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Statistical treatment of radiative transitions in local thermodynamic equilibrium plasmas
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The fluctuations of the electronic configurations around the average-atom configuration are estimated using
classical statistical mechanics. This method allows the spectral opacities to be rapidly calculated without
explicit recourse to detailed configuration accounting. Coupled to a screened-hydrogenic average-atom model,
it can be implemented into the atomic physics package of a hydrodynamic code. We compare our results to
numerical spectra constructed with more detailed codes or experimental spgt#63-651X97)12106-7

PACS numbeps): 52.25.Nr, 52.25.Qt

I. INTRODUCTION of the statistical distribution of the dominant configurations
around the average atom configuration. Each individual line
In both astrophysics and laboratory plasma physics, afs additionally broadened by usual physical effects, such
essential contribution to energy transport in hot and densBatural broadening, Doppler, Stark broadening [5]. Re-
plasmas comes from radiation. Radiative opa¢ityis the Pplacing the average-atom line with a statistically broadened
key parameter that rules radiative transfer. Its difficult evaluline may then be a good approximation when the number of
ation requires methods with increasing degrees of complexines is large and the lines are so closely spaced that a strong
ity. One can consider transitions between configuratides ~ Overlapping takes place.
tailed configuration accounting or DQAor, at a more The outline of the paper is as follows. In Sec. II, we recall
accurate level, between spectroscopic terms resulting froROW an approximate expression of the grand canonical par-
configurationgdetailed term accounting or DT/AHowever, tition functionZs of the bound electrons can be found using
the number of term-to-term transitions becomes prohibitivelythe classical theory of fluctuations. This expression is impor-
large with increasing complexity of configurations, thoughtant because it allows a fast computation of the mean value
they can be included in DCA calculations as a broadening o®f any physical quantitylike radiative opacity which is an
the configuration-to-configuration transitiof 3]. explicit function of the electron shell populations. Further-
In a laser-plasma simulation, the opacity has to be knowrnore, a method to evaluate average-atom bound-bound and
because radiation effects may be important and can substahound-free oscillator strengths is proposed. It ensures that
tially modify the hydrodynamic evolution of the system. For one-electron sum rules are preserved and that the discrete
computer time reasons, a balance has to be reached betwegectrum and the continuum series are continuously con-
accuracy and rapidity. This is why approximate models aréected. In Sec. lll, the aforementioned expressioiZ gfis
needed to perform in-line computations. The screenedused to statistically broaden the average-atom bound-bound
hydrogenic average-atom model with fractional shell popu-and bound-free one-electron transitions. It is shown that the
lations (see Ref[4], and references thergiis well suited to ~ splitting in integer ion stages can be easily included. In Sec.
describe multicharged-ion plasmas in such studies. For givelY, we perform comparisons between results obtained using
temperaturel and densityp, the average-atom populations, this formalism, more elaborate calculations, and experimen-
the free-free, bound-free, and bound-bound photoabsorptioi@ data.
cross sections are determined and a first approximate spec-

trum can easily be constructed. Nevertheless, the quality of Il. THE SCREENED-HYDROGENIC
opacities deduced from this average-atom spectrum is known AVERAGE-ATOM MODEL

to be poor, even taking into account the line profilg$ or o _

/ splitting [4,6,7]. The reason for this is that each one- A. Statistical mechanics

electron transition depends on the total electronic configura- Different methods exist to describe highly charged LTE
tion, which is generally different from the average configu-ion plasmas. The screened-hydrogenic atom model is simple,
ration. Consequently, the contribution of a large number ofrequently used, reasonably accurate, and has been proven to
configurations tends to split an average-atom transition ibe properly defined and thermodynamically consis{dit
many components. As an explicit DCA cannot be rapidlywithin this formalism, fast computations are possible in a
calculated, a statistical approach is needed to estimate thgdrodynamic code. All developments start from the grand
distribution of the configurations that substantially contributecanonical partition functio@g of bound electrons

to the opacity around the average-atom configurai&inin
order to increase the quality of the average-atom spectrum. max

For local thermodynamic equilibriufL TE) plasmas, an ap- Ze=2, D’ EUPi)]*f‘Zl Pil. )
proximate photoabsorption spectrum can be obtained without (PD)

explicitly considering all the different configurations. The o i
main effect is a statistical broadening of each average-atorfl (Pi)] andDp, are the energy and the statistical weight of
line [9—-11], which is a direct consequence of the evaluationan electronic configurationR;). Introducing the binomial

