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Particle trapping and self-focusing in temporally asymmetric ratchets with strong field gradients
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We study the dynamics of a particle whose velocity is a nonlinear, monotonically increasing function of the
applied field. The particle moves in a strong field gradient whose intensity and sign vary periodically. We
demonstrate that if the field pulses are temporally asymmetric and biased, we can have situations where the
particle always migrates towards a stable zero-velocity point. This special ratchet process can in principle be
used to separate molecules and particles. An example is given for the electrophoresis of DNA.
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PACS numbes): 87.22.Fy, 82.45tz, 05.40+j, 05.60+w

I. INTRODUCTION Let us first discuss a simple ac process where the field is
E, in the forward direction ané,/Rg in the reverse direc-

As recently demonstrated by Magnagad ratchet poten-  tion (there is no field gradient for the momgnthile the
tials (i.e., spatially asymmetric potentialsan rectify zero- pulse durations aré, andRT,, respectively, withRg>1
mean correlated fluctuations and generate net motion. Tenand Rt>1 [Fig. 1(a)]. Although the mean-field intensity is
porally asymmetric, zero-mean fluctuations can also operateero forRr=Rg, we then have a net velocity,>0 if the
a correlation ratchet even when the potentialgatially sym-  system is nonlineaf3]. This is essentially the idea behind
metric [2,3]. Although one can design separation schemesghe temporal ratchet of Ref2] and the so-called zero-
(e.g., for charged particlesbased on correlation ratchets, integrated-field-electrophoresis procg4k Here, instead, we
such systems provide limited resolution because the randonthooseR:>Rg>1 (a negative bigs Since the mobility in-
ness of the ratchet transitions leads to a large overlap bereases with the field intensigy, it is possible to find ratios
tween the particle populations. Here we investigate a tempdR; andRg such that we hav¥,(Eq—0)<0 (the bias domi-
rally asymmetric ratchetlike system that uses a small biagates the nonlinearifywhile V,(E;—)>0 (the nonlinear-
and a strong field gradient to make particles move towardéty dominates the bigsThis implies the existence of a finite
attractor points where their velocity is zero. The particlescritical field E,=E* (M) for which V,(M) is exactly zero.
then form self-focusing, well-separated zones. The principlé&Jnder these conditions, the particle will simply oscillate
is quite general and can be applied to different spatially symaround a fixed position in response to the biased ac external
metric ratchet potentials. The basic theoretical idea is introfield. Now, if this process is carried out in a field gradient, a
duced in Sec. Il. As an example, we study, in Sec. lll, aparticle of sizeM will naturally move towards the point
(one-dimensional model of DNA gel electrophoresis for where the local field intensity
which exact solutions can be obtained. Other simple systems

can also be treated easily. =2 ()
g
g o b—Jt Tl [
II. BASIC PRINCIPLES OF THE METHOD =
&
2

The instantaneous velocity(M,E) of a particle of size
(e.g., chargeM in a local field of intensityE (e.g., an elec-
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tric field) can be written as the product Bfand the mobility scaled time
#(M,E),
~ 1
V(ME)=u(ME)E=uoEXp*(ME), (1) g s (b)
g 04
whereu is some standard mobility and* (M ,E) = u/ug is ?0 02
the reducedor dimensionlegsmobility. The system is non- O 0207 0% 0% 1 13 1z

linear if u* is field dependentu* is assumed to increase
monotonically withE). Whatever the source of this nonlin-
earity, one can use such a system to build a correlation g 1 (g Schematic of the fieldsquarg pulses used herén
ratchet that rectifies temporally biased fluctuations, as degimensjonless units The field intensity isR times larger in the
scribed in[2]. Nonlinearities often diminish the resolution of positive direction, but the pulse durationRs times longer in the
separation processes. Here, however, we will exploit them.negative directiortfor this figure Re=R=3). (b) Field gradient
function G(y) used for our calculation. The functid® decreases
linearly from unity aty=0. The pointy=yy, whereG=0 is situ-
* Author to whom correspondence should be addressed. Electronated outside the system, which is limited tec@< 1. For this figure
address: gary@physics.uottawa.ca Yv= %.

scaled position y
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E(x) is equal to its own critical fieldE* (M). After reaching tween these two pointx{<x;;<x;) and bothx; andx; con-
this position, it will have a zero net velocity and will just verge towardx;; whenTy—0.
oscillate around this point in response to the applied pulses. The ideas presented in this section are quite general and
Since the particle will move towards this “attractor” point can be applied to a wide range of systems characterized by a
from either side of it, the distribution of particles of si#®  nonlinear, monotonically increasing mobility. Given a poten-
will self-sharpen as a function of time. The situation is, intial G(x/xy) and a nonlinear mobility.* (M), we can solve
fact, similar to protein isoelectrofocusiff]. Since particles Egs. (3) and (4) for the positionx(t), the final position
with different sizesM will generally stop at different posi- x;;(M), the final widthAx;¢(Ty), and finally the migration
tions in the system, our “isofocusing-ratchet” can separateime necessary to reach the fixed pointx;;. When the
particles. function u* (M, E) is sufficiently simple, exact solutions can

