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Statistical treatment of radiative transitions in local thermodynamic equilibrium plasmas
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Commissariat a` l’Energie Atomique, Centre d’Etudes de Limeil-Valenton, 94195 Villeneuve Saint-Georges Cedex, France
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The fluctuations of the electronic configurations around the average-atom configuration are estimated using
classical statistical mechanics. This method allows the spectral opacities to be rapidly calculated without
explicit recourse to detailed configuration accounting. Coupled to a screened-hydrogenic average-atom model,
it can be implemented into the atomic physics package of a hydrodynamic code. We compare our results to
numerical spectra constructed with more detailed codes or experimental spectra.@S1063-651X~97!12106-7#

PACS number~s!: 52.25.Nr, 52.25.Qt
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I. INTRODUCTION

In both astrophysics and laboratory plasma physics,
essential contribution to energy transport in hot and de
plasmas comes from radiation. Radiative opacity@1# is the
key parameter that rules radiative transfer. Its difficult eva
ation requires methods with increasing degrees of comp
ity. One can consider transitions between configurations~de-
tailed configuration accounting or DCA! or, at a more
accurate level, between spectroscopic terms resulting f
configurations~detailed term accounting or DTA!. However,
the number of term-to-term transitions becomes prohibitiv
large with increasing complexity of configurations, thou
they can be included in DCA calculations as a broadening
the configuration-to-configuration transitions@2,3#.

In a laser-plasma simulation, the opacity has to be kno
because radiation effects may be important and can sub
tially modify the hydrodynamic evolution of the system. F
computer time reasons, a balance has to be reached bet
accuracy and rapidity. This is why approximate models
needed to perform in-line computations. The screen
hydrogenic average-atom model with fractional shell po
lations~see Ref.@4#, and references therein! is well suited to
describe multicharged-ion plasmas in such studies. For g
temperatureT and densityr, the average-atom population
the free-free, bound-free, and bound-bound photoabsorp
cross sections are determined and a first approximate s
trum can easily be constructed. Nevertheless, the qualit
opacities deduced from this average-atom spectrum is kn
to be poor, even taking into account the line profiles@5# or
l splitting @4,6,7#. The reason for this is that each on
electron transition depends on the total electronic configu
tion, which is generally different from the average config
ration. Consequently, the contribution of a large number
configurations tends to split an average-atom transition
many components. As an explicit DCA cannot be rapid
calculated, a statistical approach is needed to estimate
distribution of the configurations that substantially contribu
to the opacity around the average-atom configuration@8#, in
order to increase the quality of the average-atom spectr
For local thermodynamic equilibrium~LTE! plasmas, an ap
proximate photoabsorption spectrum can be obtained with
explicitly considering all the different configurations. Th
main effect is a statistical broadening of each average-a
line @9–11#, which is a direct consequence of the evaluat
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of the statistical distribution of the dominant configuratio
around the average atom configuration. Each individual l
is additionally broadened by usual physical effects, su
natural broadening, Doppler, Stark broadening, . . . @5#. Re-
placing the average-atom line with a statistically broaden
line may then be a good approximation when the numbe
lines is large and the lines are so closely spaced that a st
overlapping takes place.

The outline of the paper is as follows. In Sec. II, we rec
how an approximate expression of the grand canonical
tition functionZG of the bound electrons can be found usi
the classical theory of fluctuations. This expression is imp
tant because it allows a fast computation of the mean va
of any physical quantity~like radiative opacity! which is an
explicit function of the electron shell populations. Furthe
more, a method to evaluate average-atom bound-bound
bound-free oscillator strengths is proposed. It ensures
one-electron sum rules are preserved and that the disc
spectrum and the continuum series are continuously c
nected. In Sec. III, the aforementioned expression ofZG is
used to statistically broaden the average-atom bound-bo
and bound-free one-electron transitions. It is shown that
splitting in integer ion stages can be easily included. In S
IV, we perform comparisons between results obtained us
this formalism, more elaborate calculations, and experim
tal data.

II. THE SCREENED-HYDROGENIC
AVERAGE-ATOM MODEL

A. Statistical mechanics

Different methods exist to describe highly charged LT
ion plasmas. The screened-hydrogenic atom model is sim
frequently used, reasonably accurate, and has been prov
be properly defined and thermodynamically consistent@4#.
Within this formalism, fast computations are possible in
hydrodynamic code. All developments start from the gra
canonical partition functionZG of bound electrons

ZG5(
~Pi !
D~Pi !

e2bS E@~Pi !#2m(
i 51

Kmax

Pi D . ~1!

E@(Pi)# andD(Pi )
are the energy and the statistical weight

an electronic configuration (Pi). Introducing the binomial
3488 © 1997 The American Physical Society
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coefficient (p
n)$(p

n)5n!/ @p!(n2p)! #% and the shell degen
eracies (Di),D(Pi )

is equal toD(Pi )
5P i 51

Kmax(Pi

Di). m is the

chemical potential andb is the inverse temperature~b
51/kBT, kB is the Boltzmann constant!, whereas the sum
( (Pi )

runs over the set of all configurations that can be c

structed from theKmax bound shells. So( (Pi )
means

(P150
D1 •••(Pi50

Di •••(
PKmax

50

DKmax .