K
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coefficient (}){(S)zn!/[p!(n—p)!]} and the shell degen- These equations have been proposed by More and Zimmer-
eracies D;), D, is equal IOD(pi)IH:(:mf’(E_i)- w is the man [13] starting from anad hoc free energy. K?) are
chemical potential and3 is the inverse temperaturés roughly equal to the statistical mean shell occupatid®g (

=1/kgT, kg is the Boltzmann constantwhereas the sum (4]
2 (p, runs over the set of all configurations that can be con-

— — 1 Kina
structed from theKp, bound shells. SoXp, means N?ij=Z—E Dyp, Pje” AELPIIZLZ 7P (f)
D D; DKmax G(Pi)
EPll:o"'EP;:o"'EPK =0°

max The chemical potentiak is calculated by imposing the av-

The exact value oZg is known only in a few cases. A ; neutrality of the ion celf. Z. andE e r i
brute force computation of the discrete st is difficult erage neutrafity ot the ion cei, 2, a a(’.7) are, respec
i tively, the ion charge number, the average ionization, and the

due to the I_arge number_ of cor_lfigurations: Furthermore, &ermi-Dirac function [F o (7)=[oxel(1+ € ) dx], u
closed form is in general impossible to obtain when the Con'obeys the equationsp= Bu)
figuration energyE[ (P;)] is a nonlinear function of the con- K
figurations @;). The basic idea to evaluai®; consists in Kmax
replacingZ p ) by an integral using auxiliary variableX{). 2 NO+z=Z7
The integral representation & is not unique. We do not =1
discuss this detail since it is beyond the scope of the paper L A [ 2m)32
[4,12]. It is sufficient to keep in mind th&s can be written Z=4q — (_2) FuA 7). (7)
as follows: pN | Bh
A is the molar mass of the element,the Avogadro number,
ZG:f [dX e~ ASLxi], (2)  pthe mass densityn the electron mass, arfu the Planck
constant.

The grand canonical partition functioAg ensures the
[dX;] andS[(X;)] are, respectively, an integration measurethermodynamic consistency of the model and allows the
and a function that depends explicitly oXJ. screened-hydrogenic average-atom model to be clearly estab-
Since we are dealing with the partition function of a sys-lished. MoreoverZ is the fundamental quantity to calculate
tem at thermodynamic equilibrium, only a limited group of the statistical averagé of any physical quantity’ which

(2). In consequence, the saddle-point method can be used to

estimateZg in Eq. (2). §(X;)] is expanded around its mini- — 1 B K,
mum up to second order ~Za (;) Dipyél(Pi)]e PELPOIZ= TR0 (8)
JS We face again the original problem raised by the calculation
_ 0 _ 0
SLXD]=SL(Xi )]”L; (9_)(] XO)(XJ Xj) of Zg using Eq.(1). One solution could consist in finding an
3 integral representation df in Eq. (8) and evaluating it with
1 9°S the saddle-point technique. One writess follows:
2 2 (X =X) s % i i ¢
ik jONK (xio) — 1 Kmax D.
0 =72 |1 (PI e
X (K= X))+ ©) Zs (my | i=1 \ Pi
Kmax
The quantities X{) satisfy the equations xf .Hl dX;8(X;—P,) | Z[(X;)]e FELXD1 (9)
S : . o o
—| =o. (4) dis the Dirac distribution. The factorization &fp,) can be
X x?) done by using the Fourier transformation &fand by ex-

pressingZ[ (X;)] asZ[ (X;)]=e™d00, ¢ is equal to the ratio
After some algebraic manipulations, one finds that E4s. of two partition functions
are identical to the coupled-nonlinear Fermi-Dirac equations,

which define the fractional occupationsly) of the bound g_= Zs(0) (10)
orbitals of the screened-hydrogenic average-atom model Zg
L D. Z is the partition function in Eq(1) which can be written as
NP = - an integral Eq. (2)]. Zg(¢) is a partition function where the
1+efei configuration energy E[(P;)] has been replaced by
E[(P;)]-1/8 In{{{(P)]}. A saddle-point evaluation oZg
o OE andZs(¢) gives an approximate value ¢f[Eq. (4)]. Nev-
€i :(9_Pi (@)_M- 5 ertheless, this method is inadequate for fast calculations, es-

pecially when spectral opacities are considered. For example,
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LTE photoabsorption bound-bound opaciP can be for-
mally written as the ratio of two partition functions as in Eq.
(10), with x® depending explicitly on photon energy. In
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consequence, a saddle-point evaluation needs to be pe&gith

formed at each stepv [12] because the quantitiesXY),
which are solutions of Eqg4), are now frequency depen-
dent. In other words, Eq9) has to be evaluated using a
frequency-dependent saddle-point method.

