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Dark and bright shock waves on oscillating backgrounds
in a discrete nonlinear Schralinger equation
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Dark and bright shock waves on top of arbitrary oscillating backgrounds are investigated in a discrete
version of the nonlinear Schdimger equation. The existence of analytical curves in the parameter space
corresponding to shock wave formation is established for arbitrary wave nuiloérthe background radia-
tion. The analysis is based on the small-amplitude approximation and is confirmed by direct numerical inte-
grations of the systeniS1063-651X97)02508-7

PACS numbgs): 03.20+i, 11.10.Lm, 42.65-k

I. INTRODUCTION between on-site—intersite interactions as well as
integrability-nonintegrability and discrete-continuum proper-
The general discrete nonlinear Sctimger (GDNLS)  ties as done in Ref$4,9—-13. The aim of the present paper
equation is to show the existence of shock waves in the GDNLS sys-
tem moving on backgrounds with arbitrary wave numbers in
iqn+ (1= €|qn?)(An_1+ Ans 1— 20n) + 2(p%—|an]?) 9,=0 the Brillouin zone(BZ). These shock waves are in some
aspects similar to those found in other integrafild—17
and nonintegrable mode€$8,19. In particular, their profiles
was introduced in Refs|1-4] as a generalization of the can be considered as consisting of three qualitatively differ-
simple tight-binding linear Schdinger model for the dy- ent components: a smooth part, which at the initial stages of
namics of quasiparticles in a molecular crystal. This modethe evolution corresponds to the rear or to the fri@gmsome
naturally appears in the theory of intrinsic localized modescases represented belpva rapidly varying “front,” and a
[5] and describes Frenkel excitons in a one-dimensionalrain of solitonlike pulses. On the other hand, the shock
chain of two-level atoms with energy transfer by an ex-waves we discuss also possess a number of different features.
change interactiofi,7]. In order to study Eq(1) in a gen-  First, our model allows the existence of bdttight anddark
eral contextg, is regarded as the displacement fiedds a ~ shock wavesSecond, the evolution of a shock walie the
deformation parameter, which in the present paper will bdong-wavelength limitis described by the simple first-order
considered positive (@e<1), p is a constant that is asso- equationc;+cc,=0 [20], which is different from the one

ciated with the amplitude adj, at infinity, governing shocks in other discrete systemd]. Using this
equation, we can predict the breaking time of the wave in
lim g,=pexp —i(ot—kn=e)}, (2)  excellent agreement with numerical results. Third, there exist
n—= two branch lines in parameter space on which shock waves

propagate with different velocities and are characterized by
different effective nonlinearities. Fourth, the mutual location
k of the components of the waves with respect to the wave
o=w(k)=4(1- epZ)Sinzz (3)  front depends on the problem parameters. Finally, the shock
waves reported here, in contrast with the ones observed in

represents the dispersion relation of a plane wave with anfther nonlinear lattices, develop from smooth initiatight
plitude p, wave numbek (taken in the first Brillouin zone ©F dark profiles[13] and disappear in the integrable limit of
[—,7]), and phasep  [0,7r]. From a mathematical point the model. _

of view Eq. (1) represents a norm-preserving deformation of The organization of the paper is as follows. In Sec. II_We
the diagonalon-site discretization of the nonlinear Schro develop the theory of the shock waves based both on linear
dinger equatio(DNLS), which reduces foe=1 to the in- analysis and on multiscale expansion. In Sec. lll we provide
tegrable Ablowitz-Ladik modell8] and fore=0 to the non- & numerical investigation of the shock wave dynamics and in

integrable DNLS system. The presence of the deformati0|$ec' IV we discuss the numerical results on the basis of our

parameter in the model allows one to study the imerma)pnalytical ponsideratioqs. Fipally, the main results of the pa-
per are briefly summarized in Sec. V.

and

. . . . . Il. SHOCK WAVES IN THE SMALL-AMPLITUDE LIMIT
*Also at Center of Mathematical Sciences, University of Madeira,

Pra@ do Municpio, Funchal P-9000 Portugal. In order to describe shock wave formation in the GDNLS
TAlso at Istituto Nazionale di Fisica della Materia, UndaSal-  system it is more convenient to perform the change of vari-
erno, Salerno, Italy. ables

