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Quantitative study of scars in the boundary section of the stadium billiard
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We construct a semiclassically invariant function on the boundary of the billiard, taken as the Poincare
section in Birkhoff coordinates, based on periodic orbit information, as an ansatz for the normal derivative of
the eigenfunction. Defining an appropriate scalar product on the section, we can compmgdar timéensityof
a given periodic orbit on an eigenstate, as the overlap between the constructed function and the normal
derivative on the section of the eigenstate. In this way, we are able to investigate how periodic orbits scar the
spectrum and how a given eigenstate decomposesaatofunctionsWe use this scheme on the Bunimovich
stadium.[S1063-651X97)11509-4

PACS numbes): 05.45+b, 03.65.Sq, 03.40.Kf

[. INTRODUCTION normal derivative evaluated on the boundary. By means of
the Green function we can obtain the wave functiby(r),
Since the observation of imprints of periodic orbits in with wave numbek, , in the domain in terms of its normal

guantum eigenfunctionscars by McDonald and Kaufmann derivative:
[1], a vast amount of work has been done toward the under-
standing of this phenomenon. The numerical work and the-
oretical analysis of Hellef2] has been of great importance. v (r)=— 35 ds Gy(k,;r,r'(s))
Bogomolny[ 3] pushed the theory of scars further, his devel-
opments relied on the smearing of the probability density
over a small energy range. A similar approach, but in phasﬁ/hereGo(k,,;r,r’(s))=(—i/4)HE)1)(kV|r—r’(s)|) is the free
space rather than in coordinate space, was used by BEITY 5 00n functionf9]. HY is the Hankel function of the first
A theory for individual eigenstates was developed by Agarq(ind o

and Fishmar(5], who constructed a semiclassical Wigner We thus treat the normal derivative as the fundamental

function. The integration of this Wigner function in a narrow .

tube along a periodic orbit gave them the scar weight Smi!rreducible object that will be tested for the presence of scars.

lansky [6] used the scattering approach to define a functionl "€ function
on the Poincaresection, which was tested for scars. An im-
portant tool in the following analysis, the stellar representa- v,
tion, was developed by Tualle and Vorg. $u(8)=—=('(s)) 2

In this paper, we construct a semiclassically invariant
function on the Poincarsection, built on a given periodic ) )
orbit, which we call thescar function which can be extended can be thought of as the coordinate representation of an ab-
to the domain via the Green theordf). We define thescar ~ Stract vector|¢,) in the Hilbert space of periodic square
intensity as the overlap between this scar function and thdntegrable functions on the boundary. This boundary is also
corresponding reduction of the eigenfunction on the sectiorthe standard Poincasection for the classical dynamics and
with a given measure, so as to mimic the overlap in thereduces the motion to a canonical mapping in the Birkhoff
domain. Using this construction on the stadium billiard, wecoordinates §,p) [10]. The coordinate is related to the arc
are able, by means of symbolic dynamics, to identify scars ofength coordinate at the boundary where the bounce takes
single periodic orbits and of families of them in the quantumyace byq=(s/ perimeteroqy; and p= 5~f/|f)| is the frac-
spectrum. Also, as we do not resort to energy smearing, Weqn of fangential momentum at this point.
can decompose an eigenstate in periodic orbit functitres The Fourier transform of Eq2) would represent it in the

scar functionks momentum representation, and a coherent state one would

This paper is organized as foII.ows. In Sec. Il we formu'd'splay its features in the Birkhoff coordinate plane. We fol-
late our approach to the calculation of a scar measure, an ;

o
an

14

(r'(s)), (@

for the Bunimovich stadium, and analyze how different fami-
lies of periodic orbits scar the corresponding eigenfunction
particularly the whispering gallery and bouncing ball fami
lies. Our conclusions and closing remarks can be found
Sec. IV.

sky [6], for example, used angle and angular momentum
Svariables as phase-space coordinates, which is the natural
" description when employing scattering methods. However,
"yn this basis the representation of diffraction effects on func-
tions on the boundary is singular and difficult to observe.
The Birkhoff coordinates, besides embodying the natural ge-
ometry of the billiard, avoid this problem by prescribing

All the information of a given eigenfunction of the bhil- definite periodic functions as candidates for boundary eigen-
liard (with Dirichlet boundary conditionsis contained in its  functions.

