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Stabilization of spatiotemporally chaotic semiconductor laser arrays
by means of delayed optical feedback
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A stabilization scheme for suppression of spatiotemporal instabilities in semiconductor laser arrays is pre-
sented. Using relevant time scales obtained from an application of a complex Karhuhendssemposition
allows tailoring delayed optical feedback such that stabilization is achieved via destructive interference in the
higher-order transverse modes conveying the instabilities. Successful stabilization of previously spatiotempo-
rally chaotic optical near fields towards stable continuous wave output is demonstrated in two-, three- and
five-stripe arrays. Linear stability analysis of a system of ordinary differential equations obtained by projection
onto the relevant eigenmodes of the two-stripe laser shows that stabilization can be achieved in a wide
parameter range. Our analytical results are in good agreement with numerical simulations.
[S1063-651X97)00510-2

PACS numbes): 05.45+b, 42.65.5f, 42.55.Px

[. INTRODUCTION when the pump current exceeds a certain threshold. Then a
both temporally and spatially irregular behavior correspond-
The enormous technical progress and the extreme versing to deterministic spatiotemporal chaos is obselfveed),
tility of semiconductor lasers has lead to an ever increasingven in the longitudinal single-mode case. This constitutes a
importance of these devices in many present and future kesevere problem when good beam quality at high intensities is
technologies, e.g., telecommunications, consumer electromesired. While theoretical investigations of delay-induced
ics, or manufacturing. To this day, however, a limiting factortemporal instabilities in single-stripe lasers using the Lang-
resides in the fact that temporal and spatiotemporal instabiliKkobayashi rate equations has been a subject of intense re-
ties can arise under typical operating conditions desired fosearch until today, the investigation of spatiotemporal phe-
applications. Due to its very high gain and outcoupling ratenomena occurring in multistripe laser arrgy§10,13 and
the semiconductor laser is very sensitive to delayed opticdbroad-area laself8,12] has evolved to an issue of great in-
feedback caused by distant reflecting surfaces such as a coterest in recent years. In recent theoretical work of the au-
pact disk or a fiber butt end. An early theoretical investiga-thors[13] and other group$§14], both destabilizing mecha-
tion of the nonlinear dynamical phenomena resulting from anisms were combined in investigations on the influence of
feedback-induced destabilization was carried out by Langlelayed optical feedback on spatiotemporal dynamics.
and Kobayashi more than 15 years dd¢ who described In this paper we apply delayed optical feedback to
the laser by delay-differential rate equations. In both experiachieve suppression of spatiotemporal instabilities. Thus we
mental and theoretical investigatiof 3] it was found that can stabilize stationary operation in the fundamental trans-
very small amounts of delayed optical feedback can be sufverse mode from an originally spatiotemporally chaotic state.
ficient to drive the laser into the so-called coherence-collapst Sec. Il we will give a brief survey of our model. In Sec. llI
regime[4] where the laser output displays irregular behaviorwe introduce complex eigenmode analysis via the Karhunen-
with an extremely broadened spectral line/det al. [3] Loeve algorithm, which yields a decomposition of the com-
found that this state corresponds to deterministic chaos. Oplex optical field into a set of orthonormal transverse modes
the other hand, it is possible to achieve improved longitudi-and the individual oscillation frequencies of these modes.
nal mode selection and considerable linewidth narrowing bySection IV shows that this permits setting up optical feed-
deliberately applying delayed optical feedback. Moreoverback conditions that lead to steady-state operation in the fun-
controlling chaos in a semiconductor laser by means of dedamental transverse mode by suppression of higher-order
layed optical feedback5] and stabilization of traveling transverse modes. By projection onto the relevant eigen-
waves by means of delayed optical feedback and spatial filmodes we obtain for the case of the two-stripe laser a system
tering in a broad-area laser modél were demonstrated in of coupled ordinary-differential equation©DES9 that al-
recent theoretical works. lows us to perform a linear stability analysis of the funda-
Another destabilizing mechanism is closely related to themental modgSec. IV Q. Our analytical results are in good
nonlinear interaction of multiple transverse modes. In multi-agreement with numerical simulations and in Sec. IV D the
stripe and broad area lasers, which are used to obtain vegxtension of the stabilization scheme to three- and five-stripe
high intensities, these transverse modes become excitddser arrays is demonstrated.
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Il. MODEL EQUATIONS TABLE |. Parameters of the semiconductor laser.