1063-651X/97/563)/3611(8)/$10.00 56 3611 © 1997 The American Physical Society



3612 V. V. KONOTOP AND M. SALERNO 56

n=qnexpi ot—ikn). (4) is possible at such an amplitude of the background. From a
_ physical point of view one expects shock waves to occur
Equation(1) then becomes when the nonlinearity dominates the group velocity disper-
. ) sion [note that if the nonlinearity is weak, one can use ex-
g+ cogK) (1~ €] ¢n|*) (Yrns 17+ -1~ 2) pansion(8) to calculate the dispersion as a function of the
o B 2 B parameterk Obviously, the weakest dispersion appears in
+isin(k) (1= el gnl*) (¢n+1= ¥hn-1) the case when the factor & in Eq. (8) is zero, i.e., when
_ 2_ 2y _
+2(1— e+ ecok) Y (p°—|4n|?) =0, ) . 3 [(1—ep?)cok 1— e+ ecok
. " 4sik=*coK| —\/ 77— o\ 77— — |-
subject to the boundary condition p ¥V 1—e+ecok (1—ep)cok
10
lim ¢,=pexp =ie). (6) (0
n—xo From this condition it is clear that waves moving on different

backgrounds display shocks on different curves in the pa-
rameter space — €. In Figs. Xa) and Xb) we have reported
the curves(p,k) obtained from Eq(10) for different values

Fore=1 Eq.(5) is recognized as the discrete HirgaH)
equation, which is integrable by means of the inverse sca
tering techniqud21] and has exact dark multisoliton solu-

tions[7]. In the following sections we study the linear exci- ofk, i.e,
tation and the small-amplitude limit of E¢G), which in the 1 9cosk—p?[f.(k)]?
following we refer to as the deformable discrete Hirota €i=I7 9coSk—(1—cod)[f. (K12’ (11
(DDH) equation.
where

A. Linear analysis

Let us start our investigation with the analysis of the lin- Fo(k)=2sirk= ysimk+3. (12
ear excitations of E¢(5). This will provide information both  \we remark that ak=0 (uniform backgrounds Eq. (11)
on the stability of the background field and on the existenc@eproduces the simple relatier= p ~2— 3~ obtained in Ref.
of regions of the parameter space where shock waves can be3]. Moreover, fork#0 (in the casesp?<1) andk#  (in
observed. To this end we consider the solution Of(qu.in the Case€p2> 1) Sp||tt|ng of the curves occurs and two
the form y,=p+ ¢, where|¢,|<p. By expanding Eq(5)  pranches appear. The most interesting region from a physical
with respect tog,, we obtain to first order the dispersion point of view is that defined by the conditiasp?<1. For
relation of linear waves ep®>1, however, the dynamics governed by the DDH equa-

. . . tion also displays some interesting features. One of them is
_ 2 [eodk(1—en2) oY .
Q.(K)=2sirk(1— ep?)sinK = 4ycok(1— ep)sin(K/2) seen in Fig. lb): for eachk there exists a cutoff value af

X[cok(1— ep?)sin?(K/2) represented by the point where two branches with the same
intersect. One can readily check that these intersection points
+(1— e+ ecok) p?]*2. (7)) occur atey=(1—cok)%, this being just the threshold

value for linear stability. We expect, therefore, that on the
part of the curves of Fig. (b) above €., shock waves
should not exist because of the modulational instability of
the background.

From Eq. (7) it follows that the background is modula-
tionally stable for ep?<1 and ke[ —mky—7]U—/2,
ml2U[m—Kq,w] or for ep?>1 and ke[ko—r, !
21U[m/2,7m—Ky], Whereky,=cos }(e 1—1) at e>1/2 and
I§O=.0 otherwise. In particular, we have that in the integrable B. Small-amplitude expansion

limit (e=1) only backgrounds witkep?<1 are stable. Be- ] _ )

low we shall restrict our consideration to only these regions The equation governing shock wave dynantasthe ear-
of stability. It is worth remarking that the dispersion relation lier stages of their evolutioncan be obtained in the small-
has two branches and the expansion of the group velocit@mplitude limit by following the same analysis of Rg£3].

