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Stabilization of spatiotemporally chaotic semiconductor laser arrays
by means of delayed optical feedback
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A stabilization scheme for suppression of spatiotemporal instabilities in semiconductor laser arrays is pre-
sented. Using relevant time scales obtained from an application of a complex Karhunen-Loe`ve decomposition
allows tailoring delayed optical feedback such that stabilization is achieved via destructive interference in the
higher-order transverse modes conveying the instabilities. Successful stabilization of previously spatiotempo-
rally chaotic optical near fields towards stable continuous wave output is demonstrated in two-, three- and
five-stripe arrays. Linear stability analysis of a system of ordinary differential equations obtained by projection
onto the relevant eigenmodes of the two-stripe laser shows that stabilization can be achieved in a wide
parameter range. Our analytical results are in good agreement with numerical simulations.
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I. INTRODUCTION

The enormous technical progress and the extreme ve
tility of semiconductor lasers has lead to an ever increas
importance of these devices in many present and future
technologies, e.g., telecommunications, consumer elect
ics, or manufacturing. To this day, however, a limiting fac
resides in the fact that temporal and spatiotemporal insta
ties can arise under typical operating conditions desired
applications. Due to its very high gain and outcoupling ra
the semiconductor laser is very sensitive to delayed opt
feedback caused by distant reflecting surfaces such as a
pact disk or a fiber butt end. An early theoretical investig
tion of the nonlinear dynamical phenomena resulting from
feedback-induced destabilization was carried out by La
and Kobayashi more than 15 years ago@1#, who described
the laser by delay-differential rate equations. In both exp
mental and theoretical investigations@2,3# it was found that
very small amounts of delayed optical feedback can be
ficient to drive the laser into the so-called coherence-colla
regime@4# where the laser output displays irregular behav
with an extremely broadened spectral line. Mo”rk et al. @3#
found that this state corresponds to deterministic chaos.
the other hand, it is possible to achieve improved longitu
nal mode selection and considerable linewidth narrowing
deliberately applying delayed optical feedback. Moreov
controlling chaos in a semiconductor laser by means of
layed optical feedback@5# and stabilization of traveling
waves by means of delayed optical feedback and spatia
tering in a broad-area laser model@6# were demonstrated in
recent theoretical works.

Another destabilizing mechanism is closely related to
nonlinear interaction of multiple transverse modes. In mu
stripe and broad area lasers, which are used to obtain
high intensities, these transverse modes become ex
561063-651X/97/56~4!/3868~8!/$10.00
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when the pump current exceeds a certain threshold. Th
both temporally and spatially irregular behavior correspo
ing to deterministic spatiotemporal chaos is observed@7–9#,
even in the longitudinal single-mode case. This constitute
severe problem when good beam quality at high intensitie
desired. While theoretical investigations of delay-induc
temporal instabilities in single-stripe lasers using the La
Kobayashi rate equations has been a subject of intense
search until today, the investigation of spatiotemporal p
nomena occurring in multistripe laser arrays@7,10,11# and
broad-area lasers@8,12# has evolved to an issue of great in
terest in recent years. In recent theoretical work of the
thors @13# and other groups@14#, both destabilizing mecha
nisms were combined in investigations on the influence
delayed optical feedback on spatiotemporal dynamics.

In this paper we apply delayed optical feedback
achieve suppression of spatiotemporal instabilities. Thus
can stabilize stationary operation in the fundamental tra
verse mode from an originally spatiotemporally chaotic sta
In Sec. II we will give a brief survey of our model. In Sec. I
we introduce complex eigenmode analysis via the Karhun
Loève algorithm, which yields a decomposition of the com
plex optical field into a set of orthonormal transverse mod
and the individual oscillation frequencies of these mod
Section IV shows that this permits setting up optical fee
back conditions that lead to steady-state operation in the
damental transverse mode by suppression of higher-o
transverse modes. By projection onto the relevant eig
modes we obtain for the case of the two-stripe laser a sys
of coupled ordinary-differential equations~ODEs! that al-
lows us to perform a linear stability analysis of the fund
mental mode~Sec. IV C!. Our analytical results are in goo
agreement with numerical simulations and in Sec. IV D t
extension of the stabilization scheme to three- and five-st
laser arrays is demonstrated.
3868 © 1997 The American Physical Society
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II. MODEL EQUATIONS