For numerical simulations, we extended the plane-wavg _ »50,,m cavity length
Lang-Kobayashi mode[1] to include transverse effects. W=5.0 um stripe width
These arise, on the one hand, by transverse coupling Vié"‘:eoﬂm

- . - . . 2. stripe separation
opur_:al c1_|ffrapt|on (diffraction coefficientD) and charge d=0.15.m thickness of active layer
carrier diffusion O¢) and, on the other hand, by the trans- _ _ L
. . . R;=0.32 power reflectivity of the front facet
verse inhomogeneity of stripe-geometry lasers. We thus ob-~ .

. ; . ; . . »,=0.99 power reflectivity of the rear facet
tain the following set of nonlinear coupled partial differential = 815 nm laser wavelenath
equations(PDE9 for the complex optical fieldE(x,t) and __359 ] lN Ve q 9 ¢ active |
the charge carrier density(x,t): M= refracive indexcol active fayer

n.=3.32 refractive index of cladding layer
n _ ) _ a=1.5x10" %¢cm? linear gain coefficient
E(7tE:'|3p’9><E_[7’E‘|‘I 7(X)]E b=—-1.0x10?cm™?! linear loss coefficient
D,=18x10°m diffraction coefficient
+T'(X)[g(N)+ikgdn(N)]E Yar=2X10F st nonradiative recombination coefficient
1 '=0.5014 confinement factor below stripes
+ -y PE(x,t— 1), (1 I'=0.5149 confinement factor between stripes
2L a,=30cm? surface absorption constant
5 ag=100cms™?! surface recombination constant
Eoc
IN=A(X)+DEN=ypN=+——g(N)[E". (2
ol

respective frequencies are not directly available. As it turns
The transversely varying parametet$x), »(x), andI'(x) out, for efficient stabilization schemes, information on both
describe current injection via stripe electrodes of a giverspatial modes and frequency distribution is crucial. We
width w and spacings, index guiding through transverse therefore extended the traditional eigenmode analysis to
index steps located below the stripe electrodes, and the transemplex input data pertaining to the spatially resolved opti-
versely varying confinement factor, respectivghg]. Fur-  cal field.
ther parameters are the nonradiative decay #sgteof the
carrier density, the refractive index of the active laygr
and the carrier frequency and vacuum wave numizeand i i
ko, respectively. The variation of the optical gain and the The complex eigenmodgs, corresponding to transverse
refractive index of the active medium with the carrier densityModespn(x) of the optical field are obtained by solving the
is approximated by the phenomenological linear gain func&igenvalue problem of the Hermitian covariance matrix
tion g(N)=a(N—Ng) (a is the linear gain coefficient and Cp=A,p
Ng the carrier density at transparengnd sn= — aaN/Kky, nomnEne
respectively[15]. The linewidth enhancement factor is as-
sumed asx=2.

The distributed mirror loss is represented by the damping 10T
constantye= —InyR;R,/2L, whereR; andR, are the power C]kz?J E* (X, OE(x,)dt, jk=1,...N,,
reflectivities of the front and rear facets, respectively. De- 0
layed optical feedback is represented by the feedback param- ] ]
eters yg (feedback strengih 7 (delay time, and ® (feed- whereT andN, denote th_e Ien_gth of the tlrr_1e series and theT
back phasg respectively. The values of relevant parameterdlumber of transverse grid points, respectively. The real ei-
are given in Table |. Equatior(d) and(2) are solved using a ggnvalues?xn yield .the relative importance of the complex
Hopscotch method, assuming absorbing boundary conditior@genmode®, , which form an orthonormal set
at the transverse edggso.