V. =dQ. /dK at smallK gives ere we generalize the corresponding expansions to the case
B - of arbitrary k in the BZ. To this end we represent
_cok(3 [(1—ep®)cok o= (p+ua)exp(—iug), where a=ap+u?a;, and
Vi=c.—|sinks—, \p V1= et ecok b= o+ u’d,, Where u is a small parametery(<1). By

introducing a spatial variabl¥= wn, which is treated as a

[1—e+ecok | |1—ep? ) 4 continuum variable, as well as “slow” time¥=ut and
P (1— ep?)cok 3 K*+O(K"), (8 r=u>t (regarded as continuousve derive the expansion
with respect to the small parameters and arrive, in the lowest
where orders inu, at the equations for the phagg, and amplitude
C.=2sirk(1— ep?) = 2p+/cok(1— ep?)(1— e+ ecok) o
©) 92¢0+2 P o 3 92(150:0
is the group velocity of the harmoni¢=0. Note thatt. =0 at2 "V Tox axz
at p=1/\/e. This amplitude corresponds to singular points 5 (13
that split the chain in a sequence of independent segments dag  dag Yy o

[13], implying that no energy transfer along the chain F+YW:2 tark gx°’



DARK AND BRIGHT SHOCK WAVES ON OSCILLATING . .. 3613

Eq. (9 (note thatc. can be rewritten in the form

c.=vy+\Jy?’+pB). Introducing a running variable
¢.=X—-c.T and looking at solutions of the form

do=do(é+,7), we can expresg, through ¢, as

1.0 T

0.8
1 [(1—ep?)cok deg

2p V 1—e+ecok d&. (16)

0.6 | dp=a.=+

By taking into account Eq(16) and collecting the terms of
0.4 | 4 5 - ;

the order ofu” and u>, we finally arrive at a system of
equations whose compatibility condition is expressed as

AN 1

0.2 -

das (=)
0—,7. _b17 (k)ai

0.0 04 08 1.2 1.6 2.0 where the coefficientb, (k) are given by

€\ 1— e+ ecok
de+——|+2p COSkl——eﬁ

cok
X (3—4ep?), (18
1_12132 —4sirkicosk(g\/%
\/m )
PN (1= ep?)cox
Equation (17) is just a Korteweg—de VriegKdV) equa-

tion for a. with respect to the space variable.. For
b$*)(k)=0 Eq. (17) transforms to the well-known equation

[20]

1.0 b{*)(k)=2p?sink

Wo0.6 a9

0.4

0.2 0.8 1.4 2.0 . ., da.
P ———bi(ka. 3. =0 (20)

FIG. 1. (8) Shock wave formation curves. in Eq. (11 plotted . . . .
for several(vlllues of the background wave Humbgrk(@s 7)7/‘)2 The go+vern|ng shock waves. It is worth noting that the condition
b$*)(k)=0 is nothing but Eq.(11) obtained before using

continuous curve with stars refers t6=0, the dashed lines to \/
k= /3, the dotted ones t&= /6, and the continuous one to qualitative arguments. We also remark that the approach of

k= /2. The curves on the left of the=0 curve refer to the posi- Ed. (17) is more general since it allows one to estimate also
tive branche.. , while those on the right refer to the negative one. the effective nonlinearity. In particular, at=1 one has that
The curvee,(k=/2) is not seen because it overlaps with the b(li)(k)ZO if b(zi)(k)ZO and hence shock waves cannot
vertical axis p=0). (b) Same as in(a@), but for wave numbers exist. This result is predictable sinee=1 corresponds to the
wm/2<ks<m. The continuous curve with stars referske-, the  exactly integrable discrete Hirota equation, which does have
dashed lines t= g, and the continuous ones to=37. The  dark soliton solutiong7] but not shock waves. From Eq.
curves starting ae=1 on the left of thek= = curve refer to the (18) it also follows that in the nonintegrable case#1)
positive branche, , while those starting on the right refer to the b, (7/2)=c. Formally, this means that the poikt= 7/2 at
negative one. The intersection point of two branch lines of the same - 1 is out of the applicability region of the small-amplitude
type gives the threshold for the modulational stability of the baCk'approximation. Since a wave packet with the spectrum cen-

ground. tered atk= 7/2 has harmonics witk> /2, the background
where becomes unstable ads— w/2+0 (see the linear analysis
above.