This difficulty may be overcome by using the classical

theory of fluctuationg14]. The underlying idea consists in

calculating¢ with only the average-atom populations defined

by Egs.(5) and (7). A Taylor expansion off around the
mean shell occupation$() defined by Eq(6) is performed

Kmax

d
(PYI=LI(P)]+ E ¢

(?_P )AP+ CE

13

with AP;=

with respect to the4 P;) is sufficient to get the mean and the
variance of¢

=~ (P)]

(94“

i

AP AP;.
(P)

12

2
0’%
Z|J]_(9P

From Eq.(6), we know thatP_i) are approximately given by
(N?). The correlations\ P;AP; can be obtained as follows.
In Eq. (1), the statistical weighDp,) of a configuration is

written aseS(P)Vke Each binomial factor can be computed
with the Stirling formula
|

D
13

Kmax

kBE

S(P)]=-

P; D;
Pln( )+(D P)In(

Now, populations P;) are supposed to be real and can take

all the possible values from~ to +«. The discrete sum
2, is replaced by a multidimensional integral; becomes

proportional to

J deaxPefﬂﬂ[(Pi)], (14)
with deaxPzﬂKma*dP- and Q[ (P)]=E[(P;))]-TH(P))]
— rn'E‘XP The former integral is evaluated with the
saddle- pomt method. The grand potentfalis developed

P Since LTE is assumed, the fluctuations
of ¢ aroundg are small; so a first-order Taylor expansion
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wijj = IBVij + (16)
v PE an
PP
and
N°(D;—N?)
A (18)

We find that the probabilitgd? (normalized to unity of an
electronic configurationR;) boils down to

detw) ) dKmaxp e~ 1/2APTwAP

‘“’:(m

(19
with APTwAP=E:(ijxlAPiwijAPj. From Eq.(19), it is now
guite easy to showl4] that

APiAPj%(wfl)ij. (20)

The last step is to consider the integer charge stage split-
ting which has been lost by going from E(.) to Eqg. (19).
This detail is important because the spectral features of vari-
ous ionization stages can be seen on experimental photoab-
sorption spectrl5,16. To do so, a constraint is included in
Eq. (19). The populations ;) are still fractional but their
sum is necessarily an integeEKmaXP +Z'=Z. 7' is a par-
ticular charge stage. WltEK"‘aXP +Z=ZandAZ'=72-Z7',

it seems therefore natural to consider the probab'ﬂ@
(normalized to unity

Kmax
daP=>, —deaxAPe 1/2aP “‘Apé(E AP,— AZ’)
ZI

(2m)Kmad| 12 exp(—~ 3(AZ' [ 7))
—E ) (2D)
de(w) \2mo 2—

cr%is the variance of ionization. Using Eq4.2), (16), and
(20), it is simply equal to

max

2 (w7 )|]

ij

(22

Eq. (21) can be established properly from EQ) [4]. |
should be noted that both expressionsdd® and dP are

around its minimum up to second order. The populations thagimple and allows to calculate analytically a wide set of in-
extremize() are the average-atom populations. Let us introtegrals.

duce the matrixo whose components are

F)

i~ Fipap, (19

i <N°>

Using Eq.(6), easy algebraic calculations show that

B. Calculation of bound-bound
and bound-free oscillator strengths

Once the average-atom populations are determined, one
needs oscillator strengths to study the spectral properties of
the plasmas. In this paper, only one-electron radiative dipolar
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electric transitions are considered. The initial and final states  «(hv)=[«"(hv)+ «(hv)+ «"(hv)](1—e "/ eT)

of the optical electron allows the processes to be distin-

guished; mainly free fre@iffusion and inverse bremsstrah- + x5 hv). (23
lung), bound free(photoionization, and bound boundline

absorption. The radiative opacities are proportional to the The parentheses (1e "*sT) represents the stimulated
related cross sections. In the framework of the new screene@mission. The terms™, «°, and ™ are bound-bound,
hydrogenic modeiNSHM) [4], the free-free part of the spec- bound-free, and free-free opacities, respectively. In the last

trum raises no new problefl7,18. The situation is differ-  one, pure scattering is excluded but taken into account via
ent for bound-bound and bound-free transitions because wWgscat = a5 the dimension of an area divided by a mass; it

do not have any wave functions to calculate the matrix eIeIS commonly expressed in &g. We use this choice

ments and get the oscillator strengths, nor any rapid semqughout this paper. For", we choose the Kramers cross
classical solutior{19] due to/” splitting [4]. To overcome  gation for inverse bremsstrahlung. This cross section is av-

this difficulty, the key idea consists in connecting the dis-graged using a Maxwell distribution for electrons. Numeri-
crete spectrum and the continuum series by contmun)éa"y we find[18]

[18,20—22 while satisfying the one-electron sum rules
[23,24).