A. Complex Karhunen-Loeve decomposition

where

NX
* (X X, )= Sn. 3
Ill. EIGENMODE ANALYSIS k§=:l Pm(Xi) Pr(Xi) = Omn ®

In order to characterize the spatiotemporal complexity in

the laser output, it is highly desirable to find out how manyquantities. They govern the dynamics of the individual

optical modes are involved and the way they are Spaﬂal%igenmodes and are obtained according to
structured. To this end, eigenmode analysis via Karhunen-

The time-varying modal amplitudes are also complex

Loeve decompositior(KLD) has been successfully applied Ny
in recent publication17-19. Given a time series of a spa- an(H)= > pr(X)E(Xyb). (4)
tially extended systenffrom experiment or numerical simu- k=1

lation), this method provides a decomposition into an ortho-

normal set of eigenmodes. In its original form, this algorithmlt is the frequency spectra of these modal time seaigs)
computes eigenmodes for real input data. In optics one therdhat yield the oscillation frequencies of the complex eigen-
fore generally uses data of the output intensity. On this basisnodes and will later help us in establishing suitable condi-
however, the structure of the complex field modes and theitions for achieving stabilizing feedback. From the eigen-
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FIG. 1. Spatiotemporal dynamics of the inten-
- sity 1(x,t)=(1—Ry) gc/nj|E(x,t)|? for the two-
2 39.0 stripe lase(a) in the periodic regimeJ= 45 mA)
- and (b) in the chaotic regime J=70 mA), re-
spectively, for intermediate diffusion
—_ D;=4X 10 * m?s. Light shading corresponds to
' high-intensity values.
38.0
-10 0 10 -10 0 10
x (um) x (um)
modes and expansion coefficients, the original complex A. Free-running two-stripe laser

optical field can be reconstructed by For low values of the pump current, the two-stripe laser

operates in a steady state of coherent light emission with one

E(x,) =2, an(t)pn(Xy). (5)  single transverse mode. However, when we increase the

n pump current above a critical threshold vallie an insta-
Pility leading to spontaneous periodic intensity pulsations
Sets in. Several dynamical regimes with alternating pulsa-
tions in the two stripes are observed. A further increase of
the current drives the laser into a both spatially and tempo-
rally irregular regimgFig. 1). It is found that the value of,
o strongly varies with the amount of charge carrier diffusion,
N(Xi,t)=N(X) + 2, by()gn(Xe), (6)  which is quite significant in semiconductor lasers.

n Plotting the dependence of the total output power on the
amount of applied pumping current represents a frequently
used way of characterizing the operation conditions of semi-
conductor lasers. With the two-stripe laser being in the time-
B. Mode projection dependent regimes, single-mode operation in the fundamen-

The eigenmodes obtained from complex KLD can be used@l mode is found to exist as an unstable solution. In Fig. 2
as an orthonormal basis for mode projection, in analogy tdve plot the spatially averaged intensity emitted in this state
the Galekin procedure. Thus the set of PDES and(2) can ~ versus the pump current applied to the lagmiid curves.
be transformed into a set of ODEs. To this end, the eigen]he dashed curves represent the corresponding time-
mode decompositions of the optical field and the carrier dendependent regimggeriodic pulsing and chaos, respectively
sity, i.e., Eqs(5) and(6), are inserted into the PDEs. A set of which start at the critical current valuk . In these regimes
ODEs for the modal amplitudes,, and b, is obtained by t_he laser system seems to have entered an operation condi-
multiplying Eq. (1) with p* and Eq.(2) with g, and inte-  tOn that more effectively transforms inversion into output
grating overx. We make use of this approach in Sec. IV C in INtensity: The output-intensitgboth temporally and spatially

order to perform linear stability analysis. averagedlis slightly larger than in the steady-state regime.
ForJ>J., the steady statésolid lineg was obtained by the

IV. STABILIZATION OF CHAOTIC LASER ARRAYS 0.70

Depending on the separation between the laser stripes,_ *%° (2) (®) (e)
semiconductor laser arrays are strongly, moderately, orfg 0.50 / /
weakly coupled[9,20]. In the regime of strong coupling ~ o.40
(small separation between the lagate dynamical behavior &
is strongly dependent on the amount of external pumping via
the electrical current. With increasing pump current, spa- 5
tiotemporal instabilities arise in multistripe lasers due to the  o.10
nonlinear interaction of multiple transverse modes. Not sur- oot 4. . .. et e
prisingly, the higher the number of transversely coupled laser 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80