IIl. SCAR FUNCTION ON THE BOUNDARY
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FIG. 1. Eigenfunction (left pane} and
Husimi  representation (right panel for
k=100.954 920 427 642. This function is scarred
by the periodic orbit with code 23202120. The
crosses are the periodic points of this orbit.

=l 4 0 q 1/4
As shown in Ref[11], for eigenfunctions normalized to 3Gy
unity in the domain, in a neighborhood of a givknvalue, Wy (r)= § ds W(r'(s)) — = (kir,r'(s))
we have the quasiorthogonality relation for the normal de-
rivatives,

ov
—Go(k;r,r'(s)) &—n(r’(S)) : 5

(k,—k,)

Zszfdsnrcﬁ (98,(9)= 0 O @

Of course, Eq(5) is not an eigensolution, because the lim-
iting value of ¥(r), asr goes to the boundary, is not zero;
that is to say, the function is discontinuous at the boundary.
Thus, with this measure, the set of eigenfunctions in a narThis function depends on the continuous paramietevhich

row range ofk is orthonormal, and span a linear space ofcontrols the semiclassical limit.

dimensionO(Kk). With this definition, the normal derivativeg (s) of
It is then convenient, as we want to work exclusively oneigenfunctions normalizeid the domainare orthonorma(to
the boundary, to adopt a definition of scalar product order 1K) in a small rangeAk=(2X perimeter/area

For the phase space representation we construct coherent
states with the correct space periodidi®}, defined as

1
(=g  dsher g ws. (@

k |4 *©
(slpa)= (m) 2 exilikp(s—q-a)]

Any of these functions can be extended to the domain by
means of Green’s theorem; using it as an ansatz for the nor-

k
o2 . xXexpg — =—(s—q—a)? 6
mal derivative,d¥/dn(s), and setting¥ (s) to zero, ;{ 20( a-a) ©)
N~
g @
s <
FENeN)
g™
E )
; A (\V
g
r 2{ FIG. 2. Different representations of the scar
e function of a periodic orbit. Upper left panel: pe-
K riodic orbit in the fundamental domaisymbolic

0 q 1/4 code 23202120, following[14]). Upper right
panel: real part of the scar wave function in the
boundary. Lower left panel: probability density in
the domain(via Green functionh Lower right
panel: Husimi representation.
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o e I I | = 3 11 5 5 1 1 =2 35 =2 1
E Ez ZE FIG. 3. Periodic orbits of four bounces in con-
figuration spac€upper paneland in phase space
(lower panel. In the latter plot, the points are
depicted by dots or crosses, depending on the
sign of p. The dotted vertical line is placed at the
= e s =21 0 =2 s 1 0 2 5 109 value of q where the discontinuity in curvature
- _ - occurs.
4 > 1 1 1 3 3 1 1 S 5 1 1 2 3 2 1
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This is a boundary wave packet, periodicsnwhich is lo-  whereq; andp; are the Birkhoff coordinates of the periodic
calized at the point(f,q) in the Birkhoff Poincaresection  points.
phase space. The phased; are defined by

A single wave packet represents a bounce off a specified
point on the boundary with a given tangential momentum.
Thus, to extract the phase-space contents of a given eigen-
function, we can construct the overlap

T
f —Vj y (11)

wherel; is the distance in configuration space between the
1 A-r initial point of the periodic orbit and thgth point. The sec-
A, (p,a)= [((palpay) 2 jg ds(pqls)¢,(s) 212 (7) " ond term takes into account the boundary conditi@isich-
v let), and the third the conjugate points along the trajectory.