Let us consider the following bound-bound and bound- — @ z\? Z_p Obi
free transitions, formally written as/—n'/’"(n<n’) and K =87.9<1 Al (hp)3 kaT’ (24)

n/—E/’, and the related oscillator strengths ,» and

df, g, /dE. When the wave function¥,,,» andWe, are ¢ - is the Gaunt factor. It is kept to unity in our calculations.
both normalized in energy, the final states merge 3m0°th|Energies(kBT andhv) are in eV. The molar masa is in g

into the continuous form at the threshdtd= 1, [21,25. 1, and the mass density in g/&mAs mentioned, inverse brems-

is the continuum threshold ofi/ level. Furthermore, a gtrahlung is not the only process between free electrons. Th-

power law in energy is observed falf,, g, /dE. These gmson diffusion is included tofL8]
remarks are useful in proposing a fast evaluation of bound-

bound and bound-free oscillator strengths for multicharged 2
ions. —sca _

It seems natural to approximate the one-electron photo- K thV)_O'A'K' (25
ionization differential oscillator strengthif,, ¢, /dE as
An e (In IE)*7E7 The exponent depends anr’, the  Note that«*®and «" involve free-free transitions but their
partial wave ¢ —/*1), and on the atomic system. Rose nature are deeply differenk™ really corresponds to an ab-
[26] proposed to user;gp= 3 for 1s subshell andv,, g,  sorption process whereas“®is a scattering process. In ra-
=3 in the other cases. At the present time, we prefer to keegiative transfer, the scattered photons do not belong to a
the value 3 for anya,, g,, following Kramers[19] and  beam but have not physically disappeared from the medium.
More [18] and waiting for more intensive comparisons with Scattering has to be considered in the Rosseland opacity cal-
sophisticated atomic calculations. Whar:n', f,, ,, is  culation because it describes the propagation of a radiation
linked to df,, ¢, /dE by continuity leading to:f, , .  beam inside a medium but not in Planck opacity calculation
=22, . In"3An, g (In I[AEn iy 1) €. AEn, which describes a radiation emission proce$8.and«™ are

is the transition energy angf, ,, the screened charge calcu- the most difficult to obtain.

lated with the NSHM. Whem>n’, f,, ./, is deduced ) _
from f,, ./ ,, using the relation==(2/" +1)f,, 1 ,,=(2/ B. Line broadening
+1)f,, n, . ForAn=0 transitions, no general behavior or 1. Sharp line
continuity rules are accessible. In consequence, as only two . »
unknowns for each partial wave are remaining, namely, Lgt us.conS|der a one-electron transition petween two
f., ., andA,, e, , we choose to close the system usingconﬂguranr.]sibabnd.B. The LTE phqtoabsorptlon. bound-
the one-electron sum rules satisfied by oscillator strengthBoUnd opacityx > without the correction due to stimulated
and dipolar matrix elements in any many-electron atom iremission is equal tp4]

the nonrelativistic regim¢20,22,23. The unknown quanti-

ties are then solutions of a first-order linear system which can C,
be solved rapidly. In many-electron ionf,, ,,» and K™(hv)= a Y Pla)f, gV, 4hw), (26
df,, g, /dE have to be multiplied by th&/ shell occu- E(afﬁ;(ﬂ)

pancy P,,, and by a degeneracy factor which corrects for
possible occupation of the final state, P,/ /D) and whereP(a) is the probability of the initial configuratiom,

1/(1+ e*~*'%eT) respectively, £=hv—1,,) [4,18]. f . is the transition oscillator strength, atd, 4 is the line
profile [5] normalized to unityC, is a numerical coefficient

. STATISTICAL BROADENING equal toRN4w2aa§, with R, a, anda, being, respectively,

OF RADIATIVE TRANSITIONS the Rydberg constant, the fine structure constéatt should

not be confused with the configuration indeand the Bohr

radius for hydrogen atom with infinite nuclear mass. When
By definition, the opacity for LTE one-component plas- the photon energy is expressed in e&, is equal to

mas at photon enerdyv is equal to[1] 6.67x 10’ cn? eV. By introducing the populationsP,(a)]