The exact value ofZG is known only in a few cases. A
brute force computation of the discrete sum( (Pi )

is difficult
due to the large number of configurations. Furthermore
closed form is in general impossible to obtain when the c
figuration energyE@(Pi)# is a nonlinear function of the con
figurations (Pi). The basic idea to evaluateZG consists in
replacing( (Pi )

by an integral using auxiliary variables (Xi).

The integral representation ofZG is not unique. We do no
discuss this detail since it is beyond the scope of the pa
@4,12#. It is sufficient to keep in mind thatZG can be written
as follows:

ZG5E @dXi #e
2bS@~Xi !#. ~2!

@dXi # andS@(Xi)# are, respectively, an integration measu
and a function that depends explicitly on (Xi).

Since we are dealing with the partition function of a sy
tem at thermodynamic equilibrium, only a limited group
configurations notably contribute to the discrete sum in
~1!. In consequence, the saddle-point method can be use
estimateZG in Eq. ~2!. S@(Xi)# is expanded around its mini
mum up to second order

S@~Xi !#5S@~Xi
0!#1(

j

]S

]Xj
U

~X
i
0!

~Xj2Xj
0!

1
1

2 (
j ,k

~Xj2Xj
0!

]2S

]Xj]Xk
U

~X
i
0!

3~Xk2Xk
0!1••• . ~3!

The quantities (Xi
0) satisfy the equations

]S

]Xj
U

~X
i
0!

50. ~4!

After some algebraic manipulations, one finds that Eqs.~4!
are identical to the coupled-nonlinear Fermi-Dirac equatio
which define the fractional occupations (N̄i

0) of the bound
orbitals of the screened-hydrogenic average-atom mode

N̄i
05

Di

11ebei
0

ei
05

]E

]Pi
U

~N̄
i
0!

2m. ~5!
-

a
-

er

-

.
to

s,

These equations have been proposed by More and Zimm
man @13# starting from anad hoc free energy. (N̄i

0) are
roughly equal to the statistical mean shell occupations (P̄i)
@4#

N̄j
0' P̄j5

1

ZG
(
~Pi !
D~Pi !

Pje
2b~E@~Pi !#2m(

i 51

KmaxPi !. ~6!

The chemical potentialm is calculated by imposing the av
erage neutrality of the ion cell.Z, Z̄, andFa(h) are, respec-
tively, the ion charge number, the average ionization, and
Fermi-Dirac function @Fa(h)5*0

`xa/(11ex2h)dx#, m
obeys the equations (h5bm)

(
i 51

Kmax

N̄i
01Z̄5Z

Z̄54p
A

rN S 2m

bh2D 3/2

F1/2~h!. ~7!

A is the molar mass of the element,N the Avogadro number,
r the mass density,m the electron mass, andh the Planck
constant.

The grand canonical partition functionZG ensures the
thermodynamic consistency of the model and allows
screened-hydrogenic average-atom model to be clearly es
lished. Moreover,ZG is the fundamental quantity to calcula
the statistical averagez̄ of any physical quantityz which
depends explicitly on the electronic configuration (Pi)

z̄5
1

ZG
(
~Pi !
D~Pi !

z@~Pi !#e
2b~E@~Pi !#2m(

i 51

KmaxPi !. ~8!

We face again the original problem raised by the calculat
of ZG using Eq.~1!. One solution could consist in finding a
integral representation ofz̄ in Eq. ~8! and evaluating it with
the saddle-point technique. One writesz̄ as follows:

z̄5
1

ZG
(
~Pi !

F )
i 51

Kmax S Di

Pi
DehPiG

3E F )
i 51

Kmax

dXid~Xi2Pi !Gz@~Xi !#e
2bE@~Xi !#. ~9!

d is the Dirac distribution. The factorization of( (Pi )
can be

done by using the Fourier transformation ofd and by ex-
pressingz@(Xi)# asz@(Xi)#5eln$z@(Xi)#%. z̄ is equal to the ratio
of two partition functions

z̄5
ZG~z!

ZG
. ~10!

ZG is the partition function in Eq.~1! which can be written as
an integral@Eq. ~2!#. ZG(z) is a partition function where the
configuration energy E@(Pi)# has been replaced b
E@(Pi)#21/b ln$z@(Pi)#%. A saddle-point evaluation ofZG

andZG(z) gives an approximate value ofz̄ @Eq. ~4!#. Nev-
ertheless, this method is inadequate for fast calculations
pecially when spectral opacities are considered. For exam
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LTE photoabsorption bound-bound opacityk̄bb can be for-
mally written as the ratio of two partition functions as in E
~10!, with k̄bb depending explicitly on photon energyhn. In
consequence, a saddle-point evaluation needs to be
formed at each stephn @12# because the quantities (Xi

0),
which are solutions of Eqs.~4!, are now frequency depen
dent. In other words, Eq.~9! has to be evaluated using
frequency-dependent saddle-point method.

