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The dynamics of the density matrix of the two-state system under the influence of time-dependent deter-
ministic and fluctuating forces is investigated. The exact formal solutions for the diagonal and off-diagonal
elements are derived and transformed into coupled nonconvolutive master equations and integral relations.
Thereby, the evolution cdiny observable relevant to the two-state system may be described. Solutions of the
dynamical equations in analytic form are presented both for high and low temperatures. An iterative numerical
method is put forward in which the familiar noninteracting-blip approximation is systematically improved by
taking into account all bath-induced nearest-neighbor interblip correlations. The expanded treatment is found to
be indispensable in studies of the dynamics of the off-diagonal elements at low temperatures. Finally, we
discuss selection rules, as well as possibilities of control of tunneling, which occur in the presence of mono-
chromatic driving[S1063-651X%97)11007-§

PACS numbes): 05.30—d, 05.40+j, 33.80.Be

I. INTRODUCTION we give exact relations between the matrix elements. As a
result of the analysis, we can then describe the time evolu-
The model of a quantum particle moving in a double welltion of the mean value ainyobservable relevant to the TSS.
potential and being in contact with a heat bath environmenf\s an example, we study, both analytically and numerically,
has widespread application in diverse physical and chemicdhe time evolution of the real and of the imaginary part of the
systems. It has been used, e.g., to describe long rang@herences.
electron-transfer reactiond], the tunneling of atoms be-  This paper is structured as follows. In Sec. I, we intro-
tween an atomic-force microscope tip and a surfiddeor ~ duce the model and the relevant dynamical quantities. In Sec.
the magnetic flux dynamics in a superconducting quantunill A, we derive the exact formal solution for the populations
interference devicg3]. At sufficiently low temperatures, the and coherences. The related set of closed dynamical equa-
system can be effectively restricted to the two-dimensionations is given in Sec. lll B. In Sec. IV, we present results of
Hilbert space spanned by the ground states of the two potefiie system’s dynamics in analytic form in various limits. The
tial minima. Complete information on the damped tunnelingnoninteracting-blip approximatiofNIBA) for the stochastic
dynamics of this two-state systefiSS is contained in the forces is briefly considered in Sec. IV A. The dynamics in
reduced density matriXRDM) of the system. In the basis the Markov limit and for a static bias is presented in Sec.
representation of the localized states, the diagonal element¥ B. The dynamics for weak damping and low temperatures
represent the@opulations In contrast, the off-diagonal ele- is discussed in Sec. IV C. For a static bias, the corrections
ments of the RDM, the so-called “coherences,” describePeyond the NIBA are presented in analytic form. In Sec. V,
quantum interference effects. In the recent past, lots of efwe describe a treatment of the random force beyond the
forts have been dedicated to the evaluation of the population§!BA which we refer to as the “interacting-blip chain ap-
[4-6]. proximation” (IBCA) [21]. In the IBCA, the bath-induced
The isolated TSS is the simplest system exhibiting quancorrelations within all nearest-neighbor blip-sojourn-blip in-
tum interference effects. Namely, it may be prepared suckervals are fully taken into account. In Sec. VI, the various
that it exhibits clockwise oscillations of the populations of methods are applied and numerically evaluated in some re-
the two localized states. The influence of a stochastic forc@imes. The conclusions are drawn in Sec. VII.
generally results in a reduction of the coherent motion and
may lead to pure monotonous relaxation towards the eqqilib— Il. THE DRIVEN DAMPED SYSTEM
rium state for sufficiently high temperature and/or damping.
It may even lead to a transition to localization at zero tem- Tunneling phenomena in physics and chemistry can often
peraturg7]. Besides the stochastic force, the system may b&ée modeled by a dissipative particle with only few accessible
influenced by a deterministic time-dependent force. Therdocalized states. As a working model, we consider the case of
have been made numerous studies about the control of tutwo states, and damping comes about through contact with a
neling by time-dependent external field-19. heat bath, which is represented by an ensemble of linearly
In this work, we concentrate the discussion on the off-responding oscillator modes with a continuum of eigenfre-
diagonal elements of the RDM. The coherences have beeguencies. This is the familiar spin-boson mo@#}-6], and
studied recently within the traditional optical Bloch equa-its usefulness in describing transfer dynamics in condensed
tions by employing the weak-damping limit and by treating phases has been well established. To be general, we allow for
the propelling field in the rotating-wave approximati@®].  time-dependent modulation of both the transfer matrix ele-
Here we present the exact formal solution for the RDM andnentA and the biasing energy. The Hamiltonian of the

1063-651X/97/561)/334(12)/$10.00 56 334 © 1997 The American Physical Society



56 COHERENCES AND POPULATIONS IN THE DRIVEN ... 335

TSS alone may be written in the fortwe putZi=kg=1) (o )r=p1-1(t)+p_14(1),
Ht)=—A(t)o/2—[e(t)+ (1) ]o,/2. (2.2 (o) =i[p1_1()—p_14D)].