. . . . J (mA)
stripes, the larger the spatiotemporal complexity. The basic
ST‘;‘ES?;SZ?V;?%?, t%%n nzgegﬂ%eb?ag::ngﬂseig‘fri in/tg gt]aertsti)rg FIG. 2. Spatially and temporally averaged intensity for steady-

) - . ) tate operation in a single transverse mdsigid line) and time-
discussion with this simple array. We then enlarge the condependent regimeglashed lingshown for three values of the car-
figurations to three and five transversely coupled lasefier diffusion constant(a) D;=1x10"%, (b) 4x10 % and (c)
stripes. 8x10 % m?/s.

The same procedure can be carried out for the carrier densi
N(x,t). SinceN(x,t) is real, its eigenmodeg,, and modal
amplitudesb,(t) are real quantities. The reconstruction of
the carrier density is obtained by

whereN is the time-averaged carrier density profile.

0.30

0.20
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Due to the antisymmetric shape of the fundamental mode, its
modulus is vanishing in the center of the gap separating the
laser stripes. The second eigenmode is symmetric with re-
spect to the two lasers; the time-dependent expansion coef-
ficients associated with it represent in-phase oscillation of
the stripes. In contrast to the antisymmetric mode, its modu-
lus is clearly nonvanishing in the center of the gap. There-
fore, the symmetric eigenmode can profit from the charge
carriers diffusing towards the gap more than the fundamental
mode. This effect becomes more and more important as the
pump current increases, until at the critical current value the
] symmetric mode becomes involved in the dynamics. In the
above-mentioned periodic regime, it coexists with the funda-
mental mode, leading to transverse mode beating. This beat-
ing generates the periodic intensity pulsations, whose fre-
quency equals the difference between the mode frequencies.
x (pm) For high currents, there is mode competition rather than co-
existence, which leads to chaotic behavior. The frequencies
FIG. 3. Eigenmode;(x),p,(x) for the two-stripe laser(@) (), , pertaining to the first and second eigenmodes are ob-
real part of the first eigenmodeolid Iine) and imaginary part of the tained via the Corresponding frequency Spectra of the time
second eigenmod@lashed lingand(b) “intensities,” i.e., squared seriesa; «(t) (Fig. 4). In the periodic regime, the frequencies
moduli of the e_igenmodes. The vertical lines indicate the Iocation%merge 'as sharp lines, while in the chaotic regime the peaks
of the laser stripes. are considerably broadened.

Re(py), Im(p.)
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stabilization technique explained below. Remarkably, it is
the continuation of the lines fod<J. where the laser is
intrinsically stable. In the figure we show three curves for the Using the frequencief ; , of the transverse optical eigen-
case of low, intermediate, and high carrier diffusion. Themodes, we are able to establish a destructive interference
larger the diffusion, the smaller the critical current vallye  condition in the symmetric mode in order to reobtain steady-
Eigenmode analysis reveals that the spatiotemporal dystate operation in the fundamental transverse mode. The in-
namics is governed by the two eigenmodes shown in Fig. Jluence of interference between external cavity modes and
Here and in the following we plot the re@inaginary part of  transverse modes was also considergd @} in the case of a
the complex spatial profile, whenever it dominates over thédroad-area laser. In a steady-state condition, we can easily
imaginary (rea) part. The first antisymmetric mode, which realize the effects of the delay term. Imagine the complex
will be referred to as the fundamental mode, represents aquation(1) for E=Ré€"’ to be written as two real equations
mode where the two adjacent laser stripes oscillate with opfor amplitudeR and phas&= wt. Then the delay term pro-
posite phase. This mode represents the “natural” operatiomluces a contributionyrR(x)cos@®—w7) in the amplitude
condition of stable transversely coupled laser arrg3H. equation, while a termygsin(®—w7) arises in the equation