This difficulty may be overcome by using the classic
theory of fluctuations@14#. The underlying idea consists i
calculatingz̄ with only the average-atom populations defin
by Eqs. ~5! and ~7!. A Taylor expansion ofz around the
mean shell occupations (P̄i) defined by Eq.~6! is performed

z@~Pi !#5z@~ P̄i !#1 (
i 51

Kmax ]z

]Pi
U

~ P̄i !

DPi1• • •, ~11!

with DPi5Pi2 P̄i . Since LTE is assumed, the fluctuatio
of z around z̄ are small; so a first-order Taylor expansio
with respect to the (DPi) is sufficient to get the mean and th
variance ofz

z̄'z@~ P̄i !#

sz
2' (

i , j 51

Kmax ]z

]Pi
U

~ P̄i !

]z

]Pj
U

~ P̄i !

DPiDPj . ~12!

From Eq.~6!, we know that (P̄i) are approximately given by
(N̄i

0). The correlationsDPiDPj can be obtained as follows
In Eq. ~1!, the statistical weightD(Pi )

of a configuration is

written aseS@(Pi )#/kB. Each binomial factor can be compute
with the Stirling formula

S@~Pi !#52kB (
i 51

Kmax FPi lnS Pi

Di
D1~Di2Pi !lnS Di2Pi

Di
D G .

~13!

Now, populations (Pi) are supposed to be real and can ta
all the possible values from2` to 1`. The discrete sum
( (Pi )

is replaced by a multidimensional integral.ZG becomes
proportional to

E dKmaxPe2bV@~Pi !#, ~14!

with dKmaxP5Pi51
KmaxdPi and V@(Pi)#5E@(Pi)#2TS@(Pi)#

2m( i 51
KmaxPi . The former integral is evaluated with th

saddle-point method. The grand potentialV is developed
around its minimum up to second order. The populations
extremizeV are the average-atom populations. Let us int
duce the matrixv whose components are

v i j 5b
]2V

]Pi]Pj
U

~N̄
i
0!

. ~15!

Using Eq.~6!, easy algebraic calculations show that
er-

l

e

at
-

v i j 5bVi j 1
d i j

v̄1
2 , ~16!

with

Vi j 5
]2E

]Pi]Pj
U

~N̄
i
0!

~17!

and

v̄ i
25

N̄i
0~Di2N̄i

0!

Di
. ~18!

We find that the probabilitydP ~normalized to unity! of an
electronic configuration (Pi) boils down to

dP5S det~v!

~2p!KmaxD 1/2

dKmaxDPe21/2DPTvDP, ~19!

with DPTvDP5( i , j 51
Kmax DPivijDPj . From Eq.~19!, it is now

quite easy to show@14# that

DPiDPj'~v21! i j . ~20!

The last step is to consider the integer charge stage s
ting which has been lost by going from Eq.~1! to Eq. ~19!.
This detail is important because the spectral features of v
ous ionization stages can be seen on experimental phot
sorption spectra@15,16#. To do so, a constraint is included i
Eq. ~19!. The populations (Pi) are still fractional but their
sum is necessarily an integer:( i 51

KmaxPi1Z85Z. Z8 is a par-

ticular charge stage. With( i 51
KmaxP̄i1Z̄5Z andDZ85Z̄2Z8,

it seems therefore natural to consider the probabilitydP̃
~normalized to unity!

dP̃5(
Z8

1

Z dKmaxDPe21/2DPTvDPdS (
i 51

Kmax

DPi2DZ8D
Z5(

Z8
S ~2p!Kmax

det~v! D 1/2 exp„2 1
2 ~DZ8/s Z̄!2

…

A2ps Z̄
2

. ~21!

s Z̄
2 is the variance of ionization. Using Eqs.~12!, ~16!, and

~20!, it is simply equal to

s Z̄
2

5 (
i , j 51

Kmax

~v21! i j . ~22!

Eq. ~21! can be established properly from Eq.~1! @4#. It
should be noted that both expressions ofdP and dP̃ are
simple and allows to calculate analytically a wide set of
tegrals.

