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Number of limit cycles of the Liénard equation

Hector Giacomini and Se´bastien Neukirch
Laboratoire de Mathe´matiques et Physique The´orique, CNRS UPRES A6083, Faculte´ des Sciences et Techniques, Universite´ de Tours,

F-37200 Tours, France
~Received 11 March 1997!

In this paper, we study a Lie´nard system of the formẋ5y2F(x), ẏ52x, whereF(x) is an odd polyno-
mial. We introduce a method that gives a sequence of algebraic approximations to the equation of each limit
cycle of the system. This sequence seems to converge to the exact equation of each limit cycle. We obtain also
a sequence of polynomialsRn(x) whose roots of odd multiplicity are related to the number and location of the
limit cycles of the system.@S1063-651X~97!02809-2#

PACS number~s!: 05.45.1b , 02.30.Hq , 02.60.Lj , 03.20.1i
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A two-dimensional autonomous dynamical system is
fined by two coupled first order differential equations of t
form

ẋ5P~x,y!, ẏ5Q~x,y!, ~1!

whereP and Q are two functions of the variablesx and y
and the overdots denote a time derivative.

Such a dynamical system appears very often within s
eral branches of science, such as biology, chemistry, as
physics, mechanics, electronics, fluid mechanics, etc.@1–6#.

One of the most difficult problems connected with t
study of system~1! is the question of the number of lim
cycles. A limit cycle is an isolated closed trajectory. Isolat
means that the neighboring trajectories are not closed;
spiral either toward or away from the limit cycle. If all neigh
boring trajectories approach the limit cycle, we say that
limit cycle is stable or attracting. Otherwise the limit cycle
unstable or, in exceptional cases, half stable. Stable l
cycles are very important in science. They model syste
that exhibit self-sustained oscillations. In other words, th
systems oscillate even in the absence of external peri
forcing. Of the countless examples that could be given,
mention only a few: the beating of a heart, chemical re
tions that oscillate spontaneously, self-excited vibrations
bridges and airplane wings, etc. In each case, there is a
dard oscillation of some preferred period, wave form, a
amplitude. If the system is slightly perturbated, it alwa
returns to the standard cycle. Limit cycles are an inhere
nonlinear phenomenon; they cannot occur in linear syst
@7–12#.

The first physical model to appear in the literature that c
be transformed to a system of type~1! containing a limit
cycle is due to Rayleigh@13#. The following equation,

d2y

dt2
1eF1

3S dy

dt D
3

2
dy

dt G1y50, ~2!

which originated in connection with a theory of the oscill
tion of a violin string, was derived by Rayleigh in 1877.

In 1927, the Dutch scientist van der Pol@14# described
self-excited oscillations in an electrical circuit with a triod
tube with resistive properties that change with the curre
The equation derived by van der Pol reads
561063-651X/97/56~4!/3809~5!/$10.00
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d2x

dt2
1e~x221!

dx

dt
1x50. ~3!

Equations~2! and ~3! are equivalent, as can be seen by d
ferentiating Eq.~2! with respect tot and puttingdy/dt5x.

In 1928, the French engineer Lie´nard@15# gave a criterion
for the uniqueness of periodic solutions for a general clas
equations, for which the van der Pol equation is a spe
case

d2x

dt2
1 f ~x!

dx

dt
1x50. ~4!

Liénard transformed Eq.~4! to a first order system by settin
dx/dt5z, yielding

dx

dt
5z,

dz

dt
52x2 f ~x!z. ~5!

In fact, in his proof, Liénard used a form equivalent to Eq
~5!, obtaining through the change of variablez5y2F(x),
whereF(x)5*0

x f (t)dt:

dx

dt
5y2F~x!,

dy

dt
52x. ~6!

Equation~4! is referred to as a Lie´nard equation and both
equations~5! and~6! are called Lie´nard systems. They are
particular case of Eq.~1!.

In 1942, Levinson and Smith@16# suggested the following
generalization of system~6!:

dx

dt
5y2F~x!,

dy

dt
52g~x!, ~7!

or equivalently,

dx

dt
5z,

dz

dt
52g~x!2 f ~x!z. ~8!

Systems~7! and ~8! are equivalent to
3809 © 1997 The American Physical Society
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d2x

dt2
1 f ~x!

dx

dt
1g~x!50, ~9!

which is sometimes referred to as the generalized Lie´nard
equation.