Here, theo’s are Pauli matrices, and the basis states are the According to the chosen initial condition, we have

localized eigenstatefR) (right) and [L) (left) of o, with [, (t=0)=5, 5, ;. The quantity ), describes the dif-

eigenvalues+1 and —1, respectively. We then have ference of the populations of the two localized states. It gives

ox=|L)R[+|R)(L|and o, = [R)(R| — L ){L|. direct information about the tunneling dynamics. The under-
The variation ofA with time arises from a modulation of standing of the TSS dynamics is completed by the knowl-

the barrier of the underlying double well potential. For har-edge of the coherencés,); and(o); .

monic barrier drive, we hava (t) =Agexp(ucodlt), where In the absence of driving and dissipation, the RDM can be

w is a suitable dimensionless amplitutiee the discussion evaluated straightforwardly, yielding

in Ref.[19]). The quantitys(t) is the deterministic bias en-

ergy. It is conveniently decomposed as (o)1= €3l E?+ (A?IE?)cog EY),
e(t)=eot+ (1), 2.2 (0,)i=(€0A/E?)[1—cogEl)], (2.6)
where €, is a bias related to intrinsic static strains, and (o)1= (A/E)sin(EY).

f(t) is a bias modulation due to an externally applied time-

dependent force. For electron transfer in a solvent, we corAs a result of quantum interference, the RDM shows un-
ceive of controlling charge tunneling by application of strongdamped oscillations with frequendy=(A2+ eg) Y2 which
continuous laser fields. Regarding charge transfer in nands the level splitting of the isolated TSS. For the symmetric
structures, we think of regulating the dynamics by turning onTSS (¢,=0), the eigenstates af, are just those of the iso-
microwave irradiation or a high-frequency voltage. In pump-lated TSS Hamiltonian. Consequently, the initial value
probe setups, the driving force is pulse shaped. (0y)t=0=0 is kept for allt>0.

The coupling to a heat bath or solvent is captured by a |n the following sections, we study the evolution of the
fluctuating force(t). For a linear-response reservoir at fixed expectation value€.5) of the RDM in the presence of driv-
temperaturdl, {(t) obeys stationary Gaussian statistics. It ising and dissipation.
fully characterized by({(t))r=0 and by the force autocor-

relation function[4,6] Ill. THE REDUCED DENSITY MATRIX

1 (= cosi w/2T —iwt) A. The exact formal solution
<§(t>g<0>>T=;fo dod(w) =g e 23

The reduced density matrix,, .- (t) is conveniently ex-
pressed in terms of a real-time double path integral,
As long as we are interested in the reduced dynamics of the
TSS alone(RDM), all effects of the environment are com- _ , o 11— d[a.q’
pletely specified by the spectral densitfw). An important p”'”’(t)_f qu Do’ A[q)BLa]A*[q'1B*[q'Je” "4,
case is the Ohmic form
For initial statep,; ,(0)= 6,16, 1, the path sum is over all
J(w)=2mavexp — ol w,), (2.4  spin paths q(t'),q’(t’) with boundary conditions
q(0)=q'(0)=1/2,gq(t)=0/2, andq’(t)=0'/2. For a TSS,
which is employed in the numerical simulations reported bethe pathgy(t’) andq’(t’) jump back and forth between the
low. Ohmic damping is of widespread importance in physi-positions+ 1/2 and— 1/2. The quantityd[ q] is the probabil-
cal and chemical condensed phase reactjdrs]. The di- ity amplitude of the TSS to follow the path(t’) in the
mensionless friction parameter measures the strength of apsence of biasing and fluctuating forces. The deterministic

frequency-independent damping, angdis a high-frequency biasing forces are encapsulated in the factor
cutoff for the bath modes. Most of the subsequent expres-

sions, however, are valid for general frequency-dependent _ ., , ,

linear dissipation. Similarly, the numerical IBCA method Blal=exp i odt [eotf(t)]at’) ;. (3.9)

presented below is also not limited to the case of Ohmic

damping. The influence functionP[q,q’] captures the influences of
q.9 p

The RDM is a 22 matrix with diagonal elements the fluctuating force(t). For Gaussian statisti¢$,22],
p-1-1 and p;;, and off-diagonal elementécoherences

p-11andp; ;. It can be written as a linear combination of L R , o , , ,
the Pauli matrices and of the unit matrix, q):fodt fo dt’[q(t’) —q’(t)][{L(t") L(t"))ra(t”)
p()=112+Z_, , 0i)10i/2, where(a;);=(R|{ai(1))7|R).