B=4(1— ep?)[ p?cok—sirk+ ep?(1—cok)] (14)
lIl. NUMERICAL ANALYSIS

and To check the above analytical results we have numerically
y=2(1—ep?)sirk. (15) integrated Eqg.(1) using a fifth-order adaptive step size
Runge-Kutta algorithm. The chain was taken to be long
The general solution of Eq13) is represented by two dis- enough to ignore boundary conditions and the initial condi-
persionless waves propagating with velocities given by  tion was taken as
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1500 FIG. 3. Breaking time versus the amplitude of the shock for the
™ same parameter values as in Fig. 2. The continuous curve refers to
Eq. (20), while the dotted squares are experimental points.
FIG. 2. Evolution of bright shocks against nonzero background
with k=0, p=+3, ande=0. being reminiscent of the shock wave front formed at earlier
times. By reducing the amplitude of the initial profile the two
. s leading solitons are found to be very close for long times
qn=pe kKt ? 1im , (21)  (they separate very slowly with respect to each gthehile
0 the rest of the solitons in the train arrange in a triangular
i.e., a bell-shaped profile on top of an oscillating backgroundshaped configuration. Moreover, as the amplitude of the ini-
of amplitudep, wave numbek, and frequency» [given by  tial profile is reduced, the time required to decompose a
Eg. (3)]. We investigate first the case of shock waves onPright shock into solitons increases, but the scenario ob-
uniform backgrounds K=0) for which the two branch Served is just the same. In the case of a dark shock the
curvese. in parameter space coincidsee Eq.(11)]. We picture is quite different since comphcate_d oscillations be-
examine successively the case of shock waves on arbitrallylnd the shock front develop and the soliton component of
backgrounds. the wave pecomes eV|d_ent only Whgn approachmg the inte-
In Fig. 2 we report the time evolution of a briglihe plus ~ grable limit. To show this we report in Fig. 5 the time evo-
sign in Eq.(21)] initial profile of amplitudes=2 on a back- lution of a dark{the minus sign in Eq(_21)] initial profile on
ground characterized by=0 andp=+3. We see that the & background characterized k-0 with p= V3 ande de-
initial profile splits into two smooth profiles moving in op- fved from Eq.(11). We see that there is a sharp transition
posite directions, both bending in the direction of propagaPetween the front of the wave profile and the background
tion and developing, after a certain time, oscillations starting@diation that develop in the rear. By increasing the value of
from the top. We define the breaking timg of the wave as € @ong the corresponding curve in Figalit becomes evi-
the time at which the oscillations first appear on the profilesdent that a dark shock is characterized by three regions: the
An estimate of this time for an initial profilg=f(£) can be  Wave front, which is a smooth profilending with a discon-
obtained from the continuous equation20) as tmglty); th'e middle, which can be_ mte_rpreted in terms of a
te=—[F'(£g)] "L, whereF (&) =a(f(£)) andég is the value soliton train(see beloy; and the tail, which appears as back-
of the characteristic for whick’(£) <0 and|F(&)| is maxi-
mum. Using Eq(20), we readily obtain

B cost(vég)
8= 26,2(4p7—3) tant(vég)

4

38 |

(22) 25

a sl

with sintwég=sinh 1(1/2). In Fig. 3 we report the breaking
time as obtained from Eq22) (continuous curvein com-
parison with direct numerical experimer(dotted squargs

We see that there is good agreement between the theory an

32 F

[ gal

the numerical analysis up to times of the order of the break- 28|

ing time. In Fig. 4 we report the profile of one of the shocks

of Fig. 2 after an evolution time=2400. From this figure it 2er

is clear that the oscillation that develops behind the bright 0 ‘ ‘ ‘ ‘ , , ,
shock generates, after a long time, a train of solitons with the G0 700 800 w0 100D 4100 200 G0 1400

solitons in the front widely spaced with respect to the ones at n

the end. We note that the two leading solitons in Fig. 4 are FIG. 4. Profile of one of the bright shocks of Fig. 2 after an
more closely spaced than the following leading ones, thigvolution time of 2400.
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FIG. 5. Evolution of dark shocks against nonzero background

ith k= = =0. . _—— .
wit 0,p=1/3, ande=0 FIG. 7. Power spectrum analysis of the oscillating gadints

ground radiation. This is clearly seen from Fig. 6, where theof the dark shock in Fig. 6. The signal is divided in 20 consecutive