B. Stabilization by delayed optical feedback

5 3
v £
& 8
3 g
4 &
FIG. 4. Frequency spectra
Ai(w) and A,(w) of the time-
@ (GHz) varying modal amplitudesa, (t)
anda,(t), respectively, pertaining
to the two eigenmodesa) and(b)
- R periodic regime J=45mA) and
é *2 (c) and(d) chaos (=70 mA).
3 =
8 8
) &
< <
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for the phase. This means that there is a contribution to the __ 5[ '
gain of strengthyg times a cosine dependence on the overall é
phase¥ =® — w7 that governs the interference condition. ;’ |
The contribution in the phase equation amounts to a fre- & ' ]
guency shift depending oz and . =
The contribution of delayed optical feedback to the gain 4
can be graphically interpreted as the presence of a cosine-l 0.5 Lt o R 7]
shaped filter in the frequency domain, which, for appropri- = " Nf; et by !“;‘,ls
ately chosen feedback parametersnd ®, can cause de- 7 TR SR
structive interference for light of a particular frequency. This 0.0 5 — 1(; ' 15 2'0' o5
effect can be used to provide damping in a transverse mode t (ns)
oscillating at that frequency.
Let w, be the frequency of the fundamental mode and FIG. 5. Time series of the transversely averaged intensities

that of the mode that we aim to suppress. The two param 2x(t).(12)«(t) pertaining to the two eigenmodésolid line, fun-

eters7 and® permit us to set up the two interference con- damental mode; dashed line, symmetric mo&abilization of the
ditions antisymmetric fundamental transverse mode is achieved after

switching on time delay at,=20 ns. Fort<t,, ys=4x10"2, and
®—w,r=(n+1), (7)  7=P=0; fort>to, yrg=4x10"2, r=0.0862 ns, ane=0.543.

C. Robustness of stabilization: Numerical and analytical results

d— = =0,x1,£2 ... ; i
w;7=m, n,m=0+1, ® In order to give an idea of the parameter range where

stabilization is possible, we consider deviations from the de-

(here and in the following all phases are written in units ofstructive interference condition while preserving constructive
2). Equation(7) represents destructive interference in theinterference in the fundamental mode. To this end, we intro-
transverse mode to be suppressed, while By.describes duce a frequency mismatchw = w,— ), between the fre-
constructive interference in the fundamental transversguency where destructive interference happens and the fre-
mode, which seems to be a natural choice. Thamd® are  quency of the symmetric eigenmode. We then determine the
determined by range indw where stabilization persists in dependence of the
feedback strengtlyy . We perform a linear stability analysis
on the basis of the nonlinear eigenmodes in order to obtain a
1 X . : .
= (99 ~ comparison between numerical and analytical results. To this

2(wp— wq) end, we use the set of ODEs obtained by mode projection
onto the eigenmode&f. Sec. Il B). The following set of
linearized ODEs describes the growth of perturbations of the
modal amplitudes pertaining to the relevant eigenmodes (
and e, for the optical field andh; and n, for the carrier
where the integera andm were chosen such that the two density:
frequencies for which the interference conditions are pro-
vided correspond to adjacent extrema of the cosine filter. :(_ i f * ; j * 2 )

For a chaotic two-stripe laser withJ=80 mA, & vetwotl | Pin()pudx+iDy | p1dipidx)e,
D;=4.0x10 * m%/s (which is well within the chaotic o L
range we obtain the modal frequencié®;=6.3 GHz and +yRei(‘I”‘”OT>e1(t—T)+e1af Py T (X)[ r N(x) —No]
Q,=12.1 GHz. [dentifying(), , with w, ,from Egs.(9) and
(10) then yields the values=0.0862 ns and =0.543. With _
these parameters employed we indeed obtain stable cw op- X P1dX+ nleoaf pIT(X)rqip,dx,
eration in the fundamental antisymmetric mode. The stabiliz-
ing effect of delayed optical feezdback is demonstrated in Fig.
5. Fort<ty=20 ns,yg=4X10 “and7=¢=0; fort>ty, 7 - — * . % .2
and® are set to the above values. After the chaotic interval, 2~ | ~ Ve~ 1wl f P2 n(x)pdeHDF’f P2 axpzdx) €2
the symmetric eigenmode is quickly damped to zero, while
the antisymmetric eigenmode approaches cw emission via _‘_Ei((p—w_oﬂez(t_,r)_l_ezaf PET(X)[ 1 N(X) —No]
damped relaxation oscillations. When stabilization is
achieved and there is exactly constructive interference, the L
original system of equations, i.e., without delayed feedback, X p,dx+ nzeoaf p3T(X) r g,p1dx,
is effectively recovered. In this case, only one mode, for
which ¥ =0, exists. Thus the delay term in the phase equa-
tion is zero and the delay term in the amplitude equation . )
reduces to a slightly enhanced reflectivitys]. In this sense, ~ M1={ =~ ¥nr ™ fo Q19%92dX
our procedure bears some analogy to genuine schemes of
controlling chaos where, upon successful control, the con-
trolling force vanishe$5,22,23.