In order to establish the basic equations describing thée obtainedthis is the case for the example solved in the
conditions that are necessary for such a self-focusing ratcheiext sectiopn Otherwise, one must rely on numerical solu-
to work, let us examine a simple one-dimensional separatiotions.
system defined from=0 to L. The fieldE(x,t), at a posi-

tion x and at a given time, is given by Ill. AN EXAMPLE WITH AN EXACT SOLUTION:
DNA GEL ELECTROPHORESIS
E(x,t)=E;(1)G(x/xy), 2

Gel electrophoresis is one of the most important labora-
whereE;(t)=E(0\) is the intensity at th&=0 end of the tory technique in modern molecular biolo¢#—8]. For ex-
system andy is a length describing the strength of the field ample, it is used both to map and sequence the genome of
gradient. The functiorG(z), which satisfiesG(0)=1 and living organisms. DNA fragments are highly charged in aqu-
1=G(L/xy)>0, is assumed to be a monotonically decreas-ous buffers and thus readily migrate through dense gels in
ing function of its argumentnonmonotonic functions will be response to external electric fields. The sieving effect of the
discussed in Sec. IV The fieldE;(t) varies as shown in Fig. gel often provides high-resolution separations of mixtures of
1(a): Its intensity isE;(t)=E, for a time durationT,, fol-  fragments, although there are severe limitations in some
lowed byE;(t)=—Ey/Rg for a durationR;T,. The period casege.g., for very large DNA fragments and/or high figlds
is To(Ry+1) and the mean field intensity KE)=Eq(1  The field and molecular size dependence of the dc gel elec-
—R;/Rg)/(1+Ry). Note that the mean-field intensity is trophoretic mobility of a DNA fragment is well described by
zero if Rr=Rg. the simple relationship6—8§]

Let us assume for a moment thg4 is short enough that
we can neglect the change of local field intensity felt by the
particle during a complete pulse. The distance migrated by a
particle during a positive pulse is th&t{M,E) T, while the
distance migrated during the following negative pulse iswhereM, andE, are fitting constants. Another relationship
—V(M,E/Rg)R:T,. We have a fixed point when the local has recently been suggestig]; although it reduces to Eq.
field E(x) is such that these two displacements exactly can¢s) in both the low- and high-field limits, it would not allow
cel one another. The equation for the positignof the fixed us to obtain exact results. Other empirical models can be

M, |E
u*(ME)y=—+

M |E, for EXE;, M>M,, (5

point is thus used instead of Eq5) without affecting the generdbuali-
tative) results of our study. We will also use a simple linear
w*(MLE(Xi) Ry 3 gradient
u*(M,E(xi¢)/Rg)  Rg’ y y
Since the mobilityw* is an increasing function of the field G(E =1- Xy with O<x<L<Xxy ©)

intensity, the left-hand side is larger than unity. A fixed point

thus exists only iRt>Rg, i.e., if the ratchet is biased in the in order to obtain analytical resul{ig. 1(b)]. We now
negative direction, as expected. If the particle at positiorswitch to dimensionless variables for the rest of this paper.
x(t) is moving towardsx;;(M), the equation of motion de- We will use the system size as a unit of length and,

scribing its displacement during a complete cycléfes T, =L/ugEqy as a unit of time; the new variables are thus

small) =Ey/E;, m=M/M,, y=x/L, 7=t/t_, 7o=Ty/t_, and
yVZXV/L.

dx/dt~[V(M,E(x))—R;V(M,E(x)/Rg)]/(1+Ry). Solving Egs.(3), (5), and(6) for the equilibrium position

@)  yi(m), we find

It is easy to see from Eq4$3) and (4) that dx/dt>0 if x m*

<Xis, while dx/dt<0 if x>Xx;;. Therefore, the fixed point Yif(m):yv< 1- W) (7)
acts like an attractor for the particle. The argument presented

above is valid only ifT,<E/VVE, i.e., for very short pulses.
For finite pulse durations, the particle will ultimately oscil-
late between two positions, which we will denoteandx; , R-/Re—1
with the distanceAx;; =X;—X; between these positions get- * ;2
ting smaller asT, decreases. The fixed point is located be- e(1-Rr/Rg)

where the critical molecular siz@* is given by

®
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width ~(D/Ky)*¥? whereD is the diffusion coefficient of