Here(- - - )1 denotes thermal average according to &3, (LM ))+q’ (t"].

and(R|- - -|R) is the expectation value with respect to the

initial state|R)(=|1)) of the TSS.Any mean value may be Finally, [Dq symbolically means summation in function
expressed in terms gf(t), space over all paths with fixed boundaries. In studies of the

dynamics of the RDM, it is convenient to introduce the sym-
(o) =pra(t) —p_1_1(1), (2.5  metric and antisymmetric spin paths<@<t):
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(1)=q(n)+q'(7), &n=q(7)—q'(7). [10,13,14,19 With the appropriate generalization to the

present model, the exact formal solution fer,), is

The pathz(7) describes propagation straight along the diag-

onal of the density matrix and can therefore be identified - t

with the quasiclassical path. On the other hand, the path (o)=1+ 2 (—1)nJ Don{titAon({tj})27"

&(7) records the off-diagonal excursions and therefore is =t 0

connected with the quantum fluctuations. An interval during

which the system propagates in an off-diagonal state is x 2 (FYCtH-Fc). (3.3

termedblip while an interval with propagation in a diagonal tg==1y

state is calledojourn During a sojourn, the functiog( ) is N . -
zero, while during a blip interval, the function(7) is zero. e eTCLi1) 18 the product of ff?a{i?nfér%bab"'ty ampli
There are two sojourn and two blip states labeled by 9 P 51

n==*1 andé= £ 1, respectively. For the two-state system,

m
the pathsy(7) andé(7) undergo sudden transitions between An({th= H A(t).
blip states{¢;} and sojourn statefsy,} and vice versa at flip R
times{t;}.

Consider now a definite path making a total of #ansi-  The influences of the stochastic force are in the functions
tions that starts in the statg,=+1 and ends in the state F\~, while the effects of the deterministic force are encap-
7n="1(=*=1). Assume that the flip times are chronologi- sulated in the factor€{*) given below. In the expression
cally ordered, Gt;<---<t,,<t. The path consists of (3.3, the summation over the intermediate sojourn states has
blips and n+1 sojourns, wheres;=t,;;—t;; and been performed already. The remainiggummation repre-
Tj=1,;— 1t are the sojourn and blip lengths, respectively.sents the 2 possibilities of arranging blips. Next, we turn
The auxiliary flip timest, and t,,,, are displaced to the to the discussion of the off-diagonal elements. Since now the
infinite past and future. final hop back to the diagonal is missing, all paths dwell at

As the paths are piecewise constant, the influence fundimet in the final blip state, i.e.£(t)=1 or — 1, depending
tion ® is conveniently expressed in terms of the second inon whether one considers the staig_;(t) or p_q(t).

tegral of the force correlation functio2.3), Upon employing Eq(2.5), the exact formal expressions for
) the off diagonal linear combinationés,); and (o), are
B 1j°°d J(w) cosHw/2T)—cosw/2T—iwT) found to read
QN=7], 9972 Sinh(w/2T)
t
For a path withn blips andn+1 sojourns, we have (Ux>t=n§l (_1)n71J'0D2n71{tj}A2n71({tj})27n
n j—1 n j-1
M= |§-i > EnXii| T2 2 EEA k. X 2 &(FFUCTHRIICE), (3.4
j=1 k=0 ]=2 k=1 {gjzil}
The interactions S; (j=1,...,n) are the blip self- o .
interactions(intrablip interactions The functionA; , with o). = -1 n—1J Do St VA, (It1)2°N
j#k represents the interactions between the blip pak!, (o) n§=:l =D o " it Aan-a(it))
and the ternX; , describes the interactions between the blip
j and the earlier sojourk. Upon introducing the notations x > (FIcH—p(clo), (3.5
Qjx=Q(tj—t) andQ(7)=Q’(7) +iQ"(7), the interactions {g==1}
read
The biasing forces lead to phase factors
Sj:Qéj,zjfle,(Tj)r