T

d=w;T, (10

ni—eg(e;tey)a’

x| NGO —Nollpa e nsfeof?ar | a3l py 7ax,
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t (ns)
dw (GH
@ (GHa) FIG. 7. Representative time series of the intensity in the center
of a stripe within the intermittency rangd£80 mA,D;=8x10"*

FIG. 6. Range of frequency mismatéw, where stabilization is
m?/s, yp=4x10"2, 7=0.0794 ns® = 0.556).

achieved for the two-stripe laser, versus the feedback strepgth
(J=80 mA andD;=4x10"*% m?/s) (symbols, numerical simula-

tion; solid curve, linear stability analysis An example for the time series of the intensity taken in

the center of a laser stripe is shown in Fig. 7 for the case of
strong diffusion D¢=8.0x10 4 m?/s). A power-law scal-

ing with an exponent equal te' 1 is obtained, which could

be a signature of type-Il intermitten€fig. 8). Indeed, Fig. 7
suggests a destabilization via a Hopf bifurcation. The same
scaling behavior is obtained for various values+gf and

Ds.

hZZ(_'an+ fo Q2(9>2<Q2dx)n2_a'f d2lN(X) —No]

2
X ep(€2p1 P2+ €5 p1p3 ) dx—nyleg|°a’

X f qgl p1|2dX,

D. Three- and five-stripe laser arrays

where r=1-ia, ye=(c/2n,L) g, and

a’'=(2e¢yc/twgn;)a have been used. Eigenmode analysis of multistripe lasers yields that the
In this analysis, the symmetric field mode is considered a§'@imum number of relevant eigenmodes in the complex

a perturbation to the steady-state operation in the fundames§Patiotemporal regimes is equal to the number of stripes.

tal antisymmetric field mode. The latter is characterized byl hus, in principle, several transverse modes have to be sup-

' ' — : ; . “pressed in order to stabilize laser arrays with more than two
the field profileeop; expfet) and the carrier density profile stripes. In the three-stripe laser, one fundamental plus two

N(x), respectively. These guantities were obtained by solvyqgitional eigenmodes arise, which come into play in the
ing the steady-state equations. Since delayed feedback is iﬂme-dependent regimegFig. 9. Again, the fundamental
volved, the growth of the perturbation is described by a trany,ge is an out-of-phase eigenmode. The second eigenmode
scendent eigenvalue equation, which has to be solvefl symmetric and is localized at the inner stripe, while the
numerically. We achieve good agreement with the results ofyirq eigenmode is antisymmetric, being localized at the
the numerical integration. In Fig5 a curve is shown that o ter stripes. The second eigenmode has a comparatively
separates the stable from the unstable parameter region fpfige amplitude within the two gaps. This suggests that this
the case of intermediate diffusidd;=4.0x10"" m/s. The ~ moge is responsible for destabilization for high pump cur-
symbols represent results from numerical simulations, whilgentg in analogy to the findings for the two-stripe laser.

the solid curve was obtained by linear stability analysis. This |, analogy to the two-stripe laser case, the frequencies of
figure shows that a minimum feedback strength is required ig, o eigenmodes are obtained from the frequency spectra of
order to achieve stabilization. Above this value, stabilizatiory,qj, respective time serieg (t), a,(t), andas(t) (Fig. 10.
persists in a considerable range&#, which increases with

YR

. 1000 T
The small displacement of the curves with respecfio
in Fig. 6 is due to the fact that the frequen@y was deter-
mined from spectra of the chaotic regimes. In that case, *
where the symmetric mode is fully developed, the average 100¢
carrier density profile is appreciably modified due to satura-
tion. This causes a shift in frequency with respect to the
situation considered in linear stability analysis, where the
symmetric mode is only a small perturbation.