A. Opacity calculation
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of the K s bound subshells of the ion with configuratien ~ hance the quasicontinuous broadening originating from the
its energyE(a), and degenerac®(a), P(«) is given by the statistics(hence, the name of statistical broadening for this

expression phenomenon9,11]).
We then use the ideas developed in Sec. Il. The electron

populations are allowed to vary continuously and the discrete
summation becomes a multidimensional inte¢g]. In the
framework of the screened-hydrogenic average-atom model
(although the method can be applied to any average-atom
mode), we have observed th&(«) is equal to a Gaussian

1 Kma
Pla)= 7 Dla)e AEO 3R]

ZGZE D(a)efﬂ[E(a)f,uE:(:mePi(a)]. 27 probability density defined by Eq19). <™ is equal to
For convenience, an explicit referengtarough the variable «P(hv)= 2 fi k,( de(i)) )
«) to a particular configuration is now made. As mentioned, k—k' (27r) mx
the major drawback of this technique is the calculation time
due to the large number of configurations that must be cho- Xf gKmaxA pa- U2APTwAP
sen. One is easily convinced that the treatment of Higbns

cannot be handled such a way, even keeping only the most

probable configurationgthe choice of which is anyway X &(hv—AEy  (AP))). (30
somewhat arbitragy
A crude solution would consist in approximating The transition energ\AE, [ (AP;)] is expressed as a

with the average-atom spectrum. Whereas this assumption figst-order Taylor expansion in occupation numbers around
useful to describe the statistical properties of a plagmean  the average-atom configuration:
ionization, electron pressair. . .), it gives only a rough guess

of its spectral propertiegl1l] because many configurations Kmax

can contribute to the total spectrum for a given transition. AEy [ (AP)]=AE (0)+ E P AP+

The absence of lines can have dramatic consequences on the i g

Rosseland mean opacity estimation which is very sensitive to

the number and line profile. Due to the form of the density probabilit® in Eq. (19), the

We have developed a technique to improve the averagaatural variables are the deviationsK;) with respect to the
atom spectrum without explicitly considering every indi- average-atom populations. It is useful to introduce the nota-
vidual configuratione. We now estimate the contribution of tions
configurations for a specific one-electron transitiork’.

Doing so, we will obtain the value o®(hv) for an energy

hv without performing the summation in E¢R6). For sim-

plicity, ¥, g is chosen to be a Dirac distribution centered at
thek—k’ transition energ\AEy \»(«). Equation(26) is re- i OAE
written as = Py

Ek,k’ = AEk'k'(O)

0

za; fk k’ C()P C()é(hV AEkyk/(Ol)). U'k’k/:\ISIYk,w718k'k/:\/Var(AEk‘k/). (31)

(28

C,
)= OF
p >
Using the Fourier transformation of the Dirac distribution,
the constraint in Eq(30) which prevents any calculation of

As the plasma is in LTE only configurations close to the,[he Gaussian integral disappears. By using the idef#y

average-atom configuration will significantly contribute to
«™(hv) in Eq. (28). Due to the presence of the Boltzmann N1
factor, fy\/(a) is close to the average-atom oscillator J’ dee(l/z(TUX+bTX):((27T) 1/26Tu~1p (32)
strengthf, ,» [1]. Equation(28) is then written as detU) '

whereU is aNxX N symmetric definite positive matrix and

P _ =k _ and b are N-dimensional vectors, a simpler expression for
(hv)= k2k, fkk,E Pla)d(hv—AE 0(a)). e
(29)

At this point, it is particularly attractive to use the classi- «P(hy)= = 2 fkak’J du 5(h,,_Ek’k,_u)
cal theory of fluctuationg14]. This approach is justified k—k'
when many lines overlap. The original discrete splitting
tends to be smeared out to produce a quasicontinuous broad- e /(Zok )
ening. Of course, each individual line is broadened by vari- X ———. (33
ous mechanismgDoppler, collisions...) [5] which en- \/mek K’
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1.0g C _ — _
-_ ?ﬁb(hV):KK 2 fk*}k/J'dU \I’kyk/(hV_AEkyk/_u)
E k—k'
0.8F
3 o120t ) -
o X ——. 35
% 0.6';— \/27Ta'k K
E - _ _ .
& 4 Contrasting with the last result, the convolution cannot be
g F analytically reduced for any line shape and must be com-
E puted numericallyexcept for a Gaussian profjleln prac-
02 ] tice, the variancer. , is moderate and the convolution has
T [Cl1=47% 3 to be performed by considering only a small energy interval.
1480 500 1320 130 10 s
>80 C. Photoionization threshold broadening
Energy (eV)