C\"=cosp,, C\'=sing,, (3.9
Aj k= Qo) k-1 Q-1 Qo) Qaj— 1.2 1 _
where cpn=E}‘=1§jﬁ(t2j,t2j,1) is the phase accumulated
Xi k=Q%j 2k+11 Q-1 Q2j 2k~ Q- 1.2k+1- from then blips, and¢;9(ty; ,t5;-1) is the phase from blip
j of type §;, where
The summation over the history of paths contributing to
(o) (i=2z,x,y) results in an expansion in the number of j
tunneling transitions. The number is even {ot,);, while it (L) ’tZJfl):Jt _ dt’e(t). 3.7
is odd for (ay); and (o). The integration over the flip 21

times is compactly expressed by the notation In order to represent the influence fact§t§§) in compact

t t t, ty form, we combine the intrablip and interblip correlations of
jt Dp{tj}- - EJt dtht dt,_q1-- Jt dt;- - (3.2 n blips in the expression
0 0 0 0

n n j—1
Before turning to the discussion ¢fr,); and (o), we G =exp( _ o EA )
briefly summarize previous findings on the quantfiy,), " 121 Qi 2i-1 JZZ kzl Gk
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and we introduce the phaSQ§’k=2?2k+1§ij’k. They de- ucts of lower order influence functions. This is because the
scribe the bath correlations between the sojdurand the iteration of the GME produces products of uncorrelated in-
n—k succeeding blips. Then, the full influence functionsfluence functions that are absent in the original expression

F(*) take the form (3.3. For instance, in the third step of the iteration of Eq.

o (3.11) there appear termﬁﬁ?ﬁﬁ?lﬁfﬁ?, wheren;,n,,ns

- are arbitrary positive integers. The modified influence func-
FI(’1+):GI’1]._.[ COSXn,ki FE‘I ):Fgﬂtan)(n,o- (38) . =(%) y p . g

k=0 tion F,~’ is now defined in such a way that these unwanted
terms cancel each other. The analysis yields that the influ-

For the Ohmic spectral densit?.4), Q(7) reads{24] ence function{") are defined in terms of the original in-

T2( )1+ w22 fluence functiong{*) by
, _ c
Q' () =2 7 T T (x=iT 1))’ n
Fio=F-2 (-1 X FRL)
Q//( T):Za’al'CtameT), (39) =2 my,---,m 1 2

. . . (+)
whereI'(z) is the gamma function, and=1+T/w.. This Xij 5m1+---+mj ne
form holds for arbitrary cutoff frequenay, . It is employed ) . o L
in the numerical simulations reported below. The inner sum is over positive integens . By definition,

Analytical studies are made easier in the limit of large€ach subtraction involves again time ordering of the flip
e, in which Eq.(3.9) reduces to the more familiar form  times, witht, being the earliest. In the subtracted terms, the
bath correlations are only inside of the individual factors

Q'(n)=2aln[(w /#T)sinh#T7)], ani_). Correlations between these factors are absent.

]
(3.10 It is interesting to note that the quantity,); is connected
with (o), by the exact integral relation

Q"(7)=masgn7).

The exact formal series expressidBs3), (3.4), and(3.5) are (o= Jtdt’[K§+)(t,t’)+ K;_)(trt,)<a'z>t’]- (3.13
rather intricate, and they are by far too complicated to be 0

handled analytically. Hence, one has to resort to suitable ap- . ) ) .
proximations. Before proceeding along these lines, it is ad] "€ kemels are again given in the form of expansions in-
vantageous to cast the expression(ie), into the form of a volving the modified influence functions. We find

master equation and the expression(fey), into an integral % .

;eclﬁl:/l.on. Interestingly, this proceeding can be performed eX_K(Xi)(t’t,):nZl (—1)”_1Jt,dt2n—1' .

t
B. Exact master equation and integral relation XJ 3dt2A2n,1({t]-})2‘” E §nEf)C§f)-
In previous work, it has been shown that the exact formal ! {==1)
series expressiof8.3) for (o ,), can be rewritten in the form (3.19
of a generalized master equati@®ME) [14],

Finally, it is straightforward to see from Eg&.5) and (3.3

d(o,) t - that{o,); can be obtained fronio,), by differentiation,
2 [k ) K o) ’ Z
1 oy
3.1 = #t

The upper labels{) and (—) indicate whether the kernel is
an