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Learning control algorithm for nonlinear maps
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A feedback optimal control algorithm is developed fgrdimensional maps, which uses learning-based
feedback optimal control techniques. The algorithm has two stépd:earn the control of a reference map
containing a stochastic ternt2) Apply the learned control to the laboratory system employing real time
feedback. The stochastic component of the learning step is important to provide a close knit family of controls
to handle laboratory uncertainty and noise. As an example, the formalism is applied to simulated two- and
three-dimensional nonlinear laboratory maps in the presence of (8i5@63-651X97)11309-3

PACS numbes): 05.45+b

I. INTRODUCTION is available. Heref, is a random disturbancé.e., nois¢
which serves the special purpose of broadening the scope of
Ott, Grebogi, and York¢l] proposed a method for con- the learned control of the reference nfgjin preparation for

trOIIing SyStemS described by dynamical maps. Their metho@ansfer to the |aboratory where the true n%may be some-
consists of first choosing an unstable periodic orbit embedwhat different. Although the map is specified at discrete
ded in the chaotic dynamics, and then defining a small regioRointsn, below we will refer to these equivalently as a time
around the desired periodic orbit. One needs to evolve th@griaple.
dynamical map for each initial conditiofusually chosen at  The first step is to learn control with the reference map
random in the desired small region. Then a suitable smallytjlizing optimal control theory. Optimal control theory is
perturbation of the control parameter is applied in order tohased on constructing a minimizing cost functional operative
force the trajectory to stay around the desired unstable perijuring the control process. The learning control algorithm
odic orbit. This technique has been applied to a wide varietyyssumes priori the existence of local control over a small
of experimental systemlz]. Other methods have been pro- time interval specified by a window of, discretized time
posed including a continuous feedback approiha sta-  points. We formulate local control by prescribing a cost
tistical analysis technique], a local response algorithfB],  functional J; for the ith interval spanned by the, time
geometric resonancgg], etc. These methods suggest thatpoints. The functional is defined such that its minimization
there is flexibility in the control of nonlinear dynamics. with respect to the contrat, and model parametay,, with
Here we present an approach for nonlinear control, Wher?i—l)npsnsinp meet the physical objective as best as

in order to determine the external control interactign

and/or model parametens, (accessible parameters within Ng
the map at discrete timesa=1,2, . . .. Insome casep,, and J=> 13, 2
€, may reduce to the same control variables. The algorithm =1

does not require intricate knowledge of the laboratory dy-

namical system. The method starts with a knownwhere the evolution dynamics can be done as long is desired
N-dimensional reference dynamical system and a specifiby extending the number of control intervalg. The break-
cost functional. The reference system should ideally beng of J into pieces); for individual minimization as the goal
closely related to the true one of interest in the laboratorypf stabilization reflects the local control structure in chaotic
but the demand here is not high. A stochastic driving term issystems or ones containing a significant level of noise. This
added to the reference model which greatly enhances thecal approach is a key simplifying feature of the problem.
scope and robustness of the learned control for transfer to thEhe cost functional; for each interval is

actual laboratory system. The latter transfer constitutes the

second step for laboratory implementati¢studied under inp inp inp
simulation herg J= 2 f(Xp+o, X €+, > P,
j=nj+1 j=nj+1 j=nj+1
II. LEARNING CONTROL i=1,...,(3

We assume that the experimentally observable stabé h d . iah
a system can be represented byl\&lni_imensional nonlinear vv__e(r;a_ ;))ln er]\d fzu)?-) iasrea F())?s?tlit\llveede(f?i%ri]tsetiztn ct}gilq[h;st’
map. Although we often do not precisely know the true mapnl N p jlsap oHen
~ ) acts to guide the dynamics to the controlled objective state
F, we assume that the following reasonable reference repr?é.g” achieving a periodic orbit, driving the chaotic dynam-
sentation ics to a specific target region, maintaining chaos).ette

weightsw; andw, act as penalties to keep the magnitude of

Xnr1=F(Xn,Pn,€n,én) (1) the controls as small as possijid.
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We need to minimize the cost functiongl by an appro- where the superscript on X indicates thak is evaluated at
priate search fog, and/orp,, subject to the constraint that control values scaled witk. For Eq.(6), we have
Eq. (1) is satisfied. Many means can be applied for this task,
and here we illustrate perhaps the simplest approach. Con- f(X])+f(X5)+2w,a?

