluation of the abov
log integral. Fora.1 ~i.e., c2.0!, Eq. ~6! may also be
solved by differentiation noting thatI (a5`)50. Hence

I ~a!52 arcsin~1/a!, a.1. ~10!

B. High-frequency domain

Now we shall turn to the second case where 0,a,1, i.e.,
c2,0. Let b252c2.0. As before, we can split Eq.~7! into
two terms, each of which is also well defined being a P
integral,

Ī ~a!5PE
0

`

lnub22y2u
dy

12y22PE
0

`

lnu12b2y2u
dy

12y2 .

~11!

Let y→1/y in the second integral. Then,

Ī ~a!522E
0

`

lny
dy

12y2 1PE
2`

`

lnub22y2u
dy

12y2

[22A1B. ~12!

We shall evaluate the two integralsA and B separately.
Observe thatA is an ordinary integral, also occurring in Eq
~9!. It can be written as follows:
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A5E
0

1

lnyH 1

12y
1

1

11yJ dy52Li2~1!1Li2~21!

52p2/4, ~13!

where Li2 denotes the dilog of Euler@15,16#. See Appendix
C. Now turning to the remaining integral, which is a P
integral, we find thatB50, proved in Appendix D. Putting
together our solutions forA andB, we obtain
e

e
e

th
w

om

di
p

Ī ~a!5p2/2. ~14!

Now combining both cases,

I ~a!5 Hp, 0,a,1
2 arcsin~1/a!, a.1. ~15!

Finally, restoring the frequency unit,
C~v!5H C~0!1p50 if v.vp

C~0!12 arcsin~v/vp!52p12 arcsin~v/vp! if 0 ,v,vp .

~16a!

~16b!
log
-
of

for
.
log

tion

ion

the
This value C(0)52p can be readily determined by th
boundary condition thatC(v→`)50 @13#. This recovers
the results obtained by Nash, Bell, and Alexander@8#. When
v50, the reflection is total. Hence the phase is revers
Whenv5`, there is a total transmission. Hence the phas
unchanged. For the Drude model the total transmission
course takes place ifv.vp @13#.

III. CONCLUDING REMARKS

One can determine where the different behavior in
high and low frequencies comes from by examining the t
essential integrals involved. From Eqs.~7! and ~11!,

I ~a.1!5PE
0

`

lnS c21x2

11c2x2D dx

12x2

5p2/212PE
0

`

ln~x21c2!
dx

12x2 ,

~17!

wherec25(a11)/(a21).1, and

I ~0,a,1!

5PE
0

`

lnU b22x2

12b2x2U dx

12x2

5p2/212PE
0

`

lnub22x2u
dx

12x2 , ~18!

whereb25(11a)/(12a).1, b252c2. Thus the different
behavior in the high and low frequencies must come fr
the log arguments in the right-hand side of Eqs.~17! and
~18!. The PV log integral in Eq.~17! is finite and remains
parameter-a dependent. But the PV log integral in Eq.~18!
vanishes, losing the parameter-a dependence altogether.

It should be remembered that whena.1, I (a), as
pointed out earlier, really is not a PV integral, but an or
nary integral. Such an integral is expected to retain the
rameter dependence. Whena,1, I (a) is truly a PV integral,
which as a rule loses the parameter dependence@17,18#. This
d.
is
of

e
o

-
a-

difference can be shown in another way: The roots of the
arguments of Eqs.~17! and ~18! are imaginary and real, re
spectively. By this property one can transform the paths
integration so that they do not follow along the real axis
Eq. ~17! but they do for Eq.~18!. For the latter case, Eq
~18!, the parameter which appears as a scale factor in the
argument can be scaled out since the paths of integra
follow the real axis. For the former case, Eq.~17!, this is not
possible.

It is now interesting to ask whether the general express
~2! reduces to the standard one if, asuxu→`, f (x) were
made to behave well. Let us denote such anf by g, i.e.,
g(x)→0 as uxu→`. Clearly g(x)/x→0 also in this limit.
Hence Eq.~2! is applicable tog. For this class of functions
we know @1# that

g~x!5
1

p i
PE

2`

`

g~y!
dy

y2x
. ~19!

Hence, by writingg5g11 ig2 ,

g1~x!5
1

p
PE

2`

`

g2~y!
dy

y2x
~19a!

and

g2~x!52
1

p
PE

2`

`

g1~y!
dy

y2x
. ~19b!

These are all well known and we have referred to them as
standard expressions.

Now, by replacingf by g in Eq. ~2a!

g1~x!5g1~0!1
1

p
PE

2`

`

g2~y!
dy

y~y2x!
. ~20!