In this paper, we will consider the caseg(x)5x andF(x)
given by an arbitrary odd polynomial of degreem. The fun-
damental problem for this type of system is the determi
tion of the number of limit cycles for a given polynomia
F(x) @17–26#. For m53, i.e., for F(x)5a1x1a3x3, it has
been shown in@17# that the system has a unique limit cyc
if a1a3,0 and no limit cycle ifa1a3.0. For m55 it has
been shown in@27# that the maximum number of limit cycle
is two. Form.5, there are no general results about the nu
ber of limit cycles of Eq.~6!.

In this paper, we present a method that gives informat
about the number of limit cycles of Eq.~6! and their location
in phase space, for a given odd polynomialF(x). This
method gives also a sequence of algebraic approximation
the Cartesian equation of the limit cycles.

FIG. 1. The limit cycle of the van der Pol equation~exterior
curve! and the algebraic approximationh6(x,y)5K6

!.

FIG. 2. The limit cycle of the van der Pol equation~exterior
curve! and the algebraic approximationh18(x,y)5K18

! .
-

-
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We will explain our method through the analysis of a ve
well known case, the van der Pol equation. In this case,
have

F~x!5e~x3/32x!. ~10!

We propose a functionh2(x,y)5y21g1,2(x)y1g0,2(x),
whereg1,2(x) andg0,2(x) are arbitrary functions ofx. Here,
the second subindex makes reference to the degree o
polynomial h2 with respect to they variable. Then we cal-
culate ḣ25@y2F(x)#]h2 /]x2x]h2 /]y. This quantity is a
second degree polynomial in the variabley. We will choose
g1,2(x) andg0,2(x) in such a way that the coefficients ofy2

and y in ḣ2 are zero. From these conditions, we obta
g1,2(x)5k1 and g0,2(x)5x21k0, wherek0 and k1 are arbi-
trary constants. AsF(x) is an odd polynomial, if (x,y) is a
point of the limit cycle of Eq.~6!, then the point (2x,2y)
also belongs to this limit cycle. The equation of a limit cyc
of Eq. ~6! must be invariant by the transformatio
(x,y)→(2x,2y). We want the functionh2(x,y) to have
this symmetry too. Thus we takek150. We then have
ḣ25R2(x)522xF(x)522ex2(x2/321). The polynomial
R2(x) is even and it has exactly one positive root of o
multiplicity, i.e., x5A3.

If we integrate the function ḣ2 along the limit
cycle, we have*0

Tḣ2„x(t),y(t)…dt5*0
TR2„x(t)…dt, whereT

is the period; but *0
Tḣ2„x(t),y(t)…dt5h2„x(T),y(T)…

2h2„x(0),y(0)…50. Consequently, we find*0
TR2„x(t)…dt

50. This last equality tells us that there cannot be any lim
cycle in a region of the phase plane whereR2(x) is of con-
stant sign. For the van der Pol system,R2(x) has a root of
odd multiplicity at x5A3, hence the maximum value ofx
for the limit cycle must be greater thanA3. The curves de-
fined byh2(x,y)5x21y21k050 are closed fork0,0.

As the next step of our procedure, we propose a fou
degree polynomial iny for the function h4(x,y), i.e.,
h4(x,y) 5y41g3,4(x)y3 1g2,4(x)y2 1g1,4(x)y 1g0,4(x)
~polynomialshn(x,y) with n odd do not give useful infor-
mation about the limit cycles of the system since the le

FIG. 3. The limit cycles of Eq.~6! with F(x) given by Eq.~11!
~bold curves! and their algebraic approximations~thin curves!:
h6(x,y)5K6 1

! andh6(x,y)5K6 2
! .
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TABLE I. For each value ofn we give the value of the root ofRn(x) and the value ofKn
! for the van der

Pol equation.

n 2 4 6 8 10 12 14 16 18 20

Root 1.732 1.824 1.869 1.896 1.914 1.927 1.937 1.944 1.950 1.95
Kn

! 3 12.3 54.5 247.6 1141 5305 24773 116050 544800;23106
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curveshn(x,y) are open and the polynomialsRn(x) have
always a single root of odd multiplicity atx50). By impos-
ing the condition thatḣ4 must be a function of onlyx, we
find ḣ45R4(x), whereR4(x) is an even polynomial of tenth
degree. The roots ofR4(x) depend one, hence in the fol-
lowing, we will takee51. For this case,R4(x) has only one
positive root of odd multiplicity, given byx.1.824. This
root is greater than the root ofR2(x). Obviously, the maxi-
mum value ofx for the limit cycle must be greater than th
value.