For numerical simulations, we extended the plane-w
Lang-Kobayashi model@1# to include transverse effects
These arise, on the one hand, by transverse coupling
optical diffraction ~diffraction coefficientDp) and charge
carrier diffusion (D f) and, on the other hand, by the tran
verse inhomogeneity of stripe-geometry lasers. We thus
tain the following set of nonlinear coupled partial different
equations~PDEs! for the complex optical fieldE(x,t) and
the charge carrier densityN(x,t):

nl

c
] tE5 iD p]x

2E2@gE1 ih~x!#E

1G~x!@g~N!1 ik0dn~N!#E

1
1

2L
gReiFE~x,t2t!, ~1!

] tN5L~x!1D f]x
2N2gnrN2

2e0c

\v0nl
g~N!uEu2. ~2!

The transversely varying parametersL(x), h(x), andG(x)
describe current injection via stripe electrodes of a giv
width w and spacings, index guiding through transvers
index steps located below the stripe electrodes, and the tr
versely varying confinement factor, respectively@13#. Fur-
ther parameters are the nonradiative decay rategnr of the
carrier density, the refractive index of the active layernl ,
and the carrier frequency and vacuum wave numberv0 and
k0, respectively. The variation of the optical gain and t
refractive index of the active medium with the carrier dens
is approximated by the phenomenological linear gain fu
tion g(N)5a(N2N0) (a is the linear gain coefficient an
N0 the carrier density at transparency! and dn52aaN/k0,
respectively@15#. The linewidth enhancement factor is a
sumed asa52.

The distributed mirror loss is represented by the damp
constantgE52 lnAR1R2/2L, whereR1 andR2 are the power
reflectivities of the front and rear facets, respectively. D
layed optical feedback is represented by the feedback pa
etersgR ~feedback strength!, t ~delay time!, and F ~feed-
back phase!, respectively. The values of relevant paramet
are given in Table I. Equations~1! and~2! are solved using a
Hopscotch method, assuming absorbing boundary condit
at the transverse edges@16#.

III. EIGENMODE ANALYSIS

In order to characterize the spatiotemporal complexity
the laser output, it is highly desirable to find out how ma
optical modes are involved and the way they are spati
structured. To this end, eigenmode analysis via Karhun
Loève decomposition~KLD ! has been successfully applie
in recent publications@17–19#. Given a time series of a spa
tially extended system~from experiment or numerical simu
lation!, this method provides a decomposition into an orth
normal set of eigenmodes. In its original form, this algorith
computes eigenmodes for real input data. In optics one th
fore generally uses data of the output intensity. On this ba
however, the structure of the complex field modes and th
e
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respective frequencies are not directly available. As it tu
out, for efficient stabilization schemes, information on bo
spatial modes and frequency distribution is crucial. W
therefore extended the traditional eigenmode analysis
complex input data pertaining to the spatially resolved op
cal field.

A. Complex Karhunen-Loève decomposition

The complex eigenmodespn corresponding to transvers
modespn(x) of the optical field are obtained by solving th
eigenvalue problem of the Hermitian covariance matrix

Cpn5lnpn ,

where

Cjk5
1

TE0

T

E* ~xj ,t !E~xk ,t !dt, j ,k51, . . . ,Nx ,

whereT andNx denote the length of the time series and t
number of transverse grid points, respectively. The real
genvaluesln yield the relative importance of the comple
eigenmodespn , which form an orthonormal set

(
k51

Nx

pm* ~xk!pn~xk!5dmn . ~3!

The time-varying modal amplitudes are also comp
quantities. They govern the dynamics of the individu
eigenmodes and are obtained according to

an~ t !5 (
k51

Nx

pn* ~xk!E~xk ,t !. ~4!