We observe two ways in which stabilization may break .
down, depending on whether the curve in Fig. 6 is crossed on
the left or on the right branch. When the left branch is 1 .
crossed for decreasing values &b, the symmetric mode 0.01 0.10

R . . K T . dw—0w,
retains a finite amplitude leading to the periodic pulsations
shown in Fig. 1. When the right branch is crossed for in-  FIG. 8. Power-law scaling of the mean laminar lengfR ver-
creasing values obw, we observe an intermittent regime, sus the frequency mismatchdw, vyielding an exponent
where the symmetric mode appears in chaotic bursts. —0.98+0.05.

<T>(6w)
*
X

10¢

1.00
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FIG. 11. Spatiotemporal dynamics of the five-stripe laser for
FIG. 9. (a) Eigenmode; . {x) for the three-stripe laser and J=80 MA, yg=3x10"?, 7=0.0877 ns, andb=0.06, where the
(b) their respective intensities, i.e., squared moduli. The solidfime delay and feedback phase are switched from zero to the above
dashed, and dotted curves are referred to as the fundamental, tialues att=30 ns.

second, and the third eigenmode, respectively. . .
w, are not as obvious as in the case of the two- and three-

It turns out that the choicer; =01, w,=0Q,, i.e., suppres- stripe lasers. '_I'he _mode to be supp_ressed varies with pump
sion of the second mode, leads to stable cw operation in the!Urent and diffusion strength and in some cases the best
fundamental mode via suppression of the higher moded€Sults are obtained when, lies between two transverse
Even in the case of the five-stripe array, where four relevantnode frequencies. The fact that stabilization is still possible
transverse modes exist in addition to the fundamental mod&0uld be plausible if the successive transverse modes are
stabilization of the fundamental mode can be achieved. Afionlinearly coupled in a cascadelike fashion. Then damping

example where the five-stripe laser is brought from a state dff Particular modes could cause the suppression of the whole
spatiotemporal chaos to cw operation is shown in Fig. 11¢ascade of modes.

However, the criteria with respect to the way how to choose
V. CONCLUSION

R We have demonstrated that multistripe laser arrays that
ag 0.1000 F exhibit spatiotemporal chaos already at moderate pumping
s can be stabilized by means of tailored delayed optical feed-
g 00100 back. An appropriate choice of the interference conditions
= determined by the delay time and the feedback phase leads to
& 0.0010 stabilization of the fundamental out-of-phase array modes
< 00001 via suppression of the destabilizing transverse modes. In or-
— ‘ der to achieve the relevant feedback conditions, information
7 0.1000 about the frequencies of the transverse modes of the complex
j 00100k optical field were obtained by means of generalized complex
5 eigenmode analysis.
% 0.0010L The results and the stabilization scheme presented bear
b remarkable analogies to the characteristic methods in the
0.0001 field of chaos control. First, the single-mode operation in the
7 0.1000¢ fundamental transverse mode corresponds to an unstable so-
E lution that nevertheless exists also in the spatiotemporally
o 0.0100¢ chaotic domain. Second, the mode equations effectively re-
) duce to the original system without feedback in the stabilized
S 0.0010¢ case, as explained in the text. In the case of the two-stripe
- laser, we found that, as feedback parameters are moved out-
0.0001

side the stabilization range, stabilization breaks down either
by the formation of periodic pulsing due to coexistence of
the transverse mode to be suppressed or by intermittent ap-

FIG. 10. Frequency spectré@) A;(w), (b) Ay(w), and (c) pearance of that mode. In the latter case, we found a power-
As(w) of the time-varying modal amplitudea,(t), a,(t), and law scaling, which could originate from type-Il intermit-
as(t), respectively, pertaining to the three eigenmodes of the threetency. Stabilization was demonstrated also in cases, where
stripe array forJ=100mA and D;=1x10"*m?/s, i.e., well several transverse modes have to be suppressed, in particular
within the chaotic range. for the three-stripe and the five-stripe laser array.
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