. . - . ntervals of 256 points each starting from the head. The logarithm
profile of a dark pulse is reported after an eVOIUZtlon tImeof the power spectrum is reported on the vertical axis versus the
t=7200 _fo_r pa_rameter valuel's=0,_ p=1, and e=j5. TO . __reciprocal of the wavelength for each interval.
clearly distinguish the front, the middle, and the oscillating
tail of the shock we use different line thicknesses for the ) )
front and the middle part, while the tail is plotted just by d&formation parameter close to 1, the middle part of the
points. Analyzing the oscillating part of the profile in Fig. 6 Shock wave can be correctly interpreted as a train of dark
we find that its harmonic content changes as one moves t@°litons. The above behavior generalizes to nonuniform
wards the far end of the wave. This is clearly seen in Fig. 70ackgrounds with arbitrary wave numbers in the BZ. In par-
where the power spectrum of the oscillating part of the proficular, in Fig. 9 we report the profile of a dark shock wave
file in Fig. 6 is reported. The signal is spliced into 20 con-after an evolution timet=1000 moving on a background
secutive intervals of 256 points and for each interval thecharacterized bjk==/6 and e=0.3 with p obtained from
spectrum is displayed. We see that at the end of the tail theUrve e, in Eq. (11). By increasing the value of along the
wavelength of the signal approaches the limiting value of 2urve e, (i.e., moving towards the integrable DH limitve
(see the lowest curve in Fig),7i.e., the wave numbek of observe the same p_henomena described inkth® case. _
the radiation approaches the edge of the Brillouin zonelhese results are quite general and hold true for other posi-
(k= ). Moving towards the integrable limit, we find that tive € branches of Fig. 1. On the other hand, the behavior of
the tail radiation is reduced while the middle region is en-& dark shock is different for parameter values on the negative
hanced and its interpretation in terms of a train of solitonse Pranches. This is evident from Fig. 10, where the profile of
becomes more evident. This is shown in Fig. 8, in which a& dark shock wave developing from an initial profile of am-
dark shock profile at time=2400, for parameter values Plitudes=2.1 on a background with wave number 7/6 is
k=0, e=0.95, andp derived from Eq.(11), is reported. At reported fore=0.3 andp obtained from the corresponding
e=1 (the DH limit) we find that the background radiation in curvee_ in Fig. 1(a). Itis remarkable that the wave develops
the tail completely disappears and the shock wave degenefrectangular wave front followed by a train of solitons with
ates into a triangular-shaped train of solitons. Thus, at th&ackground radiation at the erfd possible interpretation of
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FIG. 6. Profile of one of the dark shocks of Fig. 5 after atime of FIG. 8. Same as in Fig. 6, but fer=0.95 andp derived from
7200. Eq. (11). The evolution time is 2400.
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FIG. 9. Dark shock prOfile after an evolution tinhe: 1000, for FIG. 11. Bnght shock proﬁle for parameter values= 03’
parameter values=0.3, k=/6, andp derived from the positive k= 7/6, and p derived from the corresponding negative branch
branch curvek=7/6 of Fig. X(a). curve of Fig. 1a). The amplitude of the initial profile is=1.26 and