As for g1(0), we canobtain it from Eq.~19a! by settingx
50,

g1~0!5
1

p
PE

2`

`

g2~y!
dy

y
, ~21!
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3894 56M. HOWARD LEE AND O. I. SINDONI
which may be recognized as the static susceptibility sum
if g is the magnetic response function. If one substitutes
~21! for the first term on the right-hand side of Eq.~20!, we
at once recover Eq.~19a!, the standard expression.

Also replacingf by g now in Eq.~2b!,

g2~x!5g2~0!2
x

p
PE

2`

`

g1~y!
dy

y~y2x!

5g2~0!2
1

p
PE

2`

`

g1~y!
dy

y2x
, ~22!

where we have assumed thatg1 is an even function. If we let
uxu→`,

g2~x→`!5g2~0!1
1

px
PE

2`

`

g1~y!dy

5g2~0!1g2~x→`!, ~23!

where the second term on the right-hand side of Eq.~23!
follows from Eq.~19b!, the standard expression. By compa
ing both sides of Eq.~23!, we see thatg2(0)50. Hence Eq.
~22! is the same as Eq.~19b!. Thus if f behaves well, Eqs
~2a! and ~2b! reduce to Eqs.~19a! and ~19b!, respectively.

If f (x) behaves well, there is no constant term in t
imaginary part off 5g. One can see at once from Eq.~19b!
that if x50,

g2~x50!52
1

p
PE

2`

`

g1~y!
dy

y
. ~24!

It vanishes sinceg1 is an even function. But iff behaves
well only asf (x)/x, f 2(x50) does not have this form and
generally nonvanishing. In fact, asuxu→0,

f 2~x!5 f 2~0!2
x

p
PE

2`

`

f 1~y!
dy

y2 , ~25!

but

g2~x!52
x

p
PE

2`

`

g1~y!
dy

y2 . ~26!

Thus the constant termf 2(0) exists if the functionf ~such as
a log function! is asymptotically well behaved in the form
f (x)/x but not in itself otherwise. This constant is thus
telltale sign, which appears in the phase spectrum in
Drude model. Our conclusion complements the physical
cussion on the origin of the constant term by Nash, Bell, a
Alexander.

Note added in proof. It would appear that F. C. Jahod
@Phys. Rev.107, 1261 ~1957!# was the first to express th
reflectivity by an amplitude and a phase to use them
complementary variables in aKK analysis of barium oxide
Thereafter H. R. Philipp and E. A. Taft@Phys. Rev.113,
1002 ~1959!# and H. R. Philipp and H. Ehrenreich@Phys.
Rev. 129, 1550~1965!# have developed and extensively a
plied this idea to Ge and others. In these experimental wo
the complex index of refraction isN5n2 ik, k being the
extinction coefficient, whereas in the work of Nashet al.,
le
q.

e
s-
d

s

ks

N5n1 ik ~see also p. 462, Ref.@1#!, resulting in a sign
difference in the phase. Also note that for Ge,C(v50)
50 sincek(v50)50. Hence the general existence of th
constant could not have been detected by their experime
We thank Professor G. D. Mahan for drawing our attent
to the existence of these earlier works and Dr. H. R. Phil
for an informative discussion on the first applications of t
KK analysis to optical properties of solids.
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APPENDIX A: KRAMERS-KRONIG RELATIONS
BY ROHRLICH AND GLUCKSTERN

We shall reproduce here Kramers-Kronig relations giv
earlier by Rohrlich and Gluckstern@10#, slightly modified for
our problem on hand. Since this derivation depends only
a general property of functions, it can be compared with
derivation due to Nash, Bell, and Alexander@8#. In any event
one may regard it as an alternative to the work of Nash, B
and Alexander.

By Cauchy’s theorem for an analytic function

W~z!5
1

2p i Ec
W~s!

ds

s2z
~A1!

for a closed contourC. Now suppose thatz takes on real
values only, and also assume that the functionW is analytic
in the upper half plane~a critical assumption!. We can then
choose the pathC of integration in the plane ofs to follow
along the real axis ofs from 2R to R but indented around
z5x with a small arc in the positive direction and final
along a large arc of radiusR in the upper half plane ofs to
complete a circuit. See Fig. 1. Then,

FIG. 1. The path of integrationC for Eq. ~A1! indicated by
arrows in the upper half plane. HereR is assumed very large. Th
indented path aboutx forms a very small semicircle. The pathC
encloses the singular point atx.
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W~x!5
1

2p i
PE

2R

R

W~s!
ds

s2x
1

1

2
W~x!

1
1

2p i Earc R
W~s!

ds

s2x
. ~A2!

If R→`, one may lets2x→s in the third term on the right-
hand side of Eq.~A2!. Now sinceW(s) is analytic in the
upper half plane, the path of integration along the arc
radius R may be deformed to coincide with the real ax
going fromR to 2R except ats50, where it is indented in
the positive direction. Hence

W~x!5W~0!1
1

p i
PE

2`

`

W~s!
ds

s2x
1

1

p i
PÈ2`

W~s!
ds

s

5W~0!1
x

p i
PE

2`

`

W~s!
ds

s~s2x!
. ~A3!