B. Calculation of bound-bound
and bound-free oscillator strengths

Once the average-atom populations are determined,
needs oscillator strengths to study the spectral propertie
the plasmas. In this paper, only one-electron radiative dip
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56 3491STATISTICAL TREATMENT OF RADIATIVE . . .
electric transitions are considered. The initial and final sta
of the optical electron allows the processes to be dis
guished; mainly free free~diffusion and inverse bremsstrah
lung!, bound free~photoionization!, and bound bound~line
absorption!. The radiative opacities are proportional to t
related cross sections. In the framework of the new scree
hydrogenic model~NSHM! @4#, the free-free part of the spec
trum raises no new problem@17,18#. The situation is differ-
ent for bound-bound and bound-free transitions because
do not have any wave functions to calculate the matrix e
ments and get the oscillator strengths, nor any rapid se
classical solution@19# due to l splitting @4#. To overcome
this difficulty, the key idea consists in connecting the d
crete spectrum and the continuum series by contin
@18,20–22# while satisfying the one-electron sum rule
@23,24#.

Let us consider the following bound-bound and boun
free transitions, formally written asnl →n8l 8(n,n8) and
nl →El 8, and the related oscillator strengthsf nl ,n8l 8 and
d fnl ,El 8 /dE. When the wave functionsCn8l 8 andCEl 8 are
both normalized in energy, the final states merge smoo
into the continuous form at the thresholdE5I nl @21,25#. I nl

is the continuum threshold ofnl level. Furthermore, a
power law in energy is observed ford fnl ,El 8 /dE. These
remarks are useful in proposing a fast evaluation of bou
bound and bound-free oscillator strengths for multicharg
ions.

It seems natural to approximate the one-electron ph
ionization differential oscillator strengthd fnl ,El 8 /dE as
Anl ,El 8(I nl /E)anl ,El 8 . The exponent depends onnl , the
partial wave (l →l 61), and on the atomic system. Ro
@26# proposed to usea1s,Ep5 8

3 for 1s subshell andanl ,El 8
53 in the other cases. At the present time, we prefer to k
the value 3 for anyanl ,El 8 , following Kramers@19# and
More @18# and waiting for more intensive comparisons wi
sophisticated atomic calculations. Whenn,n8, f nl ,n8l 8 is
linked to d fnl ,El 8 /dE by continuity leading to: f nl,n8 l 8
5Zn8l 8

2 /n83Anl ,El 8(I nl /@DEnl ,n8l 8#)
anl ,El 8. DEnl ,n8l 8

is the transition energy andZn8l 8
2 the screened charge calc

lated with the NSHM. Whenn.n8, f nl ,n8l 8 is deduced
from f n8l 8,nl using the relation:2(2l 811) f n8l 8,nl 5(2l
11) f nl ,n8l 8 . For Dn50 transitions, no general behavior o
continuity rules are accessible. In consequence, as only
unknowns for each partial wave are remaining, name
f nl ,nl 8 and Anl ,El 8 , we choose to close the system usi
the one-electron sum rules satisfied by oscillator streng
and dipolar matrix elements in any many-electron atom
the nonrelativistic regime@20,22,23#. The unknown quanti-
ties are then solutions of a first-order linear system which
be solved rapidly. In many-electron ion,f nl ,nl 8 and
d fnl ,El 8 /dE have to be multiplied by thenl shell occu-
pancy Pnl and by a degeneracy factor which corrects
possible occupation of the final state, (12Pn8l 8 /Dn8l 8) and
1/~11em2«/kBT) respectively, («5hn2I nl ) @4,18#.

III. STATISTICAL BROADENING
OF RADIATIVE TRANSITIONS

A. Opacity calculation

By definition, the opacityk̄ for LTE one-component plas
mas at photon energyhn is equal to@1#
s
-

d-

e
-
i-

-
y

-

ly

-
d

o-

p

o
,

s
n

n

r

k̄~hn!5@ k̄bb~hn!1k̄bf~hn!1k̄ ff~hn!#~12e2hn/kBT!

1k̄scat~hn!. ~23!

The parentheses (12e2hn/kBT) represents the stimulate
emission. The termsk̄bb, k̄bf, and k̄ ff are bound-bound,
bound-free, and free-free opacities, respectively. In the
one, pure scattering is excluded but taken into account
k̄scat. k̄ has the dimension of an area divided by a mass
is commonly expressed in cm2/g. We use this choice
throughout this paper. Fork̄ ff , we choose the Kramers cros
section for inverse bremsstrahlung. This cross section is
eraged using a Maxwell distribution for electrons. Nume
cally, we find@18#

k̄ ff587.93109S Z̄

AD 2 Z̄r

~hn!3

gbi

AkBT
. ~24!

gbi is the Gaunt factor. It is kept to unity in our calculation
Energies~kBT andhn! are in eV. The molar massA is in g
and the mass density in g/cm3. As mentioned, inverse brems
strahlung is not the only process between free electrons.
omson diffusion is included too@18#

k̄scat~hn!50.4
Z̄

A
. ~25!

Note thatk̄scat and k̄ ff involve free-free transitions but thei
nature are deeply different.k̄ ff really corresponds to an ab
sorption process whereask̄scat is a scattering process. In ra
diative transfer, the scattered photons do not belong t
beam but have not physically disappeared from the medi
Scattering has to be considered in the Rosseland opacity
culation because it describes the propagation of a radia
beam inside a medium but not in Planck opacity calculat
which describes a radiation emission process.k̄bb andk̄bf are
the most difficult to obtain.