It is the frequency spectra of these modal time seriesan(t)
that yield the oscillation frequencies of the complex eige
modes and will later help us in establishing suitable con
tions for achieving stabilizing feedback. From the eige

TABLE I. Parameters of the semiconductor laser.

L 5 250 mm cavity length
w55.0mm stripe width
s56.0mm stripe separation
d50.15mm thickness of active layer
R150.32 power reflectivity of the front facet
R250.99 power reflectivity of the rear facet
l5 815 nm laser wavelength
nl53.59 refractive index of active layer
nc53.32 refractive index of cladding layer
a51.5310216 cm2 linear gain coefficient
b521.03102 cm21 linear loss coefficient
Dp51831029 m diffraction coefficient
gnr523108 s21 nonradiative recombination coefficien
G50.5014 confinement factor below stripes
G50.5149 confinement factor between stripes
aw530 cm21 surface absorption constant
asr5108 cm s21 surface recombination constant
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FIG. 1. Spatiotemporal dynamics of the inte
sity I (x,t)5(12R1)e0c/nl uE(x,t)u2 for the two-
stripe laser~a! in the periodic regime (J545 mA!
and ~b! in the chaotic regime (J570 mA!, re-
spectively, for intermediate diffusion
D f5431024 m2/s. Light shading corresponds t
high-intensity values.
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modes and expansion coefficients, the original comp
optical field can be reconstructed by

E~xk ,t !5(
n

an~ t !pn~xk!. ~5!

The same procedure can be carried out for the carrier den
N(x,t). SinceN(x,t) is real, its eigenmodesqn and modal
amplitudesbn(t) are real quantities. The reconstruction
the carrier density is obtained by

N~xk ,t !5N̄~xk!1(
n

bn~ t !qn~xk!, ~6!

whereN̄ is the time-averaged carrier density profile.

B. Mode projection

The eigenmodes obtained from complex KLD can be u
as an orthonormal basis for mode projection, in analogy
the Galërkin procedure. Thus the set of PDEs~1! and~2! can
be transformed into a set of ODEs. To this end, the eig
mode decompositions of the optical field and the carrier d
sity, i.e., Eqs.~5! and~6!, are inserted into the PDEs. A set
ODEs for the modal amplitudesan and bn is obtained by
multiplying Eq. ~1! with pn* and Eq.~2! with qn and inte-
grating overx. We make use of this approach in Sec. IV C
order to perform linear stability analysis.

IV. STABILIZATION OF CHAOTIC LASER ARRAYS

Depending on the separation between the laser stri
semiconductor laser arrays are strongly, moderately,
weakly coupled@9,20#. In the regime of strong coupling
~small separation between the lasers! the dynamical behavio
is strongly dependent on the amount of external pumping
the electrical current. With increasing pump current, s
tiotemporal instabilities arise in multistripe lasers due to
nonlinear interaction of multiple transverse modes. Not s
prisingly, the higher the number of transversely coupled la
stripes, the larger the spatiotemporal complexity. The ba
effects, however, can already be demonstrated with the
plest laser array, the two-stripe laser. Therefore, we start
discussion with this simple array. We then enlarge the c
figurations to three and five transversely coupled la
stripes.
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A. Free-running two-stripe laser

For low values of the pump current, the two-stripe las
operates in a steady state of coherent light emission with
single transverse mode. However, when we increase
pump current above a critical threshold valueJc , an insta-
bility leading to spontaneous periodic intensity pulsatio
sets in. Several dynamical regimes with alternating pul
tions in the two stripes are observed. A further increase
the current drives the laser into a both spatially and tem
rally irregular regime~Fig. 1!. It is found that the value ofJc
strongly varies with the amount of charge carrier diffusio
which is quite significant in semiconductor lasers.

