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We describe the development of neighborhood-preserving stochastic maps in terms of a probabilistic clus-
tering problem. Starting from a cost function for central clustering that incorporates distortions from channel
noise, we derive a soft topographic vector quantization algorit8vQ) which is based on the maximum
entropy principle, and which maximizes the corresponding likelihood in an expectation-maximization fashion.
Among other algorithms, a probabilistic version of Kohonen’s self-organizing (8&V) is derived from
STVQ as a computationally efficient approximation of tBestep. The foundation of STVQ in statistical
physics motivates a deterministic annealing scheme in the temperature par@natet leads to a robust
minimization algorithm of the clustering cost function. In particular, this scheme offers an alternative to the
common stepwise shrinking of the neighborhood width in the SOM, and makes it possible to use its neigh-
borhood function solely to encode the desired neighborhood relations between the clusters. The anngaling in
which corresponds to a stepwise refinement of the resolution of representation in data space, leads to the
splitting of an existing cluster representation during the “cooling” process. We describe this phase transition
in terms of the covariance matrX of the data and the transition mattik of the channel noise, and calculate
the critical temperatures and modes as functions of the eigenvalues and eigenveCtarsddf. The analysis
is extended to the phenomenon of the automatic selection of feature dimensions in dimension-reducing maps,
thus leading to a “batch” alternative to the Fokker-Planck formalism for on-line learning. The results provide
insights into the relation between the width of the neighborhood and the temperature pagnieieshown
that the phase transition which leads to the representation of the excess dimensions can be triggered not only
by a change in the statistics of the input data but also by an increg@evdfich corresponds to a decrease in
noise level. The theoretical results are validated by numerical methods. In particular, a quantity equivalent to
the heat capacity in thermodynamics is introduced to visualize the properties of the annealing process.
[S1063-651%97)01110-0
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I. INTRODUCTION Another approach to the problem of lossy data compres-
sion is called clustering or vector quantization. The idea is to
The tractability of pattern recognition and signal process-encode a set of data points by a reduced set of reference
ing tasks depends strongly on the representation of the reltectors in such a way as to minimize a given cost function
evant input data. Usually, the input signals are high dimenbased on a suitable distortion measure. The easiest and most
sional vectors which are hard to visualize and which—forwell-known paradigm ik-means clusterinfL0], which uses
reasons of complexity—cannot be processed directly. Therean on-line learning rule and applies the squared Euclidean
fore it is desirable to find some mapping of the high dimen-distance as a distortion measure to update its reference vec-
sional input space to some lower dimensional space in a walprs. Recently, more elaborate schemes have been suggested,
which captures the essential spatial relations of the data aghich take into account the complexity of the codebook or
faithfully as possible, and which at the same time performs dhe robustness of the representatidh
kind of lossy data compression. Algorithms of this kind are Rose, Gurewitz, and Fokl1] introduced deterministic
generally known as “topology preserving vector quantizers” annealing as a robust minimization procedure for the cluster-
[1,2]. ing cost function leading to a set of optimal reference vec-
The self-organizing mapSOM), first introduced by Ko- tors. Deterministic annealing was originally derived from
honen[3,4], is an example of such an algorithm. The map-statistical physicqcf. Refs.[12,13)) and is in this context
ping is achieved by a heuristic on-line learning rule thatbased on fuzzy assignments of data points to clusters. The
leads to a correspondence between local regions in inp@nnealing process helps to avoid local minima in the possibly
space and neurons in a usually two-dimensional array, sudhighly nonconvex cost function during the optimization pro-
that the spatial relations between data points are reflected medure. After deriving a Gibbs distribution related to the cost
the spatial relations of the corresponding neurons in the arfunction via the principle of maximum entropy, the unique
ray. The SOM has been applied to a wide range of technicahaximum of the likelihood at high temperatures is deter-
tasks(see Refs[5,6] for a review, and has become one of mined and tracked through lower temperatures. Depending
the standard modeling approaches for neural development on the structure of the cost function, this procedure leads to
the computational neuroscience commurigge Refs[7,8]  good local minima or even to the global minimum of the cost
for a review, for which it was originally intended. Also, function.
there exists a great amount of literature that deals with dif- Luttrell [14—-16 established a connection between the
ferent theoretical aspects and applications of the SOM. self-organizing map and noisy vector quantization. By
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choosing a distortion measure for vector quantization thathe cluster representation undergoes during the annealing,
incorporates robustness with respect to noise-induceend introduce a quantity similar to the heat capacity in ther-
changes of assignments, he derived an algorithm which heodynamics to better visualize the annealing process.
named the topographic vector quantizatighvVQ). He

showed that the SOM can be viewed as an efficient approxi- || sorT TOPOGRAPHIC VECTOR QUANTIZATION

mation to a gradient descent on the TVQ cost function. Since

the TVQ has a known cost function it is thus possible to find A. Derivation of the STVQ algorithm

efficient optimization proceduresee, e.g., Ref2]). Those In clustering data points which are in some sense similar

procedures can then—via the approximation—be applied tare grouped for the purpose of data interpretation as well as

develop robust variants of the SOM. Additionally, the analy-data compression. Given a set¥ of data points x;

sis of stationary states and convergence properties of therd, i=1,... D, and a seC of clustersC,, r=1,... N,

SOM [17,19 is facilitated by considering the link to the the aim of any clustering algorithm is to assign each data

TVQ [19]. point x; to a clusterC, so as to minimize a given assignment
In this paper we apply the idea of deterministic annealingcost functionE. If we introduce binary assignment variables

to the optimization of the TVQ cost function, and develop anm;,, which take the value one if data poixtis member of

algorithm for noisy vector quantization which we call soft clusterC, and zero otherwise, the cost function can be writ-

topographic vector quantizlSTVQ). The STVQ can be ten as

used for the creation of topology-preserving maps by appro-

priately choosing the transition probabilities of the assumed .

channel noise, because the channel noise breaks the permu- E({mi}, parameter)s=zi Z m;E,(i, parametens

tation symmetry of the clusters and thus provides a distance )

measure on the space of clusters similar to the neighborhood

matrix in the SOM. The probabilistic formulation enables US\yhereE, (i, parametefsdenotes the cost associated with as-
to apply an annealln_g scheme in the temperature instead of Ygning data poing; to clusterC, , and “parameters” param-
the range of the neighborhood function, which can thus beyise " the assignment cost,. In central clustering

chosen freely to represent desireq neighborhood relations gr(i. parametetsis taken to be the squared Euclidean dis-
the clusterge.g., random graphs in R€f20]). From an op- e E,(i,w,)=|x,—w,||?> between a data point and a

timization point of view, the annealing process is viewed a arameter vectow, e R%, which for central clustering is

a means to avoid local minima of the clustering cost func4j 164 cluster center, and which serves as the representative
t'o%' vsis al h hat th lina lead hin data space for the data points assigned to the cld@ster
ur analysis also shows that the annealing leads to theyq yegired property of the assignment, that each data point

spl_itting of ex_ist_ing c_:I_uster representation;_in data Spaceg assigned to exactly one cluster, requires the constraints
This process is identified as a phase transition, and is char-

acterized in relation to the channel noise and the input data.