sidering theith interval in Eq.(3), we prescriben. uniform a 0 2
values ofe, and/orp, for each of then, time points. A FXDH1(Xp) + oy
particular configuration of controls for théh interval is pro- f(XD) + (X3 %) + 2,0
vided by the set ofn, values for e, and/or p, over £FOXO) + F(X2) + 2
(i=1)ngysns<in,. Each of the possibl@. values fore, (X) 0( 2) Owla
and/or p,, is scaled by an overall parameter The total Ji_q= f(XD)+1(X32) _ ®)
number of configurations in thigh interval is i) . As an f(X§)+f(X2’”‘)+w1a2
example, for the limiting case of thi¢h interval having only _ N )
one point(i.e., n,=1) and withn,=3 there are three pos- f(X19)+1(X3)+ 2010
sible values ofe; and/orp; constituting the configuration: f(X; 9+ (X + wia?
1/ a f(X79+F(X;%)+ 20,02
2 0 |. 4
3\ —«a Each of the values af; [e.g., in Eq.(8)] would be tested to

_ _ _ _ determine the smallest value to identify the best configura-
The index 1, 2, or 3 labels the possible configurations of thejon. The corresponding control value would be chosen and

control. In this limiting case the control can take on any ofthen a move taken to=2, . . ., etc. In some cases the value
the valuesa,0,— « in theith interval. Forn,=1 andn.=5  of o would be changed to attempt a better solution. The
there are five configurations: generalization to include a model paramepgr, or other
control parameters implicit in the nonlinear map, is straight-
1/ 2a forward.
2| « The minimization procedure permits the determination of
3 o |. (5) the best case among all the configurations for the external
4l —a control or model parameter. For some choice$(f) it can
5\ —2a happen that a starting value may not yield a minimum for

the cost functional. In this case the value must be in-

Again, this case represents only one local comygk 1 with creased until; has at Ieast_ one minimum, determining the
five possible values. Fan,=2 andn.=3 there are 3=9 controlled state over theth interval X,, Xpig,...,
possible configurations, each consisting of a pair of controf<n+n,~1 With its corresponding discrete control function

values: €nr€ntls - - €nin -1 andn=(i—1)n,+1 from Eq. (3).
This process is repeated for the next intetivall and propa-
1 a e gated as long as desired. We will show in some illustrations
2 a 0 that small values fon, and n. are typically sufficient to
3 a —a achieve the desired control objective. The role of the stochas-
a4l o a tic term &, deserves special comment, as withgythe two
5[ o 0 _ ©6) stepg(l) learning control and2) laboratory application will
6 0 —a not likely succeed. The terr§, serves to broaden out the
region of the state space sampled by the map, and hence
7l —a a provides a more robust repertoire of contrelsn=1, . .. to
8| —a O draw upon to stabilize or generally guide the map to achieve
9\ —a -a its controlled evaluation. For this purpose it is generally only
necessary to treat, as a single particular random sequence
For example, the third configuration in thth interval has  (trajectory over n=1,2,... to provide the desired sam-

field value« at the first time point and field value « atthe  pling.
second time point.

Each of the total numben()"r of configurations is evalu-
ated for its degree of successful control by substituting the
dynamical system containing a configuration for testing, de- The second step in the process is to apply the learned
scribed by Eq(1), into the cost functional Eq3) at each  controle,, andp, to the laboratory system. However, this can
instant of discrete time. As an illustration for the case of Eq.not be simply done by a direct application of the sequence

Ill. REAL TIME FEEDBACK

(4) with p,=0, we have €1,€2, ...,€n,€n+1, - - - due to laboratory noise and lack of
precise knowledge about the laboratory map. We operate in
f(X])+ wia? the following manner. Each Ilearned state set
3= f(Xg) @ Xn,>_<n+1, - ,Xn+np_1 in _the ith interval with
= F(X %) + w0 a? ’ n=(i—1)n,+1 has a particular sequence of controls
1