Plotting the dependence of the total output power on
amount of applied pumping current represents a freque
used way of characterizing the operation conditions of se
conductor lasers. With the two-stripe laser being in the tim
dependent regimes, single-mode operation in the fundam
tal mode is found to exist as an unstable solution. In Fig
we plot the spatially averaged intensity emitted in this st
versus the pump current applied to the laser~solid curves!.
The dashed curves represent the corresponding ti
dependent regimes~periodic pulsing and chaos, respectivel!
which start at the critical current valueJc . In these regimes
the laser system seems to have entered an operation c
tion that more effectively transforms inversion into outp
intensity: The output-intensity~both temporally and spatially
averaged! is slightly larger than in the steady-state regim
For J.Jc , the steady state~solid lines! was obtained by the

FIG. 2. Spatially and temporally averaged intensity for stea
state operation in a single transverse mode~solid line! and time-
dependent regimes~dashed line! shown for three values of the car
rier diffusion constant:~a! D f5131024, ~b! 431024, and ~c!
831024 m2/s.
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56 3871STABILIZATION OF SPATIOTEMPORALLY CHAOTIC . . .
stabilization technique explained below. Remarkably, it
the continuation of the lines forJ,Jc where the laser is
intrinsically stable. In the figure we show three curves for
case of low, intermediate, and high carrier diffusion. T
larger the diffusion, the smaller the critical current valueJc .

Eigenmode analysis reveals that the spatiotemporal
namics is governed by the two eigenmodes shown in Fig
Here and in the following we plot the real~imaginary! part of
the complex spatial profile, whenever it dominates over
imaginary ~real! part. The first antisymmetric mode, whic
will be referred to as the fundamental mode, represen
mode where the two adjacent laser stripes oscillate with
posite phase. This mode represents the ‘‘natural’’ opera
condition of stable transversely coupled laser arrays@21#.

FIG. 3. Eigenmodesp1(x),p2(x) for the two-stripe laser:~a!
real part of the first eigenmode~solid line! and imaginary part of the
second eigenmode~dashed line! and~b! ‘‘intensities,’’ i.e., squared
moduli of the eigenmodes. The vertical lines indicate the locati
of the laser stripes.
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Due to the antisymmetric shape of the fundamental mode
modulus is vanishing in the center of the gap separating
laser stripes. The second eigenmode is symmetric with
spect to the two lasers; the time-dependent expansion c
ficients associated with it represent in-phase oscillation
the stripes. In contrast to the antisymmetric mode, its mo
lus is clearly nonvanishing in the center of the gap. The
fore, the symmetric eigenmode can profit from the cha
carriers diffusing towards the gap more than the fundame
mode. This effect becomes more and more important as
pump current increases, until at the critical current value
symmetric mode becomes involved in the dynamics. In
above-mentioned periodic regime, it coexists with the fun
mental mode, leading to transverse mode beating. This b
ing generates the periodic intensity pulsations, whose
quency equals the difference between the mode frequen
For high currents, there is mode competition rather than
existence, which leads to chaotic behavior. The frequen
V1,2 pertaining to the first and second eigenmodes are
tained via the corresponding frequency spectra of the t
seriesa1,2(t) ~Fig. 4!. In the periodic regime, the frequencie
emerge as sharp lines, while in the chaotic regime the pe
are considerably broadened.

B. Stabilization by delayed optical feedback

Using the frequenciesV1,2 of the transverse optical eigen
modes, we are able to establish a destructive interfere
condition in the symmetric mode in order to reobtain stea
state operation in the fundamental transverse mode. The
fluence of interference between external cavity modes
transverse modes was also considered in@10# in the case of a
broad-area laser. In a steady-state condition, we can e
realize the effects of the delay term. Imagine the comp
equation~1! for E5Reiu to be written as two real equation
for amplitudeR and phaseu5vt. Then the delay term pro
duces a contributiongRR(x)cos(F2vt) in the amplitude
equation, while a termgRsin(F2vt) arises in the equation

s

FIG. 4. Frequency spectra
A1(v) and A2(v) of the time-
varying modal amplitudesa1(t)
anda2(t), respectively, pertaining
to the two eigenmodes:~a! and~b!
periodic regime (J545 mA! and
~c! and ~d! chaos (J570 mA!.
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3872 56M. MÜNKEL, F. KAISER, AND O. HESS
for the phase. This means that there is a contribution to
gain of strengthgR times a cosine dependence on the ove
phaseC5F2vt that governs the interference conditio
The contribution in the phase equation amounts to a
quency shift depending ongR andC.