Thus a first visual display of the eventual localization andThe inclusion of these phases is very important in the deter-

scarring of the eigenstates comes through the Husimi funcm'n"’ltlon of the existence of scars.. .
tion The total accumulated pha$g will not, in general, be a

multiple of 2#. In order to have an invariant function, de-
q)= )2 8 pending only on the orbit and not on the starting point, we
P, =] AP0 ® add an additional phase to each point, so as to make

We show an example of this for the stadium eigenfunctioan:zwn’ with n an integer:

with k=100.954 920 427 642 in Fig. 1. :
Clearly, a first quantitative measure of the scarring of a f—f+ J_a, (12)
periodic orbit would be N

1 N with  « the minimum beetween f() moq2r and
S'(v,y)=—= > H,(P+.,q5), 9 27— (fn) mod2r - This state is a coherent sum over a periodic
’y N 4 14 Yi Yi . . . . .
i=1 orbit and, thus, is a good candidate for an invariant probe

depending only on the orbit.
which averages the probability over tine points y; of the

periodic trajectoryy. This measure was used by Muller and
Wintgen in the context of the diamagnetic Kepler problem ) i )
[8]. We define the scar intensity

This average over the probabilities of the periodic points _ 2
does not take into account the phase relations, due to semi- Sty =Kok, MBI

classical propagation, between them. Therefore, it seems Botice thatk is set tok. in (¢(K,)|. This measure of the

more convenlent strategy to average mﬂp“tUdeSN't.h the . scar intensity differs from Eq(9) mainly by interference
proper phase differences. A better measure, then, is prowdei ms

by the construction of the scar function Each wave packet in Eq10) represents a localized plane
1 N wave hitting the boundary at a specified point in a specified

_ : direction. Thus Eq.10), when seen in this light, can be

K,y))= f. igi), o o ) g
(sle(k.7) (o (k, )] @(k,y))) [ ,Zl expl J)<Slp’qj> assimilated to a superposition of plane waves which privi-
(10 leges the wave directions associated with the periodic orbit.

A. Scar intensity S,(k,) and scar length spectrum§,,(l)

13
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FIG. 4, Odd-odd stadium with

k=130.4886 755 073.

eigenfunction

For example, in Fig. 2 we show a periodic orbit of the sta-
dium billiard and the associated scar wave function in differ-
ent representations, witk=100.954 920 427 642%he same
as in Fig. 1.

The scar wave function in the domain is a solution of the
Helmholtz equation with a given value kf So, if we expand
it in terms of the exact eigenfunctions, we expect that the
more significant contributions come from the eigen-
functions with closer k, to k [more precisely,
|k—k,|<(2X perimeter/ared) Then, using the quasior-
thogonality relation(3), the norm of the scar wave function
in the domain is 1 to ordek™ 1. Our aim is to describe this
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FIG. 6. Distribution of scar intensitie$N(S), for S (full line)

subspace in terms of states constructed on periodic orbits, #&§d S’ (dashed ling for k=130.488 675507 3. The base of the

in Eqg. (13). This is not dissimilar to the task of describing
them in terms of plane or cylindrical waves. However, the
peculiar linear combinations taken in Ed.0), being semi-

logarithm is 10.

scl <d(k)>+ 2 2

classically invariant under the bounce map, should provide 1] de(l -|- )| (172)
the most important correlations.
The density of states of the billiard has a semiclassical xcogr(klp—vym/2)], (14

representatiofil2] as . _ o o _
where the first sum is done over primitive periodic orbits, the

second sum takes into account their repetitidnsjs the

T T T
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FIG. 5. SandS’ functions for k=130.488 675 507 8upper and
lower panel, respectivelyIn the leftmost inset we see the periodic
orbit with maximum scar intensity; in the rightmost one, the orbits  FIG. 7. Distribution of scar intensitie$|(S), for the 1654 con-
that give the two secondary peaks. The orbits are ordered by insecutive eigenfunctions and first 617 periodic orbits. The base of
creasing number of bounces, up to nine. the logarithm is 10.

Scar Intensity (S)
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FIG. 8. Scar intensity and scar length spectrum for some whispering gallery periodic orbits. Upper left panel: scar intensity for periodic
orbit 3332440. Lower left panel: scar length spectrum for periodic orbit 3332440. Upper right panel: scar intensity for periodic orbit
55511111. Lower right panel: scar length spectrum for periodic orbit 55511111.

length of the orbit,v, is the Maslov index, and’, is the S,(k,) =K@, (k)| ). (15
monodromy matrix. The smooth part of the density of states
is given by(d(k)). The Fourier transform of Eq14) pro- Its Fourier transform is

vides a distribution linked more directely to the classical

motion, i.e., thdength spectrumwhich shows well-defined

peaks at the length@ctiong of periodic orbits. §y(l):2 S,(k,)explik,l), (16)
In order to focus more specifically on the scarring features ky

of a single orbit along the spectrum, we getto a given

periodic orbit in Eq.(13), which we will call the scar length spectrum.