—_

the particles. We will not study this any further because we
0.8 m=5/2 would need a specific high-field model fBx(e); moreover,
> as we will see next, the fact that tigcaled pulse duration
206 7o has to be finite also imposes a finite width to the final
g distribution of particles.
T 04 The previous discussion is valid only for infinitely short
b m=5/4 pulse durations T p—0). In practice, we cannot redudg
02 below a certain threshold due to the transient effects one
would expect following a sudden change in field direction.
0 Indeed, the theory presented so far assumedTihas long
100200 300 400 300 enough for the steady-state mobiljiy (M,E) to be the rel-
scaled time evant mobility duringialmost all oj the pulse. Therefore, we

must examine the dynamics over a complete cycle for finite
pulse durations.

The equation of motion for a positive pulsg;EE,) is
dy/dr=[1/m+eG(y/yy)]G(ylyy); it is easy to solve this
equation over the duration, of the forward pulse and be-
ween the initial and final positiong; and y; in order to

btain the new positioty;(y;,7o,.m,e). Similarly, one can
establish and solve the equation of motion for the following

<m*/(1—1lyy). Smaller(largey molecules move beyond backward pulse during which the particle migrates frgm

y<0 (or y>0) and are thus lost. The range of sizes that is_. Y {oWards the final positioy =y, in a time Ry7o; this

separated is large if the gradient width is close to unity, gives us the new positiofy(ys,Rr7o,m,e/Re). The net

but may be quite narrow for weaker gradients. In order tod|splacement during a complete cycle yg—y; and the

ensure tham* >0, the bias must actually be limited by the steady statg is obviously reaphed Whe'n:}/?' If we solve
these equations foy; andy; with the conditiony;=y,, we

FIG. 2. Trajectories followed by threm=3 and threem= 2
particles. The conditions alRe=1+v2, Ry=11(Rg)%/(2+9Rg)
=2.70,yy=2, ande=5. Six initial positions were used. The at-
tractors are ay;;= 3 and 3 for these conditions.

The molecules thus indeed reach different positions alon
the system. Since we must have 9;; <1, the range of mo-
lecular sizes that can be separated is restrictethte<m

relationship find that in the steady state, the particle oscillates between
RZ>R;>Rg. (9)  the positions
It is also easy to solve E@4) for the linear field gradient vy R2(Rg—1)(Rth,/Re—h;—1) T
and the mobility relatior5). Using Eq.(7), we can write the Yiss=Yit em(RZ—Ry)(Rgh,—h;— 1) Yv=VYit 27
positiony(m, 7) at time r as )
+0(75) (12)
y(m,7)—yjs(m) { Yv—VYo }_1
B exp( /7y —1 ,
Yo—Yir(m) Yoy ST . and
1o RE(Re—1)(1—Re(h,—hy)/Re) 7

whereyo=y(m,7=0) is the initial position of the particle. Y'ss~ Yif ™~ m(RZ_R)[Re(h,—hy) —1] °° " 27,
The characteristic time,, is given by

+0(75), (13
Ry+1

RT_ RE

Tm=MYyRe (1) where hy=exp(o/my)—1, hy=h;/[1—exp(-Rrr/
Remyy)], and the critical pulse duratior. is given by
The distancey/(7) —y;; to the fixed point thus decreases ex- b 2 5
ponentially with time. Figure 2 shows some trajectories for _ em(Rg—Ry)
six initial positionsy, and two molecular sizesi. Clearly, Te™ ReRT(Re—1)(Rr—Rg)
we see two attractors, one for each particle size. Also, the
relaxation time increasgéinearly) with sizem. As can be verified, we hawg = Vi =VYiss, With the equal-
Rewriting Eq.(4) for small values of the distancé(7) ity signs holding forry—0. To first order inty, the ideal
=y(m,7) —y;;(m) to the attractor, we find the equation of fixed pointy;; is in fact exactly between the poinyss and
motion dY/d7=—-Y/ry for the final approach, withry Viss-
=7n/(1—Vi;: lyy)<yy/e. This is the equation for the mo- In Fig. 3 we show the positiong(7) of the particle at the
tion for a particle attached to a linear spring and moving in aend of each pulséboth positive and negatiydor 7,=0.1,
very viscuous fluid; the spring constantks,xe/yy. The  yo=0, m=3%, and the parameters used for Fig[tBe inset
point y=vy;; is thus stable and,, is a good measure of the shows the completg/(7) vs 7 curve for the first three
time necessary to reach it. A sharper gradient and a highecycled. We see two well-separated lines with the ideal solu-
field intensity are predicted to lead to faster self-focusingtion (10) situated between them. The relaxation time is iden-
dynamics. Note, however, that the ultimate-{«) width of tical for all three curves, indicating that EGL1) is also use-
the population will not be zero because the diffusion pro-ful for finite pulse durations. From Eq$12) and (13) the
cessegwhich we have neglectedvill lead to a finite band apparent spatial widtAy =y s— ;s Of these oscillations is