The contribution of delayed optical feedback to the g
can be graphically interpreted as the presence of a cos
shaped filter in the frequency domain, which, for approp
ately chosen feedback parameterst and F, can cause de
structive interference for light of a particular frequency. Th
effect can be used to provide damping in a transverse m
oscillating at that frequency.

Let v1 be the frequency of the fundamental mode andv2
that of the mode that we aim to suppress. The two par
eterst andF permit us to set up the two interference co
ditions

F2v2t5~n1 1
2 !, ~7!

F2v1t5m, n,m50,61,62 . . . ~8!

~here and in the following all phases are written in units
2p). Equation~7! represents destructive interference in t
transverse mode to be suppressed, while Eq.~8! describes
constructive interference in the fundamental transve
mode, which seems to be a natural choice. Thent andF are
determined by

t5
1

2~v22v1!
, ~9!

F5v1t, ~10!

where the integersn and m were chosen such that the tw
frequencies for which the interference conditions are p
vided correspond to adjacent extrema of the cosine filter

For a chaotic two-stripe laser withJ580 mA,
D f54.031024 m2/s ~which is well within the chaotic
range! we obtain the modal frequenciesV156.3 GHz and
V2512.1 GHz. IdentifyingV1,2 with v1,2 from Eqs.~9! and
~10! then yields the valuest50.0862 ns andF50.543. With
these parameters employed we indeed obtain stable cw
eration in the fundamental antisymmetric mode. The stab
ing effect of delayed optical feedback is demonstrated in F
5. Fort,t0520 ns,gR5431022 andt5f50; for t.t0, t
andF are set to the above values. After the chaotic interv
the symmetric eigenmode is quickly damped to zero, wh
the antisymmetric eigenmode approaches cw emission
damped relaxation oscillations. When stabilization
achieved and there is exactly constructive interference,
original system of equations, i.e., without delayed feedba
is effectively recovered. In this case, only one mode,
which C50, exists. Thus the delay term in the phase eq
tion is zero and the delay term in the amplitude equat
reduces to a slightly enhanced reflectivity (gR). In this sense,
our procedure bears some analogy to genuine scheme
controlling chaos where, upon successful control, the c
trolling force vanishes@5,22,23#.
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C. Robustness of stabilization: Numerical and analytical results

In order to give an idea of the parameter range wh
stabilization is possible, we consider deviations from the
structive interference condition while preserving construct
interference in the fundamental mode. To this end, we in
duce a frequency mismatchdv5v22V2 between the fre-
quency where destructive interference happens and the
quency of the symmetric eigenmode. We then determine
range indv where stabilization persists in dependence of
feedback strengthgR . We perform a linear stability analysi
on the basis of the nonlinear eigenmodes in order to obta
comparison between numerical and analytical results. To
end, we use the set of ODEs obtained by mode projec
onto the eigenmodes~cf. Sec. III B!. The following set of
linearized ODEs describes the growth of perturbations of
modal amplitudes pertaining to the relevant eigenmodese1
and e2 for the optical field andn1 and n2 for the carrier
density!:

ė15S 2gE2 i v̄01 i E p1* h~x!p1dx1 iD pE p1* ]x
2p1dxDe1

1g R̄ei ~F2v̄0t!e1~ t2t!1e1aE p1* G~x!@ r̄ N̄~x!2N0#

3p1dx1n1e0aE p1* G~x! r̄ q1p1dx,

ė25S 2gE2 i v̄01 i E p2* h~x!p2dx1 iD pE p2* ]x
2p2dxDe2

1g R̄ei ~F2v̄0t!e2~ t2t!1e2aE p2* G~x!@ r̄ N̄~x!2N0#

3p2dx1n2e0aE p2* G~x! r̄ q2p1dx,

ṅ15S 2gnr1D fE q1]x
2q1dxDn12e0~e11e1* !a8

3E q1@N̄~x!2N0#up1u2dx2n1ue0u2a8E q1
2up1u2dx,

FIG. 5. Time series of the transversely averaged intensi
^I 1&x(t),^I 2&x(t) pertaining to the two eigenmodes~solid line, fun-
damental mode; dashed line, symmetric mode!. Stabilization of the
antisymmetric fundamental transverse mode is achieved a
switching on time delay att0520 ns. Fort,t0, gR5431022, and
t5F50; for t.t0, gR5431022, t50.0862 ns, andF50.543.
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56 3873STABILIZATION OF SPATIOTEMPORALLY CHAOTIC . . .
ṅ25S 2gnr1D fE q2]x
2q2dxDn22a8E q2@N̄~x!2N0#

3e0~e2p1* p21e2* p1p2* !dx2n2ue0u2a8

3E q2
2up1u2dx,

where r̄ 512 ia, ḡ R5(c/2nlL)gR , and
a85(2e0c/\v0nl)a have been used.

In this analysis, the symmetric field mode is considered
a perturbation to the steady-state operation in the fundam
tal antisymmetric field mode. The latter is characterized
the field profilee0p1exp(iv̄0t) and the carrier density profile
N̄(x), respectively. These quantities were obtained by so
ing the steady-state equations. Since delayed feedback
volved, the growth of the perturbation is described by a tr
scendent eigenvalue equation, which has to be so
numerically. We achieve good agreement with the result
the numerical integration. In Fig. 6 a curve is shown tha
separates the stable from the unstable parameter regio
the case of intermediate diffusionD f54.031024 m2/s. The
symbols represent results from numerical simulations, w
the solid curve was obtained by linear stability analysis. T
figure shows that a minimum feedback strength is require
order to achieve stabilization. Above this value, stabilizat
persists in a considerable range ofdv, which increases with
gR .

The small displacement of the curves with respect todv
in Fig. 6 is due to the fact that the frequencyV2 was deter-
mined from spectra of the chaotic regimes. In that ca
where the symmetric mode is fully developed, the aver
carrier density profile is appreciably modified due to satu
tion. This causes a shift in frequency with respect to
situation considered in linear stability analysis, where
symmetric mode is only a small perturbation.

We observe two ways in which stabilization may bre
down, depending on whether the curve in Fig. 6 is crossed
the left or on the right branch. When the left branch
crossed for decreasing values ofdv, the symmetric mode
retains a finite amplitude leading to the periodic pulsatio
shown in Fig. 1. When the right branch is crossed for
creasing values ofdv, we observe an intermittent regim
where the symmetric mode appears in chaotic bursts.

FIG. 6. Range of frequency mismatchdv, where stabilization is
achieved for the two-stripe laser, versus the feedback strengthgR

(J580 mA andD f5431024 m2/s! ~symbols, numerical simula
tion; solid curve, linear stability analysis!.
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An example for the time series of the intensity taken
the center of a laser stripe is shown in Fig. 7 for the case
strong diffusion (D f58.031024 m2/s!. A power-law scal-
ing with an exponent equal to21 is obtained, which could
be a signature of type-II intermittency~Fig. 8!. Indeed, Fig. 7
suggests a destabilization via a Hopf bifurcation. The sa
scaling behavior is obtained for various values ofgR and
D f .