the total evolution time i$=2400.
the square wave front in terms of closely spaced solitons
bunched together is quite appealing similar phenomenon shows the wave fronts of the two shock waves plotted by
is observed also in the case of bright shocks on negative points(diamond$ joined by lines from which the sharpness
branches. This can be seen from Fig. 11, where the profile ajf the leading square wave is clearly seen. The other small
a bright shock on the background wikl+ 7/6, e=0.3, and  wave moving on the left of Fig. 12 is also found in the time
p determined from the curve_ in Eq. (11) is reported. Note evolution of an initial bright profile for parameter values
that in this case the square wave front is more “rounded”’taken on the positive branches in Eq. (11). We have in-
than the one in Fig. 10. This depends on the amplitiede  vestigated also the behavior of shocks on curves of Rhy, 1
ergy) of the initial profile, which in this case is smaller j.e., for wave vectorsr>k> =/2. In this case we have that,
[s=1.2 instead ofs=2.1 in Eq.(21)]. As we increase the in agreement with our stability analysis, shock wave forma-
amplitude of the initial profile the leading square wave be-tion is possible only on the part of the curves that satisfy the
comes sharper, but the phenomenon also becomes more istability criterion derived in Sec. Il B.
volved (more shock waves, usually of different kinds, may Finally, we have investigated scattering processes of
be createfd This is shown in Fig. 12, where the time evolu- shock waves of different types. Quite surprisingly, we find
tion of an initial profile of amplitudes=2.2 is reported. We that the shock profiles, like solitons, are well preserved under
see that the initial profile splits into two waves moving in scattering processes as shown in Fig. 14 for the case of a
opposite directions. The profile of the wave moving on thebright-dark shock collision. This result further confirms the
right is reported in Fig. 13 after an evolution tinhe 3600.  existence of a strong solitonic component in the shock wave
From this figure it is evident that there are really two shockdescribed abovédetails of this phenomenon will be given
waves, one bright and the other dark. The inset of Fig. 13®Isewherd?22]).
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FIG. 10. Profile of a dark shock of the DDH equation for pa-  FIG. 12. Time evolution of an initial bright profile of the DDH
rameter values=0.3, k=/6, andp derived from the negative equation for parameter values-0.3, k= 7/6, andp derived from
branch curvek= /6 of Fig. Aa@). The total evolution time is the corresponding negative branch curve of Fi@).1The ampli-
t=1800. tude of the initial profile iss=2.1.
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FIG. 13. Right profile of Fig. 12 plotted after an evolution time Fi FIZG' 14. Dark-bright shock scattering for parameter values as in
t=3600. The inset shows the leading part of the profile plotted by 9. 2
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whether the shock occurs in the front part of the dark
IV. DISCUSSION [ai(k)<Q] wave[b{*)(k)>0], yvhen the parts of t'he wave
characterized by largea. (k)| display higher velocity, or in
In order to interpret our numerical results and in particularthe rear of the dark wavigh!{™)(k)>0]. Applying these ar-
the relatively stable single pulses originated by shocks, wguments to the situation depicted in Fig. 9 one finds
have used the soliton terminology. Since for generic param=+p{*)<0, in complete agreement with the numerical re-
eter values the model is not integrable, this point requiregyts. It is also of interest to remark that some features of the
further explanation. To this end we note from Efi6) that  more involved phenomenon reported in Figs. 12 and 13 can
the phase mismatch between neighboring particles depengg explained on the basis of E&0). Indeed, as long as dark
on the amplitude of the wave. This implies that the change ofnq bright waves are characterized by positive and negative
the amplitude during the shock evolution results ina changgajues ofa, , it follows from Eqs.(20) and (23) that being
of the central wave vector of the wave packttis is also  excited at one point, the bright and dark shock waves move
confirmed by our simulationsin turn, this means that local- towards opposite directions with respect to the characteristic
ized modes associated with shocks are out of the regions ¢f—\/ ¢ since. however, the speed of the relative motion is
the spectral space that corresponds to shock waves, i.e., thgyoportional to the amplitude, it is a small parameter and that
cannot produce secondary shocks. On the other hand, out pf \yhy the separation of the pulses occurs slowly. A confir-
these regionghowever, not too far the pulses are described ation that these arguments are indeed applicable to the case
by the KdV equation(10). If the wave number is changed gepicted in Fig. 12 follows from the fact thét (/6)>0
significantly, then the provided expansion is not applicableyng hence, taking into account the negative velocity of the

anymore, but for) not too small it is known that any con- otion, the bright shock must be more rapid than the dark
servative discrete system possesses an envelope s6ifiton gne. j.e.. exactly what one sees in Fig. 12. Finally, our nu-

some approximation of coursg23]. Such solutions are quite merical experiments clearly show that moving in the param-
stable and propagate along the chain without distortion fopter space along the curvékl) towards the integrable limit
long times. Their amplitude, a small parameter, multiplied by — 1 | the background radiation is always reduced and disap-
the width gives a quantity of order one. As is clearly seMyears at=1 where the shock wave “dissolves” into a soli-
from the inset of Fig. 13, localized pulses in the numericalyy s train. This agrees with our analytical prediction in Sec.

experiments have amplitudes of order 0.1-0.3 and involvg| g j e that shock waves in the DH limit should not exist.
about ten sites, i.e., have characteristics typical for envelope

solitons. A more detailed analysis of this phenomenon, how-
ever, requires further analytical investigations. Another im-
portant feature observed in the dynamics of the shock waves In this paper we have shown that under suitable condi-
described above is the alternation of the location of the shockons bright and dark shock waves exist in the GDNLS on
front with respect to the characteristic=V.t. A prelimi-  oscillating backgrounds of arbitrary wave number The
nary explanation of it can be obtained by observing that thenethods used to characterize these waves, i.e., the linear
coefficientb; (k) subject to the conditiofi1) takes the form  analysis and the small-amplitude multiscale expansion, sug-
gest that similar phenomena exist also in other DNLS-like
cok[sink= | (k)|] systems with different types of nonlinearities and dispersion.

e[9coSk— (1—co) 2 (k)] +f2 (k)
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