(14
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The gradient presented in Sec. Il is not optimal and was
chosen solely because it is simple enough that a complete
analytical study can be presented. However, it is interesting
to look at the practicality of the proposed DNA separation
scheme. In order to minimize separation times, one must
006 minimize the critical sizem*. Let us takem* =2 for this
2l discussion. This requires, from Eq@8), that R;/Rg

=Rg(2e +1)/(2e +Rg). With realistic values such aRg
=3 and e=3%, we then getR;=%. Using yy=3, which
ensures that molecules in the range <10 get separated
on the gel, Eq(11) yields 7,~5m. The migration time of a
50 100 150 200 250 300 350 m=m* =2 molecule in the absence of pulsed fields and gra-

scaled time dients beingL/V~1 in our scaled units, this represents a
fivefold increase in separation time for the smaller $emed
a threefold increase fan=10), a result that appears inter-
esting in practice if the system provides improved resolution.
In order to reduce separation time, one could load the gel in
F]he middle or first apply a dc field in order to bring the
molecules close to their expected final positions. The result
would be quite unique: Thenx=2-10 molecules would be
spread over the entire gel. If the gel is long, this may provide
Jem?. Shorter pulses, larger field supferb resolgtion over Fhat size range. For an agarose gel,

a is a few kilo base pair&bp) [8]; one could thus have the
5-25 kbp molecules spread over 20 cm of gel.

More complicated isofocusing ratchets can be built using
required experimentallyr,=7.Ay gives the pulse duration more.complicated gradignts and/or mobility relationships.
to use(as long asr, remains long compared to the duration FOf  instance, a gradient of the fornG(y/yy)=1

of the transients moreover, one can calculate the required A SiNAY/Yy) could have, for &<A<1 andx>1, multiple

separation timer.,., by solving Eq.(10) for |y(m, attractor points for each particle. Particles would thus be at-
—ﬁf(m)|= Ay [indéggl tBrllere is ngo pgin(t in) gettillé(cloggﬂhan tracted to the nearest attractor. Similar behavior can also be
I ’

Ay to the fixed pointy;;(m)]. e_xpe_cted if_ the mobility is not a mono_tonic fun(_:tion 01_‘ t_h_e
In practice, the shape of the gradient functidfy) can f|eld_ _|ntenS|ty. In each case, a small dlffe_rence in .the.|n|t|al
be chosen to lead to any desired final distributigr{m). posmpn Yo cpuld .Iead_ to quite different fl_nal destinations.
For example, a linear distribution of the forgy,(m)~ 1 Very m'gerestlng situations can also occur if the system has a
—m/m* can i)e obtained for the mobility function given by rough field landscap&(y). _We COUld. then_have numerous
Eq. (5) if we use a hyperbolic function of the typ@(z)= attractors and very complicated trajectories, especially for

1/(1+72) instead of Eq(6). Also, very sharp gradients can long pulse durations.
lead to very narrow bands and extremely high resolution for
wide ranges of particle sizes, while weak gradients lead to
the separation of very narrow ranges of sizasthe cost of
having broader bangsThis would be particularly useful in In conclusion, we have established the basic phenomenol-
molecular biology where gel electrophoresis is frequentlyogy of a separation process where nonlinear mobilities,
used to estimate DNA and protein molecular sizes and findtrong field gradients, and biased asymmetric pulses lead to
minute size differences. In this case, the local electric fieldhe existence of stable, zero-velocity points that act like at-
intensity is controlled by the local thickness of the gel, whichtractors for the migrating particles. The process is somewhat

e
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0 02 04 06 08 1

FIG. 3. Dynamics of arm=1§5 particle, starting ay,=0, with
the pulse durationy=0.1. The other conditions are as given in Fig.
2. The middle curve gives the behavior feg— 0, while the two
dashed lines give the positions of the particle at the end of eac
pulse. Inset: zoom on the trajectory for the first three pulses.

given by Ay~ 74/ 7. 7
intensities, and larger molecular sizes all favor narrowe
bands; the strength of the gradient |, however, does not
appear in this relation. In practice, if a certain widlly is

V. CONCLUSION

makes it possible to design customized field gradi&tg). reminiscent of protein isoelectric focusing; here, however,
the existence of the zero-velocity points is solely due to dy-
IV. DISCUSSION namical reasons.

We have demonstrated in Sec. |l that it is possible to build
an isofocusing type of ratchet using a strong field gradient, ACKNOWLEDGMENTS
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