Scar Intensity

L 55551111 il

041

S (k)

— 1=10.12 FIG. 9. Scar intensity for a range kf for the
periodic orbit depicted in the inset.

L L \
77.05 771 77.15 772 77.25 773 77.35 77.4
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FIG. 10. Group of eigenfunctions in the same rangé of Fig. 9.

If periodic orbits obeyed Bohr-Sommerfeld-like quantiza- all the possible stadia, we consider only the one with relation
tion conditions, we would expect a periodic behavior of2:1 beetween its total length and height, and we will scale
S,(k,) with a periodAk= /L. This implies periodic se- the lengths in such a way that the perimeter+s2r and the
guences of scarred states along the spectrum . These stateea is 4+ 7.
have been also observed in other billiaf8%]. Here we test At the classical level, we will describe the periodic orbits
for these periodicities directly in the scar length spectrumfollowing Biham and Kvalg14]. Their symbolic dynamics
The periodicities would be exact but for the fact that theis a six-symbol one where each symbol corresponds to a
periodic orbit basis is not orthonormal, and the quantizatiorbounce off the boundary(i) 0: A bounce off the lower
rule of a single orbit does not lead necessarily to a quantizedtraight segment(ii) 1: A clockwise bounce off the left
state.

To eliminate spurious behavior of the Fourier transform
due to end effects of th& interval, we multiply the scar
intensity in Eq.(16) by a function vanishing at the ends; e
typically a quadratic functiofil3]. The scar length spectrum ] ‘1‘&‘1’1‘;‘“’1’1“"
still shows large fluctuations with very clear local average 0.03 1 1=48.12
peaks at certain lengths. This local structure is evidenced by
averaging the resulting Fourier transform.

Scar Intensity

[ll. BUNIMOVICH STADIUM
0.01

The boundary of the stadium billiard is defined by two
semicircumferences connected by two straight segments. O

0 i |1
62.88 k 125.61

: A TR T Scar Length Spectrum
D JmD WD i

S L)

FIG. 11. Bouncing ball periodic orbits, first five members of  FIG. 12. Scar intensity and scar length spectrum for a periodic
families A, B, andC (first, second, and third rows, repectively orbit in the bouncing ball limit.
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FIG. 13. Scar intensity and scar length spectrum for a periodic

orbit not in the bouncing ball limit.
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of Eqg. (9). We take one of the scarred wave functions of
Heller [2] (Fig. 4 and plot the quantitie$S and S’ as a
function of the periodic orbit labe} (Fig. 5. The periodic
orbits are ordered in increasing periods and, within each pe-
riod, by symbolic codes. RecurrencesSrsometimes occur
due to the existence of orbits of periodx p that almost
retracen times the periodic orbit of periogh. However,
many recurrences are also due to short homoclinic and het-
eroclinic excursions.

The peaks are more clearly defined in ®lot, due to
the enhancement brought about by the semiclassical dynam-
ics f; (note that the maximum scar value is around 0.114 for
S and 0.06 forS'). Due to the binning of the interval, the
strongest peak of’ overlaps with one of the secondary
peaks ofS. In the leftmost inset in Fig. 5 we show the peri-
odic orbit that scars this eigenfunction the most. Moreover,
the two most prominent secondary peaks come from two
different homoclinic excursions of this orbisee the right-
most inset in Fig. b

Both measures indicate the presence of scars, i.e., ampli-
tudes larger than the average fluctuation. Howeve§ eap-
tures the phase relations of periodic orbits, the basis
lo(k,y)) is “closer” to reflecting the invariant properties
characteristic of the stadium. Thus we expect the amplitudes
S to have much larger fluctuationgnd, therefore, clearer
scarg thanS’. This fact is shown clearly in Fig. 6, where we
show the distribution of scar intensitiesl(S). The small
amplitudes are distributed approximately as an exponential.
The distribution corresponding t8 is much broader than

semicircle or a single anticlockwise bounce off the left semi-that of S'. For this strongly scarred state, there is a large