B. Line broadening

1. Sharp line

Let us consider a one-electron transition between t
configurationsa and b. The LTE photoabsorption bound
bound opacityk̄ bb without the correction due to stimulate
emission is equal to@4#

k̄bb~hn!5
Ck

A (
a,b

E~a!,E~b!

P~a! f a,bCa,b~hn!, ~26!

whereP~a! is the probability of the initial configurationa,
f a,b is the transition oscillator strength, andCa,b is the line
profile @5# normalized to unity,Ck is a numerical coefficient
equal toRN4p2aa0

2, withR, a, anda0 being, respectively,
the Rydberg constant, the fine structure constant~that should
not be confused with the configuration index!, and the Bohr
radius for hydrogen atom with infinite nuclear mass. Wh
the photon energy is expressed in eV,Ck is equal to
6.673107 cm2 eV. By introducing the populations@Pk(a)#
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of the Kmax bound subshells of the ion with configurationa,
its energyE(a), and degeneracyD~a!, P~a! is given by the
expression

P~a!5
1

ZG
D~a!e2b@E~a!2m(

i 51

KmaxPi ~a!#

ZG5(
a
D~a!e2b@E~a!2m(

i 51

KmaxPi ~a!#. ~27!

For convenience, an explicit reference~through the variable
a! to a particular configuration is now made. As mention
the major drawback of this technique is the calculation ti
due to the large number of configurations that must be c
sen. One is easily convinced that the treatment of high-Z ions
cannot be handled such a way, even keeping only the m
probable configurations~the choice of which is anyway
somewhat arbitrary!.

A crude solution would consist in approximatingk̄ bb

with the average-atom spectrum. Whereas this assumptio
useful to describe the statistical properties of a plasma~mean
ionization, electron pressure . . .!, it gives only a rough gues
of its spectral properties@11# because many configuration
can contribute to the total spectrum for a given transiti
The absence of lines can have dramatic consequences o
Rosseland mean opacity estimation which is very sensitiv
the number and line profile.

We have developed a technique to improve the avera
atom spectrum without explicitly considering every ind
vidual configurationa. We now estimate the contribution o
configurations for a specific one-electron transitionk→k8.
Doing so, we will obtain the value ofk̄bb(hn) for an energy
hn without performing the summation in Eq.~26!. For sim-
plicity, Ca,b is chosen to be a Dirac distribution centered
the k→k8 transition energyDEk,k8(a). Equation~26! is re-
written as

k̄bb~hn!5
Ck

A (
k→k8

(
a

f k,k8~a!P~a!d„hn2DEk,k8~a!….

~28!

As the plasma is in LTE only configurations close to t
average-atom configuration will significantly contribute
k̄bb(hn) in Eq. ~28!. Due to the presence of the Boltzman
factor, f k,k8(a) is close to the average-atom oscillat
strengthf̃ k,k8 @1#. Equation~28! is then written as

k̄bb~hn!5
Ck

A (
k→k8

f̄ k,k8(
a
P~a!d„hn2DEk,k8~a!….

~29!

At this point, it is particularly attractive to use the class
cal theory of fluctuations@14#. This approach is justified
when many lines overlap. The original discrete splitti
tends to be smeared out to produce a quasicontinuous br
ening. Of course, each individual line is broadened by v
ous mechanisms~Doppler, collisions, . . . ! @5# which en-
,
e
o-

st

is

.
the
to

e-

t

ad-
i-

hance the quasicontinuous broadening originating from
statistics~hence, the name of statistical broadening for t
phenomenon@9,11#!.

We then use the ideas developed in Sec. II. The elec
populations are allowed to vary continuously and the discr
summation becomes a multidimensional integral@27#. In the
framework of the screened-hydrogenic average-atom mo
~although the method can be applied to any average-a
model!, we have observed thatP~a! is equal to a Gaussian
probability density defined by Eq.~19!. k̄bb is equal to

k̄bb~hn!5
Ck

A (
k→k8

f̄ k,k8S det~v!

~2p!KmaxD 1/2

3E dKmaxDPe21/2DPTvDP

3d„hn2DEk,k8~DPi !…. ~30!

The transition energyDEk,k8@(DPi)# is expressed as a
first-order Taylor expansion in occupation numbers arou
the average-atom configuration:

DEk,k8@~DPi !#5DEk,k8~0!1 (
i 51

Kmax]DEk,k8
]Pi

U
0

DPi1••• .

Due to the form of the density probabilitydP in Eq. ~19!, the
natural variables are the deviations (DPi) with respect to the
average-atom populations. It is useful to introduce the no
tions

DEk,k85DEk,k8~0!

«k,k8
i

5
]DEk,k8

]Pi
U

0

sk,k85A«k,k8
T v21«k,k85Avar~DEk,k8!. ~31!