The statistical method to broaden the broad lines is kept to

treat the photoionization thresholds. The bound-free cross
FIG. 1. Transmission spectrum of a LTE aluminum plasifia  sections of the configurationgy), involved in a particular
=40eV, p=1.35¢<10"? g/cn?) deduced from the NSHM with photoionization process of the subshk]l are assumed to

(solid line) and without(dashed lingthe splitting in integer charge haye the same shape but different threshold energies
stages. The energy domain correspondsge>2p transitions. The [1(a)]. Starting from[4]

energy resolution is equal to 0.7 eV. lon fractions are estimf€@(d;
meang O]-like ions, etc.,... .
—Bf Cx
, , _ (hv) =25 2 Pla)gghv=I@), (36
This convolution product can be calculated analytically but k.

we prefer to leave it in this particular form in order to keep — - . . .
an expression that can be compared to forthcoming result¥/here« is the bound-free mean opacity without stimulated

To sum up, the initial summation, which can contain a hugeemission,P(a) is the prpbability of the initial configurati(_)n

number of configuratiofEq. (26)], involves finally a limited ~ @ S€€n above, and, is the bound-free threshold profile.

number of terms. We easily find an approximate expressmnf@l The same
It is important to note thaAEy . is not the mean energy UNits as in Eq(26) have been kept. Replacingy . by ¢k

RE,« of the cluster of lines corresponding to a particular@nd introducing

transition energy10]. As in UTA (unresolved transition ar- o

rays [2] or STA (super transition arrayq3] frameworks, l=1,(0),

AE, » must be calculated by weighting the Gaussian prob-

ability law by the oscillator strengthsfy . :fy

=fo o ({PHPW(Di = Pyr). f is the one-electron oscilla- gik:ﬂ ’
tor strength averaged with respect to initik) @nd final k') aPil,
states. An error can appear when, for a given transition
k—k’, the productP, (D, —Py/) is close to zero. 0= erw Lo = var(ly) 37)
=&} =
2. Broad line in Eq. (35), we get the final result
Going back to Eq(26), each line width is a function of
[hv—AE, « (a)] and depends implicitly on configuratien c o e u?/20%
In order to generalize Eq33), the amplitude but also the K(hv)=—-=> f du g(hv—Il—u) ——.
shape of each individual line, for a transitiéa-k’, are A X N2
close to the average-atom oHg . . Only the transition en- (38)
ergy depends on the configuration of interest. The calculation
becomes feasible by changirigy(«) in fy . in Eq. (28). D. Splitting in integer ion stages
x> is then approximately given by Starting from a grand canonical description of a LTE

plasma, a definite meaning can be given to the notion of
12 screened-hydrogenic average-atom model, which enables to
defw) ) f dKma P build a method of splitting in integer charge stages that can
(277) Kmax be extended to any average-atom mdde! In order to im-
prove the former radiative-transition statistical broadening,
x @  VAPT6APE | (hy—AE, o (AP))). we can include the detailed integer stage accounting by using
both the classical theory of fluctuations and the average-atom
(34) model. We have seen in Sec. |l that it is sufficient to replace
the initial Gaussian density probability”? [Eq. (19)] by

is equal to dP defined by Eq(21).

Cr w ~
®Phv)= =" fiw
A k*}k’

Taking the Fourier transformation @, . , «
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In consequence, by keeping the notations of B¢), ™
can be expressed as

C. -1
;Bb(hV):K > > fiokr Ef dKmaxp pe VAP wAP

k—k" z'

X Wy o (hv—AE 0 (AP)))

Kmax
Az'—kZ APK).