circle. (i) 2: A bounce off the upper straight segment) 3:

region beetween 0.07 and 0.114 where no scar intensities

An anticlockwise bounce off the right semicircle or a single @ppear. So, log(N(S)) goes to— in this region. At 0.114

clockwise bounce off the left semicirclév) 4: A not single
anticlockwise bounce off the left semicirclévi) 5: A not

a single periodic orbit gives a large scar, vyielding
log;o(N(S))=0. The occurrence of this peak is, however, a

single clockwise bounce off the right semicircle. A bounce israre event. The secondary peaks, due to homoclinic excur-
a single one if it is not preceded or followed by a bounce offsions of the periodic orbit which gives the strongest peak, are
the same section of the boundary.

This dynamics has to be pruned. This pruning is geometri-

to be found at, approximatelg=0.071 and 0.066.
We have tested all 1654 eigenfunctions in the range

cal and corresponds to the symbolic dynamics of the stadiurBeetweerk~62.8 andk~ 125.2 against scarring by the first
of infinite length. As the length is made finite, more pruningg17 periodic orbitgi.e., up to nine bouncgsgiving a total of

rules appeafof a dynamical charactgras described in Ref.

[15].

approximately 1 000 000 scar intensities. The distribution of
these intensities is shown in Fig. 7. We can observe three

Using this symbolic description we have computed all thegjtterent sections: strong scars, weak scars, and the region

periodic orbits up to ten bounces and a few selected ones (?:ﬁoser toS=0, where most of the scar intensities &tieere
much higher periods, and we have ordered teomewhat are around 1000000 scar intensities fréa0 to 0.1,

arbitrarily) by their number of bounces and symbolic codes. hereas only 760 are to be found wigh-0.1) This distri-

In Fig. 3 we show the correspondence of these calculatee\g C ;
orbits as projections in configuration space and in th ution is very different from the Porter-Thomas result. The

Birkhoff Poincare(desymmetrizefsection. reason is that the basis 8| ¢(k,y)) is not orthonormal and,

At the quantum level, we compute the energy levels andnoreover, is chosen soasto be closely related to the_ dynam-
eigenfunctions by the scaling methgill], which gives di- 'C?é ds?oOlter:(ja V(\jlenz),(ﬁr:mgf tthe Siggs. (r): Efj‘(r)]ryeOtzg IbeaZIS'Igr?;e-
rectly all eigenvalues and eigenfunctions very precisely an(!la e dy ICS stadium, for examplé a p )
efficiently. We have computed 1654 consecutive levels an ave basis, we would only expect a statistical distribution of

their eigenfunctions ranging frof~62.8 andk~125.2: and e intensities, in accordance to random matrix theories.
other selected ones ' o The presence of the peaks in the strong scar region in Fig.

7 quantifies the scar phenomenon and shows, in accordance
with Shnirelman’s theorerfil6], that scarring is exceptional.
However, it is the only remaining signature of the specific

In Fig. 5 we demostrate the advantage of using the presetassical behavior of the system, as embodied in its periodic
scar function as opposed to the simple unphased avesage, orbits.

A. Periodic orbit decomposition of eigenfunctions
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FIG. 14. Scar intensity and scar length spectrum for some low period periodic orbits. Left panels: scar intensity and scar length spectrum
for periodic orbit 3210. Right panels: scar intensity and scar length spectrum for periodic orbit 2321.

B. Families of periodic orbits group involves around 35 states lk¢=62.88 and the last
involves 45 atk~125.60 in accord with the change in the
density of states.

This family is composed by trajectories of code We can exemplify how well the scar intensity picks up the
57021M2°; wherea and b are 0 or 1, andm and n are  scarred eigenstates. We look for scars in the region delimited
positive integers(as there is time-reversal symmetry, the by k=77.14 andk~77.34 for the periodic orbit with code
same orbit can be described by the cod2"a™0%). The  55551111(see Fig. 9. We find two contiguous states that are
whispering gallery limit is approached asn—-c simulta-  scarred by this periodic orbit, namely=77.221 719 911 74
neously. For the periodic orbit to exist, as this limit is ap- andk=77.240 338 352 10. The probability densities of these
proached, the difference betweem and n should remain  eigenfunctions confirm this fact: see Fig. 10. Notice the simi-

finite; the largeness of this difference being determined byarity between both eigenfunctions and between them and the
the length of the stadium. This is a clear example of dynamimentioned whispering gallery periodic orbit.