In Sec. Il we derive a set of self-consistent equations for > m,=1, Vi. )
the cluster centers based on fuzzy assignments of data points r
to clusters using the principle of maximum entropy. These
fixed-point equations are solved by an expectation-The quantityE({m;},parameters) takes its minimum with
maximization(EM)-type algorithm[21] at a given tempera- respect to the parameters when an optimal set of locations for
ture. In order to avoid local minima of the cost function we the cluster centers, i.e., an optimal representation for each
then employ an annealing procedure in the temperature pgroup of data points in data space, is achieved.
rameter. Via an approximation in tie step of the STVQ, Following an idea by Luttrel[16] we consider the case
this leads to a deterministic annealing procedure for thehat the cluster indices, which label the clusters, form a
SOM, as well. In Sec. Ill we analyze phase transitions thatompressed encoding of the data for the purpose of transmis-
occur during the annealing process in the temperature. Wsion via a noisy channdbee Fig. 1L The distortion caused
calculate the critical temperatures and modes for the splittingy the channel noise is modeled by a matif transition
of existing clusters in terms of eigenvalues and eigenvectorgrobabilitiesh, for the noise induced change of the assign-
of the covariance matrix of the data and the transition matrixment of a data poing; from clusterC, to clusterCs. After
The same technique is then applied in Sec. IV to the phegransmission the received indexis decoded, i.e., mapped
nomenon of the automatic selection of feature dimensionsyack to data space, using its cluster cemtgr Averaging the
Wh|Ch was firSt ?.nalyzed for the On'line SOM by R|tter and Squared Euc"dean distan“;&l_wsnz over a“ possib'e tran-
Schulten[17] using a Fokker-Planck approach and later apitions thus yields what Luttrell calls the topographic Euclid-
plied by Obermayer, Blasdel, and Schulten to pattern formaggn distortion
tion in neural systemfl8]. The technique yields expressions
for critical variance of the data and critical wavelength of the
unstable mode in terms of temperature and transition matrix. E (i {w,}))=2> hylxi—wd?, 3
Results are compared to the zero temperature case for the s
SOM, which had been obtained earlid7]. In Sec. V nu-
merical results are presented that demonstrate the behaviorwhere the factor 1/2 is introduced for computational conve-
the algorithm and confirm the theoretical results of the prehience. Sincéd is the probability for the transition—s, the
vious sections. We numerically explore the transitions whichollowing constraint must hold:
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Encoder

S=> fJ P InP dw;- - -dwy, (5)
@ _— X — Wr {mir}

under the constraint of a given average cost

U=, fJ EP dw; - - - dwy (6)

{mir}

_______________

| Distortion || x; — ws ||| Channel Noise hyg : 1 —s
““““““““ and yields the Gibbs distribution as the probability distribu-
tion over the space of representations,
S
1
Wy P({mir},{wr})=zexp(—ﬂ E({mir}v{wr}))- (7)
@ «— Decoder s — Wg

The Lagrange multiplie3 is associated with the average
costU, and is interpreted as an inverse temperatfris. the

FIG. 1. Cartoon of a generic data communication problem. Inputygymalization constant or partition function and is given by
datax; are grouped and the groupduster$ are labeled with indi-

cesr (encoding stage The indices are then transmitted via a noisy

channel which is characterized by a set of transition probabilities Z= > f e f exp(— B E{m; }.{w,}))dw;- - - dwy.
h,s for the noise process. As soon as an indeg received at the {mir}

decoder the data is reconstructed via a veetpfdecoding stage ®)

which represents all data points assigned to clustlrring encod- Since we are primarily interested in determining the most

ing. In the following, we will m re th mbin rror -
g. In the following, we will measure the co b ed.e ° dl.Je ' hrobable set of cluster centers so as to generalize from a
clustering and channel noise via the squared Euclidean distance

between the original data poimt and the cluster centews. The given set of training samples, the marginal probability
final assignment cost is then given by an average over all transitions

1
r—s Plwi)) =7 2 exp(—p E(m{w) (9
Mjr
23: hs=1, Vr. (4) s considered, where the summation runs over all Sats

of assignments which obey relatig®). Using the identity
The transition probabilities are closely related to the ele-
ments of the neighborhood matrix in the SO4,4]. The _ _ _ _ :
cost function(1) with distortion measuré3) takes its mini- {mEir} exp(— 8 E({mich {wi}) H zr exp(— BE (1 {wi})),
mum, when a robust representation of the data with respect (10
to the channel noise is achieved. Since the assignment of a ) o
data pointx; to clusterC, changes to clustet; with probabil- ~ One obtains, for the log likelihood,
ity h,s the corresponding representatives or cluster cemters
andws should be located close to each other in data space if |np({wr}):2 InY, exp(— B E.(i,{w,}))—InZ. (11)
h,s is large in order to keep the assignment adstlow. In i r
this way the noise-induced transitions lead—via B}—to o ) )
a coupling between different clusters. The transition probMaximizing Eq.(11) with respect tdw,} at a given value of
ability can be interpreted as a measure for “closeness” bethe temperature parametgryields conditions
tween clusters: Clusters are “close” if the transition prob-

abilities are high. In the special case that the transition E XiE h,P(i € Cy)

probabilities are monotonically related to a metric they de- i s

fine a neighborhood in the sense of the SOM. W= v, (12)
Now, given the cost functiorE=E({m;f},{w,}) as a EI 25 hsP(i eCy)

quality criterion for the representatiodm;,},{w,}} of the
data, we determine a probability distribution
P=P({m;}{w,}) over the space of all representations in
the spirit of Bayesian model evaluation. In order to simplify
notation here and in the following, bounds on sums and in- 8

tegrals are omitted if sums overun over allD data points exr{ - 52 hef|X —Wt|2)
in X, sums over run over allN clusters inC, and integrals P(i eC)=(mi)= ! _
are taken from-« to . Integrals over vectors are to be read S _ éz h 2
as multiple integrals over the vectors’ components. Since we m ex 24 utl[Xi = wl

do not make any assumptions about the distribution of data (13
points we apply the principle of maximum entrof82]. This

amounts to choosing the probability distribution which maxi-(m;s) is the expectation value of the binary assignment vari-
mizes the entropy, ablem;, for a given sefw,} with respect to the probability

for the cluster center$w,}, whereP(i e Cy) is the assign-
ment probability of data point; to clusterCs and is given by
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distribution (7). For a giveng, Egs.(12) and (13) can be man[24] gave an annealing schedule for simulated annealing
solved by fixed-point iteration. We will call this optimization according to whichB(t)<c In(1+t), wheret is the number
algorithm the STVQ. of the annealing step andis a constant independent tf
Equationg12) and(13) can also be derived from a statis- and proved the convergence to a global minimum in distri-
tical physics frameworKcf. Yuille et al. [12,13 for an ex-  bution. This result hints at how the paramejferis to be
panded treatmeht Starting from the Hamiltonian given in handled in deterministic annealing. In practical applications,
(1) and(3), we first consider the probability distribution over however, a linear or exponential annealing scheme dor
the {m;,} for finite temperature and fixeflv,}. This yields could be allowed to save computation time, possibly at the
1 cost of precision of the results. In analogy to Gaussian mix-
_ _ _ ture models the paramet@ can also be interpreted as an
Pan({mie}H{we}) = Zmexp( BE((mirtliwe}), (14 inverse variance in data space, thus determining the resolu-
tion of the clustering. Consequently, the annealing process

with the {w, }-dependent partition function corresponds to a stepwise refinement of the representation of
the data, and it is possible to determine the resolution of the
Zn({wih)= 2 exp(— BE({m; }|{w})). (15)  final representation by terminating the annealing schedule at