€ns - o€ntn -1 associated with it. In the laboratory at the
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current time step we may observe the statX aand the task 900 b ' ' ' o9 ]
is to identify the appropriate controls to apply from the
learned set. Thus we seek to find the learned 3gtthat is 150 ;J T
close toX, H00
0.50 [
In]=min| X=X, 9 & oo}
-0.50 | 1
where|n] indicates the index at which the minimum con- 00k 1
dition is satisfied. The indepn| is used to specify the values 150k ]
of the controlled sequence &g, €/nj+1, - - - €{nj+n, -1 to be 900 b 1
applied. The process is then repeated with a new observatiol 0:06 ' ' ' :
of X. It is important to understand that the net application of ' ' ' )
Eqg. (9) can draw on the entire set of learned dynantias, 0041 ]
the control over the interval may not actually start with 0.02 |- ‘ ‘ ’ ’ ‘ ‘ .
€nj+n, due to laboratory noise and uncertainty o opbatibi bbb b b b b b
To summarize, the algorithm for controling an v ., _“ H H M H H H “ ’ H ”
N-dimensional map consists of two general steps | and 1.
(I) Learn control of a stochastically driven reference map 004
F. -0.06 -
(a) Choose a random initial starting poiXt and the val- 0.08 ! ) , X
ues ofn, andn;. 0 20 40 60 80 100
(b) Minimize the cost functional in Eq.3) over the con- n

trol configurations using the observed results of the map.

(c) If a minimum solution forJ; is not found among all
the configurations, then increage— a+ &, where § is
small, and repeat stejb).

(d) Return to steggb) for the next interval until a desired
number of steps is completed.
ma(g_) Apply the learned control in part | to the laboratory Xn+1=p—><ﬁ+0-3yn+€n+§n,

(a) Observe the current laboratory stéfeand seek the Yo 1=Xn (10)
learned statex, closest to it.

(b) Apply the control sequence Wwhere the critical parametgr=p. has the value-1.42; for
€n)s€lnj+10 - - Enj+n -1 and observe the final outcome p>p., the map dynam_ips i_s chaotic._ Here we chosv_e the
! value p=2.0 beyond criticality, anc, is Gaussian white

' S o, _ noise with zero mean and standard deviatipn1x10 3

© Return se(@ with X—X", and repeat as many times [9]. This system, without noise, was chosen earlier to study
as desired. _anticontrol[8] with potential applications in biological dis-

The simplicity of this algorithm for a laboratory dynami- .yar (the proper operation of some systems seems to de-
cal map is evident from the fact it does not require identify- .. o4 ~haotic and/or complex dynami¢&0].

ing the unstable periodic orbits, performing a local stability The functionf(x,,y,,p) in the cost functionall; that
n»Jyns I

analysis, dgter_mining a basin.of attraction, etc. Thq algori_th”i‘ninimizes the deviation of the chaotic trajectory for each
detects periodic unstable points to control chaotic mMotion;varvali was

and addresses the irregular dynamics around a region where
it is most likely to control the chaotic dynamics with a mini- 0 if X,,yaCR

mum magnitude control perturbation. If a stable orbit exists f(Xn,¥Yn,P)= 1x16F if x R
in the unperturbed systeni.e., €,=0) consistent with n:Yn ’

mmf(X), then the cost function will be biased tqward such ayhereR is a specific target region for motion of the dynami-
solution[7] as a result of the penalty terms weighteddy ¢4l system. The regioR may be made more restrictive in an
in Eq. (3). iterative fashion as the control evolves. The weight param-
eters were chosen as,=w,=1. The number of discrete
IV. NUMERICAL EXAMPLES time intervals was,=3 andn,=3, so we have 27 search
configurations. The low number of configurations was found
9 be sufficient to stabilize the chaotic dynamics using a
small control perturbatiore, (for the Henon map, control
through p, and e, are equivalent The periodic unstable
points are unknown in this approach, but it is not necessary
to know them in order to control the chaotic dynamics. The
As a first example, consider the two-dimensionahbie  regionR, was originally specified as 2.2<R<2.2 for both
map|[8] X, andy,, which produces similar anti-control dynamics as

FIG. 1. Stabilization of chaotic dynamics in a two-dimensional
Henon map with noise(a) Control of the statex, vs map indexn.
(b) Optimal external interactiom, needed to preserve the periodic
motion in (a).

11

In the following examples, we consider only control
through an external interaction which demonstrates that su
an interaction can stabilize the chaotic dynamics.

A. Learn control of the reference map
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FIG. 3. Average deviatiodD) of the laboratory and learned
trajectories with respect to Gaussian white noise in the optimal
control field sequence and the initial conditions. The noise is char-
acterized by its standard deviatiop. (D) is defined as
(D)=(1/M NT)EmT:lWL“—XJ which measures the deviation
in Fig. 12 of the work by Yangt al. [8]. The regionR was from the reference controlled trajectoXy, given in Fig. 2, and the
then redefined to be a tight envelope around the phase plamew observed control trajectoi¥) generated by Eq(9) for the
curve. This new regiofR is used in order to predict the new mth member of an ensemble witt terms(in both cased/ =100).
external interaction and to stabilize the system around periNt=2000 is the number of controlled discrete time stéps. is
odic unstable points. This gives a set of controlled point§‘°ise in the optimal control sequendb) ¢ is noise in the initial
around the unstable periodic point. condition Xo=Xo+ ¢).