=1

) (39

By introducing the notationgEq. (31)]

2 E ?k’k/f du {i}k’k/(hV_Ek’k/_u)

k—k' Z'
«(hv)=C,A
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[ varnAEq)  conZ,AE)
N7\ con(Z,AE ) var(Z)
Kmax

Cor(z_,AEk’kr):”El (w_l)i,jsi(’k, (40)

L=

u
ab(u):(Az/)

and by using the Fourier transformation of the Dirac distri-
bution and of the line profilel, . in Eq. (39), we obtain a
closed expression fae™, namely,

e~ 12aj(u) Ay tay(u)

2m\det Ay

(41)

As for the statistical broadening of photoionization
thresholds, the way to incorporate the splitting in integer
charge stages ir” is similar to what has been previously

done. By keeping in mind Eq$37) and by introducing the
following useful variables:

_[ vartly co«@))
£\ con(z,ly)  vanz)
Kmax

cor(Z_,Ik)='z1 (0™ 1) ek

L=

/'e(U)Z(AL;r), (42)

«"is equal to

" (hv)

- 12/ (W)L ofu)

> 2 fdughv—l-u)
ZI

C. 2mdets,)
A ef(AZ’)Z/(Za'%)
(43

e—(Az’)Z/(za%)

\2mo i—

E. Consistency between bound-bound
and bound-free opacities

Our method of oscillator strength calculation uses the
one-electron sum rules and the consistent treatment of
bound-bound and bound-free transitions. It should be noted
that these principles can be very easily tested a posteriori by
integrating ° and " over the entire spectrum. The idea
was initiated by Sampsof29]. Starting from the one-
electron sum rule:

> f fw dfn/’E/'dE 1
' o1+ e — =4,
. n/,n"/ » dE

and after some algebraic manipulations, he found:

ot —uy b _C&(2-2
fo[x (W+(1-e" " (u)]du= A kel (44
u stands fohv/kgT. Bound-bound emission, represented by
(1—e™"), is essential to obtain the former closed expres-
sion. Consequently, a dimensionless number can be defined
by dividing the left term in Eq(44) by the right term of the
same equation. In practical applications, this ratio must be as
close as possible to unity. Any deviation from one indicates
either a lack of consistency between bound-bound and
bound-free oscillator strengths or a violation of sum rules.

IV. RESULTS

Egs. (35), (38), (41), and (43) are the basic formulas that The first example is a LTE aluminum plasm@
allow a fast estimation of radiative opacities for in-line cal- =40 eV, p=1.35x 10 2 g/cn¥). We compare our calcula-
culations. tion (Fig. 1) with an experimental transmission spectrum in
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108 prmEE———— T ; and the fixed set of screening constants, the ionization of the
NSHM 1Crl = 1.07% plasma given by the NSHM is a little bit strongf4]:
[Mn] =8.42% . . . . . .
10%F  2p-+3ds (Fe] = 2743% 1 [C]-like ions dominate in both cases but the relative weights
2% -3p (Col =37.03% of the neighbor iong[N]- and[B]-like) are different, hence
10 ¢ (Nl = 20.72% + the difference concerning the asymmetry of the distributions
[Cu] = 4.80%

between the two models. The table of screening constants
explains the slight shift in energy close to 0.3% for the main
charge stage too.

In Fig. 2, two spectra are shown for a LTE germanium
plasma(T=300 eV, p=10"2 g/cn?). The NSHM calcula-
tion with the splitting in integer charge stages is compared to
the OPAL[31,32 spectrum. Concerning our model, the con-
st gsatuagitifu i, tribution of the various ion species are predictgde ion
fractions are on Fig. 2 NSHM is weaker than OPAL be-

Photon energy (keV) Photon energy (keV) tween 0 and 1 keV. The reason lies in the ionization pressure
treatment introduced by Zimmerman and Mgi&]. The or-

FIG. 2. Photoabsorption spectra of a LTE germanium plasméital degeneracy reduction, which can reach several orders of
(T=300 eV, p=10"? g/cn?): NSHM and OPAL (this latter has  magnitude, tends to cut the bound-free spectrum. This effect
been drawn by using data from R¢82]). kg and xp are, respec- js mainly noticeable at low energies due to essentially the
tively, the Rosseland and Planck opacities expressed ffgcm high n orbitals. This phenomenon is not systematic because,