{mir} an appropriate value @8. This is particularly appropriate to

. . . avoid an overfitting of the data in the presence of noise.
Using Eq.(10), the partition functionZ,, can be evaluated

exactly, which yields an expression for the free energy o )

B. Derivatives of the STVQ algorithm
=l InZ (16) To put the above-derived algorith(8TVQ) into a famil-
B m iar context we consider certain limits and approximations
o . o ] ) which lead to a family of topographic clustering algorithms.
In statistical physics one is interested in expectation valuegpe limiting case8— o in the assignment probabilitigd3)
value ofws can be expressed as and Heskes and Kappg¢h9]. The TVQ is a winner-take-all
algorithm for which Eqgs(12) and(13) become

1
wi=7 | - [ waext— 8 F(tweiaws -, .
(17) i Xi ~ hl’SPTVQ(IECS)

. . w,= (19

where the degeneracy of solutions due to symmetries of the S S hp icc
data space and the transition probabilities have to be taken ~ & s voli €€y
into account by integrating only over one fundamental cell.
Expression(17) can be evaluated using the saddle-point ap-nq
proximation, i.e., by expanding,({w,}) to second order
around |ts_m|n|mum_, _Whlch yields Eqé_lZ) and(13) for th(_a_ _ Pryoli € Co = dg,
saddle-point conditions. The assignment probabilities
P(ieCy are equal to the mean fieldsn;s) of the binary
assignment variables for a given set of cluster cerfters. t=arg minz hXi — wy||2. (19

From an algorithmic point of view, iteratively solving u Vv
Egs. (12) and (13) comprises an expectation-maximization
algorithm[21]. TheE step(13) consists of the calculation of ~ The approximatiorh,s— 8,5 in the assignment probabili-
the assignment probabilitieB(i e Cy) for all data pointsx; ties (13) leads to a fuzzy version of the SOM which we call
and cluster€,. Then in theM step(12) of the algorithm the  soft-SOM(SSOM. This modification provides an important
positions of the cluster centevg are recalculated using the computational simplification because the omission of one
new assignment probabiliti€3(i e C) from the E step. In  convolution withh,¢ saves a considerable amount of compu-
Ref.[21] it is shown that the EM algorithm converges mono- tation time. Equation$12) and(13) then become
tonically to a local maximum of the log likelihodd 1) under
mild conditions that are valid for our case. However, we are

interested in finding the global minimum & given by Eq. Z Xiz; hisPssoMi € Cy)

(2). Since the global minimum @ coincides with the global W, = (20)
maximum of the log likelihood folB— o, we can apply a h..P ieC

deterministic annealing scheme /, At low g, the local Z Es sPssoMl €€

minima of E are washed out in the log likelihood, whose
global maximum can then be found using the EM algorithm.and
The maximum is then tracked through higher valuesBof

until it coincides at sufficiently hig with a minimum ofE. B 5
Convergence to éone-change optimalocal minimum was EXF{ - EHXi_Ws” )
established by Puzicha, Hofmann, and Buhmg2si, who PssoMieCy= (22)
also pointed out that convergence to the global minimum > ex _E”X__W”z)

should not be expected in the general case. Geman and Ge- t 27
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— [ ) 1
sTVQ | - SSOM ' osc ! W?:52 X, Vr; (24)
E - Step M-Step  _ _ _ _ _ 3 [
that is, all the cluster centers are located at the center of mass
e oo f— o0 A oo of the data. Without loss of generality we svﬁ= 0, Vr.A
Taylor expansion of the right-hand side of E2) around
o . {w?}, to first order inw;, yields
hes— § hys— drs
=" | som ' HC !
e E- Step M-Step L _ ___ : > x> heP(ieCy
I S
FIG. 2. The STVQ family of clustering algorithms. W= )
> > hP(iecy
It has been noted by Luttre]tl6], however, that Eqs(20) bos {wo}
and (21), which correspond to a nearest-neighbor encoding,
do not in general minimize the cost functi¢h with Eq. (3) > x>, hsP(ieCy
[14]. An exact minimization is only achieved, when the i s 2
channel noise is taken into account not only in the update + : ‘9_Wt Wi+ O(Wp).
rule but also in the determination of the winner as in Egs. > 2 hsP(ieC)
(12) and (13) for the STVQ. b w0
If one combines the limiting cagg@— <« with the approxi- (25)
mation h,s— &, in Eq. (13), one obtains a batch version of
the SOM[25], for which Kohonen's original algorithif8,4]  under the assumption that is symmetrical, i.e.,

is a stochastic approximatidr26]. Equations(12) and (13)
then become

Ei: XiES: hsPsom(i € Co)
W, = (22)
2 2 hiePsoulieCy
and
Psom(i € Co) = d¢,
t=arg mirj|x; — wy/|2. (23

u

Finally, substitutingh,s— &, in both Egs.(12) and (13
yields the soft clustering procedure proposed in R#d],
whose limit3— oo recovers the well-knowk-means cluster-
ing (HC) [10]. Figure 2 summarizes the family of topo-
graphic clustering algorithms.

Ill. ANALYSIS OF THE INITIAL PHASE TRANSITION

h,s=hg, Vr,s, this expression can be evaluated using the
relation

dP(ieCy ) i
T:B (Xi—wyP(ieCy hst_z hP(i ECU)) )
t u
(26)
and the linearized fixed-point equations become
W= C2 gy 27

HereC = (1/D) =;xx; is the covariance matrix of the data,
and

1
Ot = 2 hrs( hsi— N) (29)
S

are the elements of a matri® which acts on the cluster
indices. The system of equatio(7) decouples under trans-
formation to the eigenbasis of the covariance ma@ixn
data space, and to the eigenbasis of the marix cluster
space. The former transformation is also known as principal

In order to understand the annealing process in the tensomponent analysi$PCA) [27]. Denoting the transformed
perature parameteB it is instructive to look at how the cluster centers bjgy( whereu andk designate the com-
representation of the data changes withFrom Refs[11]  ponents in the new bases of data space and cluster space and
and[1] it is known that the cluster centers split with increas-the prime and hat denote PCA and the transformation to the
ing B, and that the number of relevant clusters for a resolueigenbasis of3, Eq. (27) becomes
tion given by g is determined from the number of clusters
that have split up to that point. In the STVQ, however, the
permutation symmetry of the cluster centers is broken and
couplings between clusters are introduced by the transitiOWhere)\i and)\f are the eigenvalues for the eigenvecmf[s
matrix H. This changes stationary states and the “splitting” and v¢ . Equation(29) can only have nonzero solutions for
behavior of the _cluster centers. o 7\2 )\E: 1. Hence there is a criticg*,

For 8=0, which corresponds to infinite temperature, ev-

W= (B NS AW, (29

ery data pointx; is assigned to every clustéf with equal 1
probability P°(i e C;) = 1/N, whereN is the number of clus- B* =<5 (30
ter centers. In this case the cluster centers are given by N mad max
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FIG. 3. The phenomenon of “dimension re-
duction” and the automatic selection of feature
dimensions. States of minimal free energy are
shown (a) before the phase transition
(oy=0.4 d.u.), and(b) after the transition