This is the result given by Rohrlich and Gluckstern exc
for the contribution at the originW(0). This term was absen
as they have assumed thatW(s)/s is regular ats50. By
writing W5W11 iW2 , we obtain at once

W1~x!5W1~0!1
x

p
PE

2`

`

W2~s!
ds

s~s2x!
~A4!

and

W2~x!5W2~0!2
x

p
PE

2`

`

W1~s!
ds

s~s2x!
. ~A5!

Equation ~A3! corresponds to Eq.~2!. If we take
W15 f 15 lnr andW25 f 25C, Eqs.~1! and~A5! are identi-
cal provided of course thatW1(x) is an even function ofx. It

FIG. 2. The path of integrationC for Eq. ~B1! indicated by
arrows in the upper half plane. HereR is assumed very large. Th
indented paths about21 and 1 form very small semicircles. Th
path C encloses no singularities. The wiggly line from2 ic to
2 i`, c.0, denotes a branch line of the log term in Eq.~B1!. The
path from2R to R may also be deformed to make a great sem
circle in the lower half plane which excludes the branch line and
poles at2 and 1.
f
,

t

is interesting to compare the assumptions onf and W at-
tached. Nash, Bell, and Alexander require that their funct
f be such thatf (x)/x→0 sufficiently fast asuxu→`. Rohr-
lich and Gluckstern require that their functionW be regular
in the upper half plane.

APPENDIX B

PE
0

`

ln~x21c2!@dx/~12x2!#52p arctan~1/c!, c.0.

To prove the above, let us define an integralM by

M5E
c

ln~z1 ic !
dz

12z2 , c.0 ~B1!

where the contourC denotes a closed path along the real a
indented atz521 and z511 and a semicircle enclosin
the upper half of thez plane. See Fig. 2. There is a branc
cut running fromz52 ic, c.0, to z52 i`, which is thus
outside the contourC. Now M50 since the contour does no
enclose any singularities.M is contributed by integrals along
the small indented paths aboutz521 and 1, and the remain
der of the real axis, which forms a PV integral from2` to
`, i.e., M5M 211M11M p in obvious notation. They may
be separately evaluated:

M 211M15~p i /2!lnS 11 ic

12 ic D1p2/252p@arctanc2p/2#

5p arctan~1/c!, c.0 ~B2!

M p5PE
2`

`

ln~x1 ic !
dx

12x2 5PE
0

`

ln~x21c2!
dx

12x2 .

~B3!

Hence we obtain

PE
0

`

ln~x21c2!
dx

12x2 52p arctan~1/c!, c.0. Q.E.D.

~B4!

The validity of the solution can be tested by compari
the expansions of both sides in powers of 1/c, i.e., c large.
To do so, one may not simply expand the log term on
left-hand side of Eq.~B4!. Instead letx→cx in the PV inte-
gral in Eq. ~B4!, which breaks the PV integral into two
terms. The one containing lnc2, however, vanishes. The othe
can now be expanded simply in powers of 1/c, to yield the
expansion of the right-hand side of Eq.~B4!. One may also
differentiate both sides of Eq.~B4! with respect toc. The
resulting PV integral is elementary to evaluate since it is
longer a log integral.

-
e
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APPENDIX C: DILOG OF EULER

The dilog of Euler is a transcendental function, deno
Li2 @15#. It may be defined by the following integral repre
sentation:

Li2~z!52E
0

z

ln~12z!
dz

z
. ~C1!

This function is complex ifz5x.1, but real if2`,x,1.
Whenz5x51 or 21 ~also for a few others!, the dilog has a
special value. For example, Li2(1)5p2/6, Li2(21)5
2p2/12. There are also a family of functional relations d
to Euler, e.g., duplication, inversion, reflection relation
After the dilog, there is the trilog of Landen, denoted by L3.
For recent physical applications, see Ref.@16#.

APPENDIX D: PROOF THAT B50

The integralB, defined in Eq.~12!, is a PV integral:
n

d

.

B5PE
2`

`

lnub22y2u
dy

12y2

5PE
2`

`

lnub1yu H 1

12y
1

1

11yJ dy, ~D1!

where we assume without loss of generality thatb.11. Let
y→y2b. Then lety→py and y→qy, respectively, in the
first and second terms of Eq.~D1!, wherep5b11 and q
5b21, i.e.,p,q.0. Then,

B5S ln
p

qD PE
2`

` dy

12y
50. ~D2!

One can give more rigorous proof for this type of proble
See Appendix A of Ref.@17#.
s,
-
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