cal pruning(as opposed to geometrical pruning, i.e. indepen-
dent of the length of the stadiym
We have found that the whispering gallery trajectories
that show a more pronounced periodicity in the scarring are This family is composed of three subfamilies, following
those defined byn>2 andn>2, independent of their sym- Ref.[17], whose symbolic codes are 33(02)(02)" (family
metry or value ofa andb. Of course, where high symmetry A), 23(20)'21(20)" (family B), and 3(20)1(02)" (family
is present, the periodicity is stronger. C). The bouncing ball limit isn—o, where the resulting
We show in Fig. 8 the functio,(k) and the scar length periodic orbit has increasingly smallgrcomponent of the
spectrum for some whispering gallery periodic orbits. Wewave numbek. We will consider the first five members of
see how the scar length spectrum shows clearly the periogach family, with periods ranging from 6 to 2dee Fig. 11
icity of S,(k), defined by the fundamental length of the orbit ~ The bouncing ball eigenstates are approximately de-
and its repetitions(The lengths shown are multiples bf/2 scribed by those of a rectangle with the same size as the one
because of the symmetry of the orbit. inscribed in the stadium. So the quantized wave numbers are
The width of the group of states that participate in thegiven byk~7-r\/nxz+ nyz, wheren,y, is the number of nodes
scarring is constant in the region considered. This means thatong thex(y) axis.
more and more states are involved in one “Bohr- The preceding considerations tell us not to expect a scar
Sommerfeld” interval. However, only a few, typically one or length spectrum that is peaked in the length of the given
two, show visible scars. In Fig. first pane], where the periodic orbit and its multiples. This is so because there is no
width of the groups is approximatelxk~1.27, the first such periodicity in the scar intensities for the bouncing ball

1. Whispering gallery family

2. Bouncing ball family
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families. This is what we observe for those orbits tending toeigenfunctions as contained in the normal derivative. Thus it
the bouncing ball limit; see an example in Fig. 12. Notice,is very suitable for numerical calculations, as it involves only

though, how for largd. the peaks appear for evén This  boundary integrations, avoiding completely— except for

fact is related to the multiple bounces between the twaraphical display— any integration over the domain of the

straight segments of the billiard, approximately of length 2 .billiard.

Some of the first few orbits of each family show a single We have provided examples of the decomposition of a
peak in the length of the orbit, with no peal® small ones  single eigenstate into scar functions and of the systematic

in the multiples; see an example in Fig. 13. way in which some orbits appear in thespectrum. The scar
intensities show how an eigenstate is distributed on the basis
3. Other periodic orbits of quantum states constructed from periodic orbits. Such a

As “scars are scarce[6], the scar length spectrum for Pasis is clearly not orthogondknd, probably, overcom-
most periodic orbits shows no peaks in the associated lengtR!€t®- The investigation of the properties of this basis re-
Other orbits show rather more complex patterns with many"nans to be done. , _
lengths that are not easily assigned to other periodic orbits BY testing many orbits and many eigenstates, we have
(whether in the homoclinic family of the first or HotHow- found tha'; scars are quite rare, in accordance to expectations
ever, there is a small set of orbits for which the scar intensiffom Shnirelman’s theorerfil6]. Even less frequent is to

ties have the expected periodicigome examples in Fig. find sequences of states scarred periodid@tik) by a given
14). orbit. Most eigenfunctions decompose in periodic orbits in

such a way that no one prevails over the others. This, in turn,
implies no clear scars in most instances. The families that
show stronger scars are the whispering gallery and the
We have constructed a quantitative measure for the predouncing ball ones, both being rather exceptional families.
ence of scars that, by taking into account semiclassical phase
correlations, provides a sharper indication of their presence.
The measure is constructed as an ansatz for the normal de-
rivative of a state representing a pure stationary scar and This work was partially supported by CONICET PIA
therefore testing the most the irreducible contents of th&950 and by the EC Program/ARG/B7-3011/94/27.

IV. CONCLUSIONS
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