—2r | (oy=1.8 d.u.) for a one-dimensional array of
N=128 cluster centers and a two-dimensional
data space. The chain of clusters as well asxthe

-4 x dimension in data space are subject to periodic

a) -6 -4 -2 8 2 4 6 boundary conditions. Thg direction is referred

to as the longitudinal dimension, thedirection

is called the transversal dimension. The units of
4 ' ' ' ' ' ' the axes are data space uridsu). The dots rep-
resent data points and the filled circles the loca-
tionsw, of the cluster centers. Those cluster cen-
ters whose labels differ by one are connected by
lines. The transition probabilities,; correspond
to a Gaussian neighborhood function of standard
deviation  ¢,=5.0. Parameter values
B=1.3 d.u-? and p=10.0 d.u:?! lead to a
critical standard deviatiomwy =1.25 d.u. and a
critical modek* =3 for the transition.

b) —6 -4 -2 ()2 2 4 6

at which the center of mass solution becomes unstable, clus- The above results can be extended to the SSOM, which is
ters split, and a new representation of the data set emergdsased on the fixed-point equatio(®0) and (21). For the

B* depends on the data via the largest eigenv&ﬁ,g;of the  SSOM the matrixG, whose elements are given by Eg8),
covariance matrixC whose eigenvectorS,, denotes the di- must simply be replaced B§SS°Mwith elementg;>*M=h,,
rection of maximum variance?,,=\5,, of the data. Con- —1/N.

sequently, the split of the clusters occurs along the principal
axis in data spaceB* also depends on the transition matrix
H via the largest eigenvalueS,, of the matrixG. The larg-

est eigenvalua &, indicates which eigenvectale=vS,, is
dominant, and therefore determines the direction in cluster A similar analysis as above can be carried out with regard
space in which the split occurs. Any componerff, of vec-  to the phenomenon of the automatic selection of feature di-

tor W,'L: (W,'Lll L ’W;’LN)T can be expressed as a linear com-mensions, a term first used by Kohorién in the context of

IV. ANALYSIS OF THE AUTOMATIC SELECTION
OF FEATURE DIMENSIONS

binationw/,, = =,W’ v of components; of eigenvectors g'g‘ii?srgo? . rletéuct:non [28’2qn.d L:cgimur? i golnsurjrer ?
ve=%, ... v8)" of the matrixG. Thus the development ¢ ¢'Mmensional data space and: aRdimensiona’ array o

' under the linearized fixed- clusters labeled by-dimensional index vectons. The cou-

of cluster center componemt : . ! .
. ) wr plings h,s of clusters are defined on this array, and are typi-
point equation(29) depends on the value of thé' compo- cally chosen to be a monotonically decreasing function of

nent of e|genyectown61ax.GG|v_en.the principal axis in data | g Ford>n a simple representation of the input data is
space, the eigenvectory,, indicates in which direction achieved, if the data have significant variance only along
along this axis as well as how far each cluster center movegs the d dimensions. In this case, the vectaws lie in an
relative to the other cluster centers in the linear approximap_gimensional subspace and the excess dimensions are effec-
tion. _ _ _ tively ignored[see Fig. 8)]. If, however, the variance of the

In order to express this result in terms of eigenvectyls gata in the excess dimensions surpasses a critical value, the
and eigenvalues of H, it is observed thaG andH have  original representation becomes unstable, and the array of
the same set of eigenvectors. It follows from E28) that  vectorsw, folds into the excess dimensions so as to represent
ve_. is identical to the eigenvector &1 which corresponds them as wellsee Fig. 8)]. This phenomenon was studied
to its second largest eigenvalwé, with ()\E)2=)\n61ax. in a formal way by employing a Fokker-Planck approxima-
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tion for the dynamics of thézero temperatujeSOM on-line  [see Appendix A, Eq(A4)], for the transversal components
learning algorithm(18,17). In the following we provide an of the cluster centers, in the linear approximation we ob-

analysis for the full STVQ family by investigating the fixed- tain
point equationg12) and(13), and compare the results to the

limiti f the SOM. JP(xeC
imiting case of the SO f POOx S hrs[ (xeCy dx
S &Wt {WO}
A. Phase transition in the discrete case Wy = 2 we. (39
0
For this purpose, we examine the stability of E¢k2) f P(X)ES hes POl eCy) dx

and (13) around a known fixed point. Let us consider the

case of an infinite number of data points generated by amhe denominator of Eq35) evaluates tdN ™" [see Appendix
underlying probability distributionP(x). The fixed-point A Eq.(A7)] because on the average over data space for the
equations then read fixed point no cluster is singled out. Inserting Eg6) into

Eq. (35), we obtain

J P(x)xz hsP(xe Cg)dx

W, = , v, (31) WrLZB CZ Es: hrs( hst_Eu: htu fus)“’#a (36)
f P(x) Y, hP(xeCodx
s inwhichC=[P(x}) x* x'T dx! is the covariance matrix of
the transversal dimensions of data space and
: |
exp — =2, hg{lx—wy?
{53 naxwi (ot [ POy Pt @
P(xeCy)= 5 (32
g ex;{ - Ezt hut”X_WtHZ) is essentially the correlation function of the assignment prob-

abilities of clustersC, and C; in the fixed-point statgw®}

taken over data spacé,s depends orB via the assignment
probabilities P°(x| e C,). Note that Eq.(36) has the same
form as Eq. (270 when g, is taken to be

9t =Zdhs(hs— Zhy fug)-

where cluster indices are nown-dimensional index vectors
which lie on an n-dimensional cubic array,r e A",
r,e{1,2,...N}. For the following we assume that

hFS:NX/t\g_’EjO’tl] obegghrszr:”tr,_ﬂ%. It:or no't[)ational an)\d/e- Equation(36) can again be decoupled in data space by a
nience, the data spactis split into two subspaces{= transformation to the eigenbasis Gf Denoting the compo-

n ; L . .
EB.X » one for t“he embedding or longitudinal dlmensm?c_iLs nents of the transformed cluster centersvb’y , Whereu is
with elementx!' and one for the excess or transversal dimen-

sions At with elementsxt. We also assume the probability thce index with respect to the eigenvecuirwith eigenvalue
distribution P(X) over data spaceX to factorize as Mu: EG-(37) reads

P(x)=P(x)P(x'), where the probability distribution

P(x) in the transversal dimensions has zero mean, i.e. wir=B15> > hrs( hg— >, hy fus)%’i- (39
JP(x')xt dxt=0. In the longitudinal dimensions of data tos u

space we assume the factorizatié’r@x”)=H,,P(x”y), with
P(xly=11 for —1/2<xl<1/2 andP(x|)=0 otherwise, and
we consider the system in the approximatida-oo, | — o
and p:=N/I finite. Since the variance in the longitudinal
data space is effectively infinite, for the fixed point of Egs.
(31) and(32) (see Appendix Awe obtain W;’;,lr:B )\ﬁ(h* (h—hx f)*W;Li)r ) (39