Using the Fourier transformation of the Dirac distributio
the constraint in Eq.~30! which prevents any calculation o
the Gaussian integral disappears. By using the identity@28#

E
RN

dNxe2~1/2xTUx1bTx!5S ~2p!N

det~U ! D
1/2

e1/2bTU21b, ~32!

whereU is aN3N symmetric definite positive matrix andx
and b are N-dimensional vectors, a simpler expression f
k̄bb is obtained

k̄bb~hn!5
Ck

A (
k→k8

f̃ k→k8E du d~hn2DEk,k82u!

3
e2u2/~2s

k,k8
2

!

A2psk,k8
2

. ~33!
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This convolution product can be calculated analytically bu
we prefer to leave it in this particular form in order to keep
an expression that can be compared to forthcoming resu
To sum up, the initial summation, which can contain a hug
number of configuration@Eq. ~26!#, involves finally a limited
number of terms.

It is important to note thatDEk,k8 is not the mean energy
DẼk,k8 of the cluster of lines corresponding to a particula
transition energy@10#. As in UTA ~unresolved transition ar-
rays! @2# or STA ~super transition arrays! @3# frameworks,
DẼk,k8 must be calculated by weighting the Gaussian prob
ability law by the oscillator strengths f k,k8 : f k,k8
5 f k,k8

one ($Pi%)Pk(Dk82Pk8). f k,k8
one is the one-electron oscilla-

tor strength averaged with respect to initial (k) and final (k8)
states. An error can appear when, for a given transitio
k→k8, the productP̄k(Dk82 P̄k8) is close to zero.

2. Broad line

Going back to Eq.~26!, each line width is a function of
@hn2DEk,k8(a)# and depends implicitly on configurationa.
In order to generalize Eq.~33!, the amplitude but also the
shape of each individual line, for a transitionk→k8, are
close to the average-atom oneC̃k,k8 . Only the transition en-
ergy depends on the configuration of interest. The calculatio
becomes feasible by changingf k,k8(a) in f̃ k,k8 in Eq. ~28!.
k̄bb is then approximately given by

k̄bb~hn!5
Ck

A (
k→k8

f̃ k,k8S det~v!

~2p!KmaxD 1/2E dKmaxDP

3e21/2DPTvDPC̃k,k8„hn2DEk,k8~DPi !….

~34!

Taking the Fourier transformation ofC̃k,k8 , k̄ bb is equal to

FIG. 1. Transmission spectrum of a LTE aluminum plasma~T
540 eV, r51.3531022 g/cm3! deduced from the NSHM with
~solid line! and without~dashed line! the splitting in integer charge
stages. The energy domain corresponds to 1s→2p transitions. The
energy resolution is equal to 0.7 eV. Ion fractions are estimated;@O#
means@O#-like ions, etc.,... .
t

ts.
e

r

-

n

n

k̄bb~hn!5
Ck

A (
k→k8

f̃ k→k8E du C̃k,k8~hn2DEk,k82u!

3
e2u2/~2s

k,k8
2

!

A2psk,k8
2

. ~35!

Contrasting with the last result, the convolution cannot
analytically reduced for any line shape and must be co
puted numerically~except for a Gaussian profile!. In prac-
tice, the variancesk,k8

2 is moderate and the convolution ha
to be performed by considering only a small energy interv

C. Photoionization threshold broadening

The statistical method to broaden the broad lines is kep
treat the photoionization thresholds. The bound-free cr
sections of the configurations~a!, involved in a particular
photoionization process of the subshellk, are assumed to
have the same shape but different threshold ener
@ I k(a)#. Starting from@4#

k̄bf~hn!5
Ck

A (
k,a
P~a!wa,k„hn2I k~a!…, ~36!

wherek̄bf is the bound-free mean opacity without stimulat
emission,P~a! is the probability of the initial configuration
a seen above, andwa,k is the bound-free threshold profile
We easily find an approximate expression fork̄bf. The same
units as in Eq.~26! have been kept. ReplacingC̃k,k8 by w̃k
and introducing

Ī k5I k~0!,

«k
i 5

]I k

]Pi
U

0

,

%k5A«k
Tv21«k5Avar~ I k! ~37!

in Eq. ~35!, we get the final result

k̄bf~hn!5
Ck

A (
k
E du w̃k~hn2 Ī k2u!

e2u2/2%k
2

A2p%k
2

.

~38!

D. Splitting in integer ion stages

Starting from a grand canonical description of a LT
plasma, a definite meaning can be given to the notion
screened-hydrogenic average-atom model, which enable
build a method of splitting in integer charge stages that
be extended to any average-atom model@4#. In order to im-
prove the former radiative-transition statistical broadeni
we can include the detailed integer stage accounting by u
both the classical theory of fluctuations and the average-a
model. We have seen in Sec. II that it is sufficient to repla
the initial Gaussian density probabilitydP @Eq. ~19!# by
dP̃ defined by Eq.~21!.



tri-

3494 56G. FAUSSURIER, C. BLANCARD, AND A. DECOSTER
In consequence, by keeping the notations of Eq.~34!, k̄bb

can be expressed as

k̄bb~hn!5
Ck

A (
k→k8

(
Z8

f̃ k,k8

1

ZE dKmaxDPe21/2DPTvDP

3C̃k,k8„hn2DEk,k8~DPi !…

3dS DZ82 (
k51

Kmax

DPkD . ~39!