We have in this way a new lower bound for the maximu
value ofx on the limit cycle. Moreover, the number of pos
tive roots of odd multiplicity is equal to the number of lim
cycles of the system. The condition thatḣ4 must be a func-
tion only of x imposes a first order trivial differential equa
tion for each functiongj ,n(x). These equations can be solve
by direct integration and we obtain in this way all the fun
tions gj ,n(x). We take all the integration constants that a
pear when we solve these equations equal to zero. In
way, the level curvesh4(x,y)5K are all closed for positive
values ofK and even values ofn. Moreover, the function
h4(x,y) is a polynomial inx andy.

We have found the same results for greater values of e
n. We have calculatedhn(x,y) andRn(x) up to order 20. In
all cases, the polynomialsRn(x) have only one positive roo
of odd multiplicity. Let r n be the number of such roots. Fo
the van der Pol equation, it seems thatr n51 ;n even.
These roots approach in a monotonous fashion the maxim
value of x on the limit cycle. The functionshn(x,y) are
polynomials in x and y for all n. The level curves
hn(x,y)5K are all closed for positive values ofK. By im-
posing the condition that the maximum value ofx on the

FIG. 4. The limit cycles of Eq.~6! with F(x) given by Eq.~11!
~bold curves! and their algebraic approximations~thin curves!:
h14(x,y)5K14 1

! andh14(x,y)5K14 2
! .
-
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curvehn(x,y)5K.0 must be equal to the root ofRn(x), we
find a particular value ofK for eachn even. Let us call this
valueKn

! . The level curvehn(x,y)5Kn
! represents an alge

braic approximation to the limit cycle.
In Figs. 1 and 2 we show this curve for the valuesn56

andn518, respectively. In Table I we give the values of t
roots ofRn(x) and the values ofKn

! for 2<n<20. The nu-
merical value of the maximum ofx on the limit cycle, deter-
mined from a numerical integration of Eq.~6!, with F(x)
defined by Eq.~10!, is xmax.2.01 (e51). It is clear that the
roots of Rn(x) seem to converge toxmax and the curves
f n(x,y)5Kn

! seem to converge to the limit cycle.
We have also studied the case

F~x!50.8x2 4
3 x310.32x5. ~11!

This system has exactly two limit cycles@18#. We have cal-
culated the polynomialshn(x,y) andRn(x) up ton516. The
polynomialsRn(x) have exactly two positive roots of od
multiplicity. We conjecture thatr n52 ;n even. For each
value of n, we determine two valuesKn1

! and Kn2
! . The

closed curveshn(x,y)5Kn1
! andhn(x,y)5Kn2

! provide alge-
braic approximations to each cycle for each value ofn even.

In Figs. 3 and 4 we show these curves forn56 and
n514, respectively. We also show the limit cycles obtain
by numerical integration. In Table II, we give the values
the roots of Rn(x) and the values ofKn1

! and Kn2
! for

2<n<16. These roots seem to converge to the maxim
values ofx for each cycle~the numerical values of the max
mum of x on each limit cycle arexmax,1.1.0034 and
xmax,2.1.9992, respectively!. The curveshn(x,y)5Kn1

! and
hn(x,y)5Kn2

! seem to converge to each one of the lim
cycles of the system.

For all the cases that we have studied, we have found
the values of the constantsKn

! go to zero or infinity when

TABLE II. For each value ofn, we give the two roots ofRn(x)
and the values ofKn1

! andKn2
! for Eq. ~6!, with F(x) given by Eq.

~11!.

n Root one Kn1
! Root two Kn2

!

2 0.852 0.726 1.854 3.439
4 0.905 0.711 1.885 14.5
6 0.931 0.739 1.905 67.59
8 0.945 0.784 1.920 334
10 0.955 0.840 1.931 1712
12 0.962 0.903 1.938 8973
14 0.967 0.974 1.945 47741
16 0.971 1.052 1.950 254400
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n→`. In fact, it is easy to see from Tables I and II that t
asymptotic behavior ofKn

! with n ~for a given limit cycle! is
given by

Kn
!.a~xmax!

n, ~12!

wherea is a constant that depends on the cycle~see Fig. 5!.
We have also considered system~6! with

F~x!5x52mx31x, ~13!

wherem is an arbitrary parameter. It has been proved in@27#
that this system has exactly two limit cycles form.2.5. It is
clear that this system has no limit cycle form,2 because
r 250 in that case. Hence, betweenm52 andm52.5 there is
a bifurcation valuem! such that form,m! the system has
no limit cycles and form.m! the system has exactly tw
limit cycles. Whenm5m! the system undergoes a sadd
node bifurcation.