Fromh=h,_q, it follows that f s=f|, _q (see Appendix
B). Defining the discrete convolution for two lattice func-
tions a, andbg to be @*b), =X _gbs, Eq. (38 can be
written as

WrHO:pflr and w,%=0, WVr. (33 f\pplication of the discrete Fourier transform,
a,=2,a,expi(k-r)), to Eqg. (39 leads to a decoupling of

Equation (31) can again be expanded to first ordervip Eq. (39) in cluster space as well, and we obtain

around the fixed poinfw?}, just as in Eq(25). The assign-
ment probabilityP%(x e C)) of a data poink to a clusteiCsin

the fixed-point staté33) depends on the longitudinal com- \\here we make use of the fact that the modesk iapace

ponents ofx only and—abusing notation—we can write gepend only on the absolute valke=||k|| due to the isot-

PO(xeCd=P(xleCy. Let us consider the stability of Eq. yopy of the neighborhood function, of the data distribution,
(33) along the transversal dimensions which determines thgnq of the fixed-point state. Equatidd0) can only have

Br;’[ilﬁgl parameters for the phase transition depicted in Fig. 3r'10nzero solutions i )\2 ﬁﬁ(l—fk(ﬂ))I 1. Since)\fi:ai,

Whereoi is the variance along the axis in data space, it is

clear that the cluster centers will automatically select the

J P(x) x-S h PUxlecy dx=0 (34) d|2rect|on in transyersal datz(a: space with maximum variance
s omax- Thus the eigenvectory,,, gives the direction in data

Wie=B NS hi(1-Tow,, (40)
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space in which the array of cluster centers folds first. The An interesting aspect of Eq47) is that 1/8 and o2/ p?
critical value8* of the temperature parameter at which thisappear to play a very similar role. If we interprgtas an

transition occurs is given implicitly by
Trax o B* (1= T (8*))—1=0, (41)

where the critical mod&* is the modek for which Eq.(41)

has a solution with minimaB. For a givenB an explicit

expression for the critical variancef,,)* can be obtained:
1

B R A-F(B)

(42

( U;ax)zz

where

k* =arg max h2(1—f(8)). (43
k

Very similar results can be derived for the SSOM when

the approximation to thE step(21) is applied. The resulting
equations are identical to Eqg.1), (42), and(43) except that

h, is not squared and,(B) has to be calculated using the
approximation given in Eq21).

B. Continuous Gaussian case

To determine values foroff,,,)? and k* for a given 3
from Egs.(42) and(43) analytically, we choosh,s Gaussian
with variances? on the distancdr—g| between clusters

inverse variance of the noise in data space,(Ed). is essen-
tially the sum of the variance in data space given by ahd
the varianceo? of the noise in cluster space scaled to data
space by a factop 2.

The above results are also valid for the c@se o« which
corresponds to the TVQ given in Eg4.8) and (19). From
Eqgs.(46) and(47), we obtain

H *\2 1

lim (k*)*=—, (48
B—» O'h

. L, one

lim (oha)®=—5" (49)
B—e

Equation(48) shows that high values ef?, i.e., long-ranged
coupling between clusters, suppress high transversal modes.
From (49) it can be seen, that the critical varianegt(,)? is
proportional to the variance of the neighborhood funcfnﬁn
scaled to data space by a factor’. Thus the stability of the
fixed-point state{w°} with respect to the variance of the
data along the transversal direction in data space can be ad-
justed by changingr?.

All the above results carry over to the SOM versions of
the algorithm, Eqs(20)—(29), if o is replaced byo{, /2 in
Eqgs.(46)—(49), whereo, 2 denotes the variance of the SOM

andsin the array. We also consider a continuum approximaneighborhood function. For the wavelength of the critical
tion, i.e., all index vectors and their associated index vec- mode we obtain g=1)
tors ink space are real and all functions that were previously

defined on\" are now defined on the corresponding con- 20

tinuum R". Under these conditionis,s can be expressed as A* =k—*=a{]w\/§~4.44 ol (50)
- = | e -] ag -
—h(r—4))= exp — , iti ' i i
rs 2mon 202 If the critical variance §,,,)“ is expressed in terms of the

half-width s* of a homogeneous data distribution we obtain

wheren denotes the dimensionality of the cluster array. In-

serting Eq.(44) into (37) and replacing sums by integrals s* =0y \3e/2~2.02y,.

(51)

yields (see Appendix €

ﬁ 1/21n ,3 ,
vl [ 2o

(49)

frs_’f(”r_QDZ

Inserting the Fourier transformationsiof g andf, _g into
Eq. (43), we obtain
pz
B ot

from [ (9/9k)h2(1—F.(B)) 1w+ =0. Inserting Eq(46) into Eq.
(42 finally provides the critical varianceof;,,)?,

1+

B
51 (46)

(k*)2=—
P

2 B(Tﬁ/Pz
1+—

2
Bo,

47

1 Oh

B

(e =

for the modek*.

The last two result$50) and (51) are identical to those pre-
sented by Ritter and Schult¢h7] for the on-line version of
Kohonen’s SOM algorithm with a Gaussian neighborhood
function using the Fokker-Planck approach.

V. NUMERICAL RESULTS

In this section we present numerical results to validate the
analytical calculations and to illustrate the deterministic an-
nealing scheme. We first apply the STVQ to a toy problem
with a sufficiently simple transition matrikl for which the
eigenvectors and eigenvalues can be easily calculated. Then,
in order to demonstrate the effects and advantages of the
deterministic annealing scheme for the STVQ, we consider a
two-dimensional array of clusters in a two-dimensional data
space. Finally, we investigate the behavior of a one-
dimensional “chain” of 128 clusters in a two-dimensional
data space to validate the results of Sec. IV. Throughout this
section components of data vectors will be measured in data
space units, abbreviated “d.u.” The numerical simulations
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FIG. 5. Plot of the critical valugg* (in d.u.”2) of the tempera-
ture parameter as a function of the coupling strengtfor the

. : > -
as functions ofs (in d.u._ ) for the toy problem wittN .3 cluster STVQ toy problem of Fig. 4. Error bars denote the numerical re-
centers and nearest-neighbor coupling. 2000 data points are chosenI P

sults. For each value of the cluster centers are initialized at the

randomly and independently from the Gaussian probability distri-_ . o : _
bution P(x) = (27) ~|C| " Y%exp(—x"C~*x/2) with diagonal cova- grLglr;’ \:Ir:gg fohgeirg,?gg(eji;e_d jgcgrilzq Ztﬁ\;\fhlile/rgrt]Zn?t.grz-
riance matrixC = diag (1.0 d.u?, 0.04 d.u?). Cluster centers are . O s M final = 2 e

initialized at the origin and STVQ is applied for different values of ing (E). For low yalues ofs, the average CO$E.> IS con§tant. The
B The STVQ iterations are stopped when lower error margins denote th@values, for which the first change

||W(‘+1)—W(t)|\ < 5x101° du. for all r. The analytically deter- in (E) occurs and the upper error margins denoteghealues, for
mirr19d critircal value ofg is g.iv.en by 8* ':1.21 d.u-2 for a cou- which the large drop ifE) occurs. The line shows the theoretical

: - . . . prediction calculated from Eq30) for \$a,=02=1.0 d.u? and
222% isr:rte:hnegtg:oct)fs = 0.1. It corresponds to the trifurcation point Kﬁax: 1/(1+8)2. Inset: Plot of the average o) (in d.u?) as a

function of 8 (in d.u.”?) for a typical example(s = 0.1). The

. . isible drop in(E =1.25 d.u-2
were implemented in ANSI C on Sun Sparc 20 and Sun UItraVISI e drop in(E) oceurs ais !