By introducing the notations@Eq. ~31!#
n
e

ly

t
l-
AN5S var~DEk,k8!

cor~ Z̄,DEk,k8!

cor~ Z̄,DEk,k8!

var~ Z̄!
D

cor~ Z̄,DEk,k8!5 (
i , j 51

Kmax

~v21! i , j«k,k8
i ~40!

ab~u!5S u
DZ8 D

and by using the Fourier transformation of the Dirac dis
bution and of the line profileC̃k,k8 in Eq. ~39!, we obtain a
closed expression fork̄bb, namely,
k̄bb~hn!5 CkA

(
k→k8

(
Z8

f̃ k,k8E du C̃k,k8~hn2DEk,k82u!
e21/2ab

T
~u!AN

21ab~u!

2pAdet~AN!

(
Z8

e2~DZ8!2/~2s
Z̄

2
!

A2ps Z̄
2

. ~41!
the
t of
ted
i by
a

by
s-
ned

as
tes
and
.

-
in
As for the statistical broadening of photoionizatio
thresholds, the way to incorporate the splitting in integ
charge stages ink̄bf is similar to what has been previous
done. By keeping in mind Eqs.~37! and by introducing the
following useful variables:

EL5S var~ I k!

cor~ Z̄,I k!

cor~ Z̄,I k!

var~ Z̄!
D

cor~ Z̄,I k!5 (
i , j 51

Kmax

~v21! i , j«k
i

l e~u!5S u
DZ8 D , ~42!

k̄bf is equal to

k̄bf~hn!

5
Ck

A

(
k

(
Z8

*du f̃k~hn2 Ī k2u!
e21/2l e

T
~u!EL

21
l e~u!

2pAdet~EL!

(
Z8

e2~DZ8!2Y ~2s
Z̄

2
!

A2ps Z̄
2

.

~43!

Eqs. ~35!, ~38!, ~41!, and ~43! are the basic formulas tha
allow a fast estimation of radiative opacities for in-line ca
culations.
r
E. Consistency between bound-bound

and bound-free opacities

Our method of oscillator strength calculation uses
one-electron sum rules and the consistent treatmen
bound-bound and bound-free transitions. It should be no
that these principles can be very easily tested a posterior
integrating k̄bb and k̄bf over the entire spectrum. The ide
was initiated by Sampson@29#. Starting from the one-
electron sum rule:

(
n8l 8

f nl ,n8l 81E
I nl

` d fnl ,El 8

dE
dE51,

and after some algebraic manipulations, he found:

E
0

`

@k̄bf~u!1~12e2u!k̄bb~u!#du5
Ck

A

~Z2Z̄!

kBT
. ~44!

u stands forhn/kBT. Bound-bound emission, represented
(12e2u), is essential to obtain the former closed expre
sion. Consequently, a dimensionless number can be defi
by dividing the left term in Eq.~44! by the right term of the
same equation. In practical applications, this ratio must be
close as possible to unity. Any deviation from one indica
either a lack of consistency between bound-bound
bound-free oscillator strengths or a violation of sum rules

IV. RESULTS

The first example is a LTE aluminum plasma~T
540 eV, r51.3531022 g/cm3!. We compare our calcula
tion ~Fig. 1! with an experimental transmission spectrum
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the energy range of 1s→2p transitions~Fig. 4 of Ref.@30#!.
The energy resolution is equal to 0.7 eV. Our aim is not
perform an accurate spectroscopic interpretation but to il
trate our method in a simple situation. It is clearly shown t
each integer charge stage contribution~in full line!, intro-
duced by perturbation with respect to the average-atom
~in dashed line!, appears on the spectrum. Three ion sta
dominate:@N#-, @C#-, and@B#-like ions. Our estimation of the
ion fractions is given on Fig. 1. The results are quite sim
to those published by Kilcreaseet al. @30#. Due to the mod-
eling of density effects using the degeneracy-reduct
model proposed by Zimermann and More@13# ~the two pa-
rametersaZM andbZM being, respectively, equal to 3 and 1!,

FIG. 2. Photoabsorption spectra of a LTE germanium plas
(T5300 eV, r51022 g/cm3!: NSHM and OPAL~this latter has
been drawn by using data from Ref.@32#!. kR andkP are, respec-
tively, the Rosseland and Planck opacities expressed in cm2/g.
o
s-
t

ta
s

r

n

and the fixed set of screening constants, the ionization of
plasma given by the NSHM is a little bit stronger@4#:
@C#-like ions dominate in both cases but the relative weig
of the neighbor ions~@N#- and @B#-like! are different, hence
the difference concerning the asymmetry of the distributio
between the two models. The table of screening const
explains the slight shift in energy close to 0.3% for the ma
charge stage too.