By applying our method, we can obtain lower bounds
the value ofm!. For each even value ofn we calculate the
maximum value ofm for which r n is zero. This value ofm
represents a lower bound form!. The results of these calcu
lations are given in Table III. The values ofmn

! seem to
converge very quickly, in a monotonous way, whenn→`.
Numerical integrations of system~6! with F(x) given by Eq.
~13! seem to confirm that limn→`mn

!5m!.
Let us point out that it is the first time, to our knowledg

that a bifurcation value of this type can be estimated in s
a way, that is, by employing an analytical method instead
a numerical integration of the system.

We have also analyzed system~6! with F(x) given by

F~x!5x~x221.62!~x224!~x229!. ~14!

For this case we haver 25r 453. However, the second pos
tive root ofR4(x) is smaller than the second positive root
R2(x). Indeed forn56 we find r 651. An annihilation of

TABLE III. We give in this table, for each even value ofn
between 2 and 20, a lower boundmn

! for the value ofm!. This
sequence seems to converge rapidly towardm!.

n 2 4 6 8 10 12 14 16 18 20

mn
! 2 2.057 2.079 2.090 2.096 2.100 2.103 2.105 2.106 2.1

FIG. 5. We show, for the van der Pol equation, the cu
log10(Kn

!) as a function ofn.
-

r

h
f

two roots has occurred and this phenomenon has been
nounced by the lowering of the value of one of the roots
Rn(x). We conjecture thatr n51 ;n even, greater than 4
The numerical analysis of this system seems to indicate
it has exactly one limit cycle.

For all the cases that we have studied, we have found
two types of behavior ofr n are possible:~i! r n5r n8 for arbi-
trary even values ofn and n8. In this case the number o
limit cycles of the system is given by this common value
the number of positive roots of odd multiplicity ofRn(x). ~ii !
The values ofr n changes withn; in this case the values ofr n

decreases withn; moreover we haver n2r n852p for n8.n
and pPN. The roots ofRn(x) seem to disappear by pairs
whenn increases.

Guided by the particular cases that we have analyzed
establish the following conjecture.

Conjecture:Let l be the number of limit cycles of Eq.~6!.
Let r n be the number of positive roots ofRn(x) ~with n
even! of odd multiplicity. Then we have~i! l<r n ;n even;
~ii ! if n8.n then r n2r n852p with pPN.

We have also analyzed the roots of the polynomialsgj ,n ,
with 0< j <n21. For odd values ofj , the roots of these
polynomials are also related to the number and location
the limit cycles of the system. For instance, for the van
Pol equation, the polynomialsgj ,n(x) with j odd have ex-
actly one positive root of odd multiplicity. These roots are
upper bound toxmax. For a given odd value ofj , the se-
quence of roots ofgj ,n(x) decreases monotonously withn
and seems to converge to the value ofxmax. The best upper
bounds are given by the roots ofg1,n(x), as can be seen in
Table IV. The reasons for such behavior of the roots of
polynomialsgj ,n(x) with j odd are not clear to us.

We have shown in this paper that the polyn
mials hn(x,y)5yn1gn21,n(x)yn211gn22,n(x)yn22

1•••1g1,n(x)y1g0,n(x) give a lot of information about the
number and location of the limit cycles of Eq.~6!, in the case
whereF(x) is an odd polynomial@for the case whereF(x) is
not an odd polynomial, the limit cycles are not invaria
under the transformation (x,y)→(2x,2y) and the results
are not conclusive#. The curveshn(x,y)5Kn

! give algebraic
approximations to each limit cycle. These algebraic appro

7

TABLE IV. For each even value ofn, between 2 and 20, we
give the roots of the polynomialsRn , g1,n , andg3,n , respectively,
for the van der Pol equation.

n Root of Rn Root of g1,n Root of g3,n

2 1.7321
4 1.8248 2.2361
6 1.8697 2.1924 2.2361
8 1.8965 2.1658 2.2063
10 1.9144 2.1475 2.1854
12 1.9273 2.1341 2.1697
14 1.937 2.1236 2.1574
16 1.9446 2.1152 2.1474
18 1.9507 2.1083 2.1391
20 1.9558 2.1025 2.1321
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mations seem to converge to the limit cycles of the syst
The positive roots of odd multiplicity of the polynomia
Rn(x)5ḣn(x,y) are related to the number of limit cycles o
Eq. ~6! and they give lower bounds for the values ofxmax of
each limit cycle. Moreover, the roots ofgj ,n(x), with odd
values ofj are also related to the number of limit cycles a
f
,

.they give upper bounds to the value ofxmax for each limit
cycle.

All the relevant information about the limit cycles of Eq
~6! seems to be contained in the polynomialshn(x,y). These
polynomials are very easy to calculate with an algebraic m
nipulator program.
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