Sparc workstations.

FIG. 4. Plot of thex positionsw} (in d.u) of the cluster centers

initial phase transition. Figure 5 shows the critical vajgie

of the temperature parameter as a function of the nearest-
A. Toy problem neighbor coupling strength Error bars indicate the numeri-

We consider a two-dimensional data space with 2000 dat&2! results, which are in agreement with the theoretical pre-

points which were generated by an elongated Gaussian profliction of (30) (solid line). The inset displays the average
ability distribution P(x)=(2) 1|C| Y2exp(-x"C 1x/2)  COSt(E),
with diagonal covariance matri€ = diag (1.0 d.u?, 0.04
d.u?). N = 3 cluster centers were coupled via a transition (Ey=3> 2 P(ieC)X hllxi—wg?, (54)
probability matrixH, TT s

1 s 0 as a function ofg for a coupling strength o§ = 0.1. The
He 1 s 1-s s visible drop of the average cost occurs@at 1.25 d.u 2.
T 1+s ' (52) Note that the transition zone is finite due to finite-size ef-
0 S 1 fects.

This choice ofH corresponds to a “chain” of clusters where
each cluster is linked to its nearest neighbor via the transition ) ) ]
probabilitys/(1+s), while second-nearest neighbors are un- €t Us now consider a two-dimensional data space and a
coupled because the transition probabilitigs= hs, vanish. set of 8<8 clusters labeled by two-dimensional mdex vec-
The magnitude of governs the coupling strength and the 'S T r,={12,...,8. The D=8x8 data points lie
normalization factor is included to comply with condition €dually spaced on a grid in the unit square. The transition

B. Annealing of a two-dimensional array of cluster centers

(4). p_robabilitieshrS are chqsen from a Gaussian function of the
Figure 4 shows the coordinates of the positions, of  distance between the index vectorands,
the cluster centers in data space as functions of the tempera- 2
ture parametep for the configuration of minimal free en- h _i _ Ir— (55)
ergy. At a critical temperaturg* = 1.21 d.u. ? the cluster 0, 2crﬁ '
centers split along thg axis, which is the principal axis of
the distribution of data points. In accordance with the eigenwith
vectorve,,, ,
0 22 exp — Ir—ul (56)
ve =(-1 du., 0 du., 1 d.l, (53 4 202 |’

for the largest eigenvalu)eﬁax of the matrixG given in Eq.  where the normalization consta@t, is needed to satisfy Eq.

(28) two cluster centers move to opposite positions along thé4). This set of transition probabilities corresponds to a
principal axis, while one remains at the center. Therefore, &square grid” of clusters, and is commonly used in applica-
topologically correct ordering is already established at thdions of the SOM. Figure 6 shows snapshots of a combined
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FIG. 6. "Melting” of topological defects.
The plots show snapshots of cluster centers for a
two-dimensional &8 cluster array and a two-
dimensional data space using STVQ at different
temperaturesT (in d.u?). Dots indicate cluster
centers with those centers connected by lines
which correspond to pairs of clusters for which
the transition probabilityh, is highest. Starting
from a local minimum of the cost function intro-
duced by random initialization and preserved at
low temperature, as seen(a), the temperatur@
is increased exponentially according to
T.41=1.01T,. (b)—(e) illustrate the correspond-
@ ing “melting” of topological defects.(f) shows

the positions of the cluster centers after “recool-
ing” to T=0.01 d.l2. The Gaussian neighbor-
hood function has standard deviatien,=0.5,
and the input data consist of 64 data points on a
square grid in the unit square.

=

T =0.0013

o

4 T =00617 e  T=01004 f) T=001

“heating” and “cooling” experiment which is best de- tions, and reflects in our case a qualitative change in the
scribed in terms of the temperatufe=1/3. assignment cost triggered by a small quantitative change in
For the “heating” process annealing starts at a low tem-T. The “heat capacity”C(T) may also serve to determine a
peratureT=0.0002 d./* with randomly initialized cluster reasonable annealing schedule in the temperature parameter

centers and then the temperature is increased according to hacause it indicates critical points during the annealing.
exponential scheme. Figuregab-6(e) display a series of
five snapshots of cluster centers during “heating.” Defects
of the grid, which indicate a local minimum &, are intro-
duced by the random initialization of the cluster centers and
are preserved at low temperatures. Rsis gradually in- Finally, we consider a data set of 2000 data points drawn
creased, shallow local minima vanish and the grid becomeom a homogeneous probability distribution defined on a
more and more ordered. Finally, a topologically ordered staté&wo-dimensional rectangular data space of lenigth 12.8
is reached, which corresponds to the global minimum of the
free energy. Becausk governs the resolution of the repre-
sentation in data space, rather localized defects melt away at
low temperature, which corresponds to a high resolution in
data space, while global twists melt away last.

During “cooling” the temperaturd is decreased starting
from a very high valueT=0.1 d.u?), which corresponds to
a state of the system where all cluster centers are merged at
the center of mass of the data distribution. Annealing is per-
formed according to the reverse “heating” schedule and ter-
minates aff =0.0002 d..?, which corresponds to the global
minimum of the free energy and which is shown in Fi¢f) 6
Note that an ordered two-dimensional grid of cluster centers :
is established at the initial phase transition, and remains in 1 2 3 4
the ordered configuration throughout the “cooling” process. In(T/ T.)

Figure 7 shows the average cdf&), a measure for the 0
quality of the data representation, as a function of the tem-
peratureT for both annealing experiments from Fig. 6,
“heating” and *cooling.”

Figure 8 displaysC: =d({E)/dT, the derivative of the av-

C. Automatic selection of feature dimensions
for a chain of clusters

ititrggg,

M '\?<E>°P O

5 6

FIG. 7. Semilogarithmic plot of the average assignment (Bt
(in d.u?) as a function of temperatufE (in d.u.?) for the cluster
array of Fig. 6. The upper curve shows the developmerEpffor

erage cost with respect to the temperature, as a functidn of the exponential “heating” schedule froi—0.0002 to 0.1 d.d,
9 P P ’ starting from the local minimum of the cost function shown in Fig.

for heatlr}g. Cis eqUIvaIQnt to the heat capacity in ther- 6(a). The steps in the average cost occur at temperatures where
modynamics, and can be interpreted as a measure for th&iqis» in the spatial arrangements of cluster centers unfold. The
progress made in the quality of data representation pepyer curve shows the average c¢&) for the same exponential
change in temperature during anneali@{T) exhibits pro-  scheme now applied backwards, in the “cooling” direction from
nounced peaks at temperatures which correspond to the=0.1 to 0.0002 d.&#. During “cooling,” the cluster centers re-
“steps” in (E) during the annealing at which rearrange- main in a “topologically ordered” grid-shaped arrangeméat.
ments of the cluster centers occur. This behavior is analorigs. fe) and &f)]. The normalization constant is
gous to that of physical systems that undergo phase transi,=0.0002 d..%; other parameters are as given in Fig. 6.
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FIG. 8. Semilogarithmic plot of the heat -capacity y
C(T):=d(E)/dT as a function of temperatufe (in d.u.?) for the
“heating” as shown in Figs. @—6(e) and 7 (upper curve The FIG. 9. Plot of the squared absolute amplitufes]? (in d.u.?)