D. Three- and five-stripe laser arrays

Eigenmode analysis of multistripe lasers yields that
maximum number of relevant eigenmodes in the comp
spatiotemporal regimes is equal to the number of strip
Thus, in principle, several transverse modes have to be
pressed in order to stabilize laser arrays with more than
stripes. In the three-stripe laser, one fundamental plus
additional eigenmodes arise, which come into play in
time-dependent regimes~Fig. 9!. Again, the fundamenta
mode is an out-of-phase eigenmode. The second eigenm
is symmetric and is localized at the inner stripe, while t
third eigenmode is antisymmetric, being localized at t
outer stripes. The second eigenmode has a comparat
large amplitude within the two gaps. This suggests that
mode is responsible for destabilization for high pump c
rents, in analogy to the findings for the two-stripe laser.

In analogy to the two-stripe laser case, the frequencie
the eigenmodes are obtained from the frequency spectr
their respective time seriesa1(t), a2(t), anda3(t) ~Fig. 10!.

FIG. 7. Representative time series of the intensity in the ce
of a stripe within the intermittency range (J580 mA,D f5831024

m2/s, gR5431022, t50.0794 ns,F50.556).

FIG. 8. Power-law scaling of the mean laminar lengths^T& ver-
sus the frequency mismatchdv, yielding an exponent
20.9860.05.
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It turns out that the choicev15V1, v25V2, i.e., suppres-
sion of the second mode, leads to stable cw operation in
fundamental mode via suppression of the higher mod
Even in the case of the five-stripe array, where four relev
transverse modes exist in addition to the fundamental mo
stabilization of the fundamental mode can be achieved.
example where the five-stripe laser is brought from a stat
spatiotemporal chaos to cw operation is shown in Fig.
However, the criteria with respect to the way how to choo

FIG. 9. ~a! Eigenmodesp1, . . . ,3(x) for the three-stripe laser an
~b! their respective intensities, i.e., squared moduli. The so
dashed, and dotted curves are referred to as the fundamenta
second, and the third eigenmode, respectively.

FIG. 10. Frequency spectra~a! A1(v), ~b! A2(v), and ~c!
A3(v) of the time-varying modal amplitudesa1(t), a2(t), and
a3(t), respectively, pertaining to the three eigenmodes of the th
stripe array for J5100 mA and D f5131024 m2 /s, i.e., well
within the chaotic range.
he
s.
nt
e,
n
of
.

e

v2 are not as obvious as in the case of the two- and th
stripe lasers. The mode to be suppressed varies with p
current and diffusion strength and in some cases the
results are obtained whenv2 lies between two transvers
mode frequencies. The fact that stabilization is still possi
could be plausible if the successive transverse modes
nonlinearly coupled in a cascadelike fashion. Then damp
of particular modes could cause the suppression of the w
cascade of modes.

V. CONCLUSION

We have demonstrated that multistripe laser arrays
exhibit spatiotemporal chaos already at moderate pump
can be stabilized by means of tailored delayed optical fe
back. An appropriate choice of the interference conditio
determined by the delay time and the feedback phase lea
stabilization of the fundamental out-of-phase array mo
via suppression of the destabilizing transverse modes. In
der to achieve the relevant feedback conditions, informat
about the frequencies of the transverse modes of the com
optical field were obtained by means of generalized comp
eigenmode analysis.

The results and the stabilization scheme presented
remarkable analogies to the characteristic methods in
field of chaos control. First, the single-mode operation in
fundamental transverse mode corresponds to an unstabl
lution that nevertheless exists also in the spatiotempor
chaotic domain. Second, the mode equations effectively
duce to the original system without feedback in the stabiliz
case, as explained in the text. In the case of the two-st
laser, we found that, as feedback parameters are moved
side the stabilization range, stabilization breaks down eit
by the formation of periodic pulsing due to coexistence
the transverse mode to be suppressed or by intermittent
pearance of that mode. In the latter case, we found a pow
law scaling, which could originate from type-II intermit
tency. Stabilization was demonstrated also in cases, w
several transverse modes have to be suppressed, in part
for the three-stripe and the five-stripe laser array.

,
the

e-

FIG. 11. Spatiotemporal dynamics of the five-stripe laser
J580 mA, gR5331022, t50.0877 ns, andF50.06, where the
time delay and feedback phase are switched from zero to the a
values att530 ns.
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