Figure 1 shows a portion of the learned control dynamics
in which the total number of intervals lisny was the chaotic dynamics and localizing the unstable periodic
nyg=300. We show the regular dynamics of the staje  points. The total number of configurations was 27, with
along with the optimal external interactien needed to pre- n,=3 andn.=3, as for the two-dimensional map. It is in-
serve regular dynamics, with a single Gaussian white noisteresting that for successful control the number of pomits
trajectory of standard deviationxX110 3. It is evident that andn. does not directly depend on the dimensionality of the
the control field in the presence of the noise trajectory promap. The value of-1.2<R<1.2 was chosen to predict the
duces periodic motion of the system. The slightly nonperi-periodic motion of the three-dimensional map.
odic nature of the control in Fig. 1 is significant, and it re- Figure 2 shows the results for a portion of the dynamics
sults from the noise in the system. The total number ofof the proposed algorithm for the three-dimensional case, in
periodic unstable points are nine, in which the control fieldwhich the total number of intervals wamg=300. We show

FIG. 2. Stabilization of chaotic dynamics in a three-dimensional
map with noise(the same Gaussian white noise as in the two-
dimensional map of Fig.)1(a) Control of the state,, vs map index
n. (b) Optimal external interactiom,, needed to preserve the peri-
odic motion in(a).

forces the chaotic dynamics to move. the regular dynamics of the statg with the optimal external
As a second example, consider a three-dimensional maipteractione, needed to preserve regular dynamics. Similar
[11] periodic dynamics are found for the state compongptand
Z,. The number of periodic unstable points associated with
Xn+1= aXnYn—bZy+ (b—1)Z5+ €, + &, the chaotic dynamics is 24.
Yn+1=Xn,

B. Application of the learned control to a laboratory map

Zns1=Yn, (12 Figures 1 and 2 show the learned controlled dynamics

through an external control interaction in the presence of

wherea=0.2 andb=2.38. Whene,=0 and ¢,=0, these imposed noise trajectory. Here through simulation we will
parameters produce hygechaos(three positive Lyapunov show that the learned control field can be applied to achieve
characteristic exponentslynamics[11]. The external inter- laboratory control. Figures 3 and 4 show the robustness of
actione, is used as a control with the objective of stabilizing the present approach with respect to small errors on the op-
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0.08 r . : becomes irregular and diverges for larger values of distur-
bance. These simulation results show the degree of robust-
ness of the present algorithm for potential application in the
laboratory. We emphasize that the presence of rn§jse the
learning process is critical for obtaining robustness, as with-
out ¢, there is essentially no tolerance to laboratory errors
and uncertainty.

o

o

3
T
1

< D>

V. CONCLUSIONS

This paper demonstrates that a two-step learning-based
optimal control theory technique applied to dynamical maps
-0 -0-05 0 0.05 0.1 allows one to determine the control necessary to stabilize
) chaotic dynamics or maintain chaos. The algorithm operates
by drawing on a repertoire of learned controls that operates
FIG. 4. Robustness of the present learning control with respedin @ window around the unstable periodic points to keep the
to uncertainty in the control parameterfor the three-dimensional dynamics around this region. An important component of the
map b=b+ 8. The reference learning control dynamics has thelearning process with the reference map is the introduction of
valueb,=2.38 as in Fig. 2. noise to assure a measure of robustness to laboratory uncer-
tainty. If the state is outside of this region, then the control
algorithm attempts to retain order, but divergence will appear
[Fig. 3b)], and uncertainty in the parametdfg. 4) of the at high values _of noise or uncertainty in the state or map
drarameters. This approach was shown to be reasonably ro-

three-dimensional map. Similar results were found for th ; i L .
two dimensional map. We started with the same control trabust to different noise ensembles consisting of changes in the

jectory in Fig. 2, and introduced small deviations in eitheriNitial conditions, errors in the optimal control sequence and
the initial conditions, control field sequence, or uncertaintyUnNcertainty in the map parameters. Also the number of con-

in the map parameters. The noise ensemble had 100 merffo! configurations(i.e., computer experimentss not di-
bers, and 2000 discrete time steps were followed. In the figt€ctly related to the dimensionality of the system, suggesting
ures(see the caption to Fig)3D) measures the deviation of that this method can be applied to complex systems.
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