temperatures corresponding to the peaked minima of the heat c@f yransversal Fourier moddsas functions of the standard devia-
pacity indi_catg transition points of the array _of c_luster centers asjon o, (in d.u) of the data for the chain dfi=128 cluster centers
observed in Fig. 6. Parameters are as given in Figs. 6 and 7. ghown in Fig. 3. Only the five modes with the largest wavelength
) _ ) ) are shown. Beyond the phase transitionrfit=1.27, d.u. thek=3
d.u. and a variable width,=2+/3 o, whereos? is the vari-  mode is selected, and the chain folds into a sine-wave-like curve.
ance of the probability distribution along tlyeaxis in data Parameters are given bp=1.3 d.u7?, p=10.0 d.u?, and
space. A set ofN=128 clusters is labeled by indices o,=5.0. The 2000 data points are distributed uniformly in the data
r={1,2,... N}. The transition probabilities,; are chosen plane given by [-6.4 d.u., 6.4 d.yx[—1,2],/2], where
from a Gaussian function of the distance between indices |,=23 g, is the width of the data distribution in thedirection.
ands,
1 min(r—s| . N=[r—g))2 cal valuea§=1.27 d.u. the critical modé&* =3 increases
hrs=—exp( _ (min(ir—sj . r—s) ) (57)  in power and, finally, dominates the spatial arrangement of
0, 2 ot the cluster centers.
Figure 10 shows the average cd&) and its derivative
with with respect too, as functions ofo, for the numerical ex-
periment shown in Fig. 9. At the critical standard deviation
oy a kink occurs ind(E)/do, . The position of this kink

s (min([|r —ul| , N—[r—u[))® y
0,=2 exp — . (58 was used to obtain the numerical results of Fig. 11, which

u 20

This set of transition probabilities corresponds to a linear
chain of clusters. A one-dimensional chain in a two-
dimensional data space constitutes the simplest nontrivial
case for which Eq(47) has been derived.

Since Eq.(47) has been derived for a longitudinal space

of infinite size and in the continuum limit, periodic boundary m
conditions were imposed in the longitudinaldimension of ~0.8
data space and on the transition probabilitigs The cluster

centers were initialized according to E§3) [see Fig. 8a)] 0.4

with p=10.0 d.uL. The size of the system to be examined
was important in two aspects. The number of clusters was
chosen as large as computationally feasible in order to re-
duce finite-size effects on the mode spectrum, as well as in
order for the continuum approximation to be valid. The num-
ber of data points was chosen such that local inhomogene- ) . .
ities would not strongly bias the result, while keeping the ' 10 Plot of the average cog) (in d.u?) and its deriva-

: - . . g tive d(E)/da, (in d.u. scaled by an arb. consas functions of the
computation time still tractable. Figuré8 shows the spatial Yo . : : .

s . standard deviationr, (in d.u) of the data set in thg dimension for
dlstrlbutlon of cluster Centzers after the varlantSahas been the chain ofN= 128 cluster centers. The slope of the average cost
gradually increased fronry=0.0 to 3.24 d.i% beyond the  shows a clear change at the critical valueogf. Interpolating be-
phase transition. The chain folds into the excess dimension tweena, at the minimum andr, at the maximum of the derivative
in a wavelike shape with a dominant wavelength This is  yields the critical values}; . The arrow indicates the theoretical
well illustrated in Fig. 9, which depicts the power in each of prediction for the critical standard deviatief =1.27 d.u. Param-
the first five Fourier modes as a function®f. At the criti-  eters are as given in Fig. 9.
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by a reduction of neuronal noise rather than—as is the

1.6— ' ' ' ' ' ' widely accepted vieW28]—by a change in the variance of
the input data.
1.5¢
14 VI. CONCLUSION
b1 3f 1 Topographic vector quantizers are useful lossy data com-
pression algorithms that produce encoding-decoding strate-
1.2 T gies which are robust against channel noise. In order to de-
\I\h\l\ velop a robust optimization scheme for the TVQ cost
1.1y ] function we employed the idea of deterministic annealing
1 and we derived a fuzzy version of the TVQ algorithm in the

08 1 12 14 16 18 2 22 form of an EM scheme. From this algorithm we then ob-
B tained a family of topographic clustering algorithms, among
them the self-organizing map, as approximations. Since the
FIG. 11. Plot of the critical standard deviatiorj (in d.u) asa annealing process is essential to the algorithm, we examined
function of the temperature paramefin d.u.”2) for the chain of ~ the behavior of the data representation as a function of tem-
N=128 cluster centers. The standard deviatigrof the data setin perature. Critical temperatures and modes of the resulting
the transversa dimension is linearly increased for fixggland the ~ phase transitions were determined and were found to depend
critical valueoy obtained from the derivative of the average cost, on the data distribution via its covariance matrix and on the
as shown in Fig. 10. The upper bound of the error bars is taken fronghannel noise, or cluster couplings, via its transition matrix.
the position of the minimum, and the lower bound from the positionA similar analysis was performed with regard to the phenom-
of the maximum ofd(E)/da, . Parameters are as given in Fig. 9. enon of the automatic selection of feature dimensions, and
analytical results with respect to the critical variance of the
compares the theoretical values o} (solid line) obtained  data and critical modes of the folding map were obtained.
from Eq.(47) with those that were obtained from the numeri-  Our numerical results confirmed the theoretical predic-
cal simulations(error barg. The numerical results are in tions and showed the essential features of the annealing pro-
good agreement with the theoretical values obtained in Segess. Since the temperature can be considered as a resolution
IV, which justifies the approximations employed in the deri- parameter in data space, the algorithms presented in this pa-
vation of Eq.(47). per may prove particularly useful for applications for which
Similar transitions in the data representation occur duringptimal topographic vector quantization at different scales is
annealing inT for fixed o, and oy, . It can be observed from desirable. Our results indicate that the first split of the clus-
Figure 12, which shows the heat capad®yT) for such a ters is in accordance with the desired structure of the data
case, that a stepwise decreasé ileads to a smooth change representation, as implicitly given by the transition maklix
of representation from the initial statleft inse) to a folded  This demonstrates the usefulness of deterministic annealing
state(right inse} of the chain. This observation is of interest in clustering and provides the STV@nd the SSOMwith
with regard to neural development in biological systemsmany possible applications. From the interpretation of the
[18,30. InterpretingT=1/8 as a noise parameter leads to thetemperature as a noise parameter for cluster assignments it
idea that the development of cortical maps may be triggeretbllows that phase transitions in topographic clustering can

1800

FIG. 12. Plot of the heat capacity
C(T):=d(E)/dT as a function of the tempera-
ture T (in d.u.?) for the chain ofN=128 cluster
centers. Starting from the initial state of the chain
at high temperaturéeft inse), the temperatur@
is reduced in linear steps = 1/T, for fixed o, .