In Fig. 2, two spectra are shown for a LTE germaniu
plasma~T5300 eV, r51022 g/cm3!. The NSHM calcula-
tion with the splitting in integer charge stages is compared
the OPAL@31,32# spectrum. Concerning our model, the co
tribution of the various ion species are predicted~the ion
fractions are on Fig. 2!. NSHM is weaker than OPAL be
tween 0 and 1 keV. The reason lies in the ionization press
treatment introduced by Zimmerman and More@13#. The or-
bital degeneracy reduction, which can reach several orde
magnitude, tends to cut the bound-free spectrum. This ef
is mainly noticeable at low energies due to essentially
high n orbitals. This phenomenon is not systematic becau
for light elements, the statistical broadening of radiative tra
sitions may mask it. The Rosseland opacity (kR) and the
Planck opacity (kP) are also given on Fig. 2. The NSHM
value (20.72 cm2/g) is very close to theOPAL one
(19.48 cm2/g). Since only the region around four times th
temperature~1200 eV here! will contribute to kR, this ex-
ample is a clear illustration of the importance of using bo
the description of atomic structure as good as we can im
ine ~herel splitting for the NSHM! and the statistical treat
ment of radiative transitions. Moreover, we stress on usin
procedure that goes beyond the independent-particle
proximation. This phenomenon is illustrated on Fig. 3. T
integrands of Rosseland (xR) and Planck (xP) opacities@4#
have been added to the spectral opacity@~Eq. 23!#

a

r-

nd
FIG. 3. Photoabsorption spectra of a LTE ge
manium plasma~T5300 eV, r51022 g/cm3!
calculated with the NSHM:~a! splitting in integer
charge stages with correlations,~b! average atom
only with correlations,~c! splitting in integer
charge stages without correlations, and~d! aver-
age atom only without correlations. Rossela
opacity (kR) and Planck opacity (kP) are in
cm2/g. The integrand ofkR(kP) is in bold ~nor-
mal! dashed line.
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@xR~hn!#215E
0

hn/kBT

du@ k̄~u!#21
15

4p4

u4e2u

~12e2u!2

xP~hn!5E
0

hn/kBT

du@ k̄~u!2k̄scat~u!#
15

p4

u3

eu21
, ~45!

with xR(`)5kR and xP(`)5kP . As in Eq. ~44!, the vari-
able u stands for the photon energy divided bykBT. The
electrostatic interaction induce correlations@implicitly
present in the matrixv in Eq. ~19!# which decrease the width
of each Gaussian shapes of lines@here 2s→3p, 2p→3s,
and 2p→3d transitions on Fig. 3~a! and Fig. 3~b!#. Neglect-
ing them here would have decreased the well near 1200
and consequently increased the value ofkR @Fig. 3~c! and
Fig. 3~b!#. In this example,kP appears to be independent
the correlations and the splitting in integer charge stages
cause, in this case, the key parameter is the line inten
whose calculation stays unmodified. By contrast, the m
detailed treatment@Fig. 2~a! or Fig. 3~a!# is the one that gives
the value of opacity coefficient closest to OPAL. From F
3~d! to Fig. 3~a!, the relative deviation with respect to OPA
Rosseland opacity falls from 48% to 34%, 17%, and 6
successively. This is only due to the slight differences wh
take place in the vicinity of the crossing betweenxR andxP
on Fig. 3. In this example, the most important effect is t
role played by correlations between bound electrons.
i-
n
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A

nc
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n
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V. CONCLUSION

A method, based on the screened-hydrogenic avera
atom model and on the classical theory of fluctuations
presented in order to rapidly estimate LTE spectral opacit
Each average-atom line is replaced by a Gaussian sh
which takes into account the contribution of the most pro
able configurations around the average-atom configurat
Photoabsorption spectra obtained are intermediate betwe
crude average-atom spectrum and a DCA treatment.
splitting in integer ion stages can be included. This metho
not restricted to a description of the atomic structure throu
the screened hydrogenic model but can be extended to
average-atom formalism too.

Comparisons of our results to more detailed calculatio
and experimental spectra show the need of a joint use
description of the atomic structure of the average atom
detailed as possible and a statistical treatment of the l
without performing an explicit detailed configuration a
counting, which would be too time consuming in such
situation. The role of correlations between bound electron
emphasized. From the photoabsorption spectra encount
both the Rosseland mean opacity and the detailed ch
stage accounting are well estimated. The next step is to
tend the formalism to study the spectral properties of n
LTE plasmas.

The authors thank Drs. G. Bonnaud and P. Dallot for th
comments concerning the final form of this paper.
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