for light elements, the statistical broadening of radiative tran-
the energy range ofsl— 2p transitions(Fig. 4 of Ref.[30]).  sitions may mask it. The Rosseland opacitg) and the
The energy resolution is equal to 0.7 eV. Our aim is not toPlanck opacity kp) are also given on Fig. 2. The NSHM
perform an accurate spectroscopic interpretation but to illusvalue (20.72 crfig) is very close to theoPAL one
trate our method in a simple situation. It is clearly shown that(19.48 cn?/g). Since only the region around four times the
each integer charge stage contributiom full line), intro-  temperaturg1200 eV herg will contribute to kg, this ex-
duced by perturbation with respect to the average-atom datmple is a clear illustration of the importance of using both
(in dashed ling appears on the spectrum. Three ion stageshe description of atomic structure as good as we can imag-
dominate{N]-, [C]-, and[B]-like ions. Our estimation of the ine (here/ splitting for the NSHM and the statistical treat-
ion fractions is given on Fig. 1. The results are quite similarment of radiative transitions. Moreover, we stress on using a
to those published by Kilcreas al. [30]. Due to the mod- procedure that goes beyond the independent-particle ap-
eling of density effects using the degeneracy-reductiorproximation. This phenomenon is illustrated on Fig. 3. The
model proposed by Zimermann and Mq@£8] (the two pa- integrands of Rosselandgvg) and Planck p) opacities[4]
rametersa,, andb,, being, respectively, equal to 3 angl 1 have been added to the spectral opafiBgqg. 23]

[2n] = 0.46%

® co/g)
Sb)

K= 7472
K, =20.72

10 s T T T T T T T
1 P
Kp= 7472

(a) Kp= 20.72 F

(em?/g)

3

FIG. 3. Photoabsorption spectra of a LTE ger-
manium plasma(T=300 eV, p=102 g/cnt)
calculated with the NSHM(a) splitting in integer
charge stages with correlatior(s) average atom
only with correlations,(c) splitting in integer
charge stages without correlations, &g aver-
age atom only without correlations. Rosseland
opacity (kg) and Planck opacity £p) are in
cn?lg. The integrand okg(kp) is in bold (nor-
mal) dashed line.

K (cm /g)

Photon energy (keV) Photon energy (keV)
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L holkgT — _ L 15 u%e U V. CONCLUSION
hv)]™*= f dul«(W]™ " —3 ——3 .

[xr(hv)] 0 [re(w)] 47 (1—eY) A method, based on the screened-hydrogenic average-

atom model and on the classical theory of fluctuations, is

3 presented in order to rapidly estimate LTE spectral opacities.

kel — 15 u h line is replaced by a Gaussian sh

XP(hV):f dU[K(U)—KscatU)] = , (45) EaC average-atom Ine Is rep ac_e . y a (Gaussian shape

0 mre'—1 which takes into account the contribution of the most prob-

able configurations around the average-atom configuration.
Photoabsorption spectra obtained are intermediate between a
crude average-atom spectrum and a DCA treatment. The
splitting in integer ion stages can be included. This method is
not restricted to a description of the atomic structure through
the screened hydrogenic model but can be extended to any

with ygr(%0) = kg and yp(©)=kp. As in Eq. (44), the vari-
able u stands for the photon energy divided kyT. The
electrostatic interaction induce correlationgmplicitly
present in the matriw in Eq. (19)] which decrease the width
of each Gaussian shapes of lingere Z—3p, 2p— 3s, average-atom formalism too
and 2 3d transitions on Fig. @) and Fig. 3b)]. Neglect- Co?n arisons of our resul.ts to more detailed calculations
ing them here would have decreased the well near 1200 eV, par .
. . and experimental spectra show the need of a joint use of a
and consequently increased the valuexgf[Fig. 3(c) and e .
: . . description of the atomic structure of the average atom as
Fig. 3(b)]. In this example xp appears to be independent of . ; - .
. L detailed as possible and a statistical treatment of the lines
the correlations and the splitting in integer charge stages be-. . o . i .
. X : o . Without performing an explicit detailed configuration ac-
cause, in this case, the key parameter is the line intensit ; . : LI
: o ounting, which would be too time consuming in such a
whose calculation stays unmodified. By contrast, the most.. =~ . The role of lati b bound el .
detailed treatmerjfig. 2(a) or Fig. 3a)] is the one that gives SItuart]lon_. deéo €0 hcorrﬁ atlor;)s etween bound electrons 'Sd
the value of opacity coefficient closest to OPAL. From Fig.emp asized. From the photoabsorption spectra encountered,

3(d) to Fig. 3a), the relative deviation with respect to OPAL both the Ross_eland mean opacity and the deta|leq charge

. stage accounting are well estimated. The next step is to ex-

Rosseland opacity falls from 48% to 34%, 17%, and 6%, . .

) 7 . ! .” tend the formalism to study the spectral properties of non-
successively. This is only due to the slight differences Wh'd\_TE plasmas

take place in the vicinity of the crossing betwegg and yp
on Fig. 3. In this example, the most important effect is the The authors thank Drs. G. Bonnaud and P. Dallot for their
role played by correlations between bound electrons. comments concerning the final form of this paper.
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