As T is lowered, the heat capacity increases,
the average codfE) is reduced faster, and the
chain is continuously transformed into a folded
configuration of the cluster cente(gght insej.
The vertical arrows indicate the corresponding
temperaturesT =1.25 and 0.714 d.d.for the left
and right insets, respectively. Parameters are
given byo,=1.3 d.u. andr,=5.0.
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be induced by decreasing the noise level. This finding ha

implications for neural development in biological systemsj P(x)x" >, hsPox! e Cydx

and leads to the hypothesis that the development of corticad s

maps may be induced by a decrease of neuronal noise rather

than by a change in the statistics of the input signals, as is =f P(xh> h,SPO(x”e(Zs)dx”f P(x")x dx-=0"
currently believed. s (Ad)

ACKNOWLEDGMENT because the mean &f(x") was assumed to be zero. Hence
Eq. (A3) is satisfied.

For the evaluation of the longitudinal dimensions, we
again insert Eq(33) into Eq. (Al), and obtain conditions
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APPENDIX A: PROOF OF THE FIXED-POINT PROPERTY
f P(x)x>Y, hP%xeCydx
S

A set of cluster centerw?} qualifies as a fixed point of

lo_ -1
Eq. (31) if it satisfies Wr pr, VI
fp(x)Z h,sP%(x e C9dx
S
f P(x)x, hP%xeCy dx (A5)
S
wl= , Vr, (Al)  Equation(A5) can be written as an average fo®, (x!)x!dx!
f P(x)>, hsP%(xeCgdx over a probability distributior®,(x!) given by
S
where P(xh > hPoXlecy
S
8 Q (xh=
exp( - Ezt: hst||x—wt°||2) J P(XH)ES hP°(xl e Co)dx!
PO(xeCy= 3 (A2)
~ ex“(‘EEt “Ut”x‘wto”z) NP S hoPodlec), (A0)

Let us first consider the transversal dimensions. Inserting Eqyhere in the second step the identity
(33) into Eq. (A1) yields conditions

f P(xh> h Po(x”eCde”=i (A7)
jP(x)xiz hsP°(x e Cg)dx ~ Mrs N
wy 0= : =0, Vr.

r

0 has been used. EquatidA7) can be shown by summing
f P(x) >, hsP%(xe Cydx both sides over, yielding unity. To demonstrate the validity
S “ . .
(A3) of Eg. (A5) we only need to show th&,(x") is symmetric
with respect tav!®= p~1r. SinceP(x/) is homogeneous, this
Using P%(xe C)=P°(xleCy we obtain for the numerator reduces to showing tha&h,.P°(x! e C) is symmetric with
of Eq. (A3) respect top~r. This is equivalent to

> hPXleC)=> hP%2p tr—xlecy
S S

exe| - 53 nlil—p 200l
t

S e - 53 hulil—p el

(A8)

22 Pis
s

Fromh=h,_g, it follows thath,s=h ;g . Substitutings—s'=2r—s andt—t'=2r—t we can write

B _
x|~ 53 i solld=p~ 210

Zs hrsPO(XHECs):Z hrs' B
T Sed b3 hut||x—pl<zr—t>||2)
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g L
exp( B hgeli—p ||2)
tl
:E hrS/PO(X”ECSr).

=2 s B ,
TS e 53 hubd o
t’

(A9)

Thus the probability distributio@r(x”) is symmetric with respect tm/ﬂO:p‘lr and consequentIyQ,(x”) XHdX“=p_1I’.
Hence Eq(A5) is correct, and Eq33) is a fixed point of Eq(31).

APPENDIX B: DERIVATION OF THE SYMMETRY PROPERTIES OF THE ASSIGNMENT CORRELATIONS

Here we show that,;=f|, _y follows from h,s=hy,_g . Starting from Eq(37), we can expres$;s as
i > (hj,_g+h I— o= 12
exp — 52 (Mjr—y ls— g IX'—p ™|

5 5 dxl. (B1)
> exp(—gzt: hut|||X|—Plt||2>

u

er=N“f P(xl

Substitutingt—t’ = A(t—s), whereA is any nonsingular, length-preserving transformation matrix, and yginy=|r||, Vr,
we obtain

B a1
exp(_EE (Njac—9 v+ heplX' =p AT +9)[?
t/

fe= N”f P(xl > dx/. (B2)

B 1 a1
> exp( — 52 hp-a-w—glX = p HATH +9))?
t/

u

Substitutingxl—xI" = A(x|— p~1s) andu—u’=A(u—s) leads to

( B R
exp — 22 (hHA(r*S)*t/H—’_th/”)”X” —p 1t ”2
t/

5 dxll’

fo= N“f P(A~ X"+ p~1g)

u

B P
> exp( —52 hju-a-1r—glx"—p 't ||2)
t’

B ! - !
ex —52 (hjacr—g v+ hpeplXl —p =2t ||2)

t!

:an P(A-IK" + p~ 1) dxl’. (B3)

u’

B ! — ! 2
> eXP( —52 hyw —egIX!" =p 1t ||2”
t’

Comparing Eqgs(B3) and (B1), it can be seen thdt, is a

function of A(r —s), if P(A™x+ ffls) =P(x). This is the

case for our particular choidé(x‘)=|‘”, and, sinceA can er:pnf
be any length-preserving linear transformation, it follows

thatf = er,su .

B
x| - 53 (et - wi |

B 5 dx.
S o] - 53 ol |

(CD
APPENDIX C: EVALUATION

OF THE ASSIGNMENT CORRELATION First we evaluate the expressiahh,||x!—w/°|2 in the con-
FOR GAUSSIAN NEIGHBORHOOD FUNCTIONS tinuum approximation with sums reﬁ)laced by integrals by

Starting from Eq(37), we calculate the approximation of Using the property of the fixed poimt; °=p~'t from (33).
f.s as given in Eq.(45) for the homogeneous isotropic This gives
Gaussian neighborhood function given in E¢4) in the
continuum approximation. Inserting the assignment prob-
abilities P°(x/e C;), Eq. (A2), for the fixed point(33) into S hyfxl—wl)2
Eq. (37) gives T !
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1" Ir—t? .
h h

\fl f o IXl=p~ Xt +0)]]? dt’
= exp ——— | IIX'"— r )
27oy 2 O'ﬁ P

(C2

for whicht—t"=t—r. Now the evaluation of the integral is

straightforward, and we obtain

S hellXl WP~ X - w4 np 20 (€3
t

Inserting this into Eq(C1) and observing that the expression
exp(—,Bnpfzazh) appears as a factor in the numerator and

denominator and thus cancels, we arrive at

x| ~ B - p e+ X 25
frs%pnf

> dxl.
'S x| - Sl
(CH

The denominator of the integrand in E@C4) is approxi-
mated by

2

@ exe| ~ £ p 1|
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2

J exp( - §|x—p-1u||2)du
27Tp2>n
Ly

(CH

and the numerator of the integrand in EG4) can be rewrit-
ten as

exe{ — B - p e+ - 25|

—ondl - 2l p e+l e -9
(C6)

Inserting Eqs(C5) and(C6) into Eq. (C4), and using

n/2
f exp<—§||2x"—p1(r+s)||2 %) ,

we finally obtain the continuum approximation by,

B 1/21n % ,8 2)
(C7

dxll=

frs%f(”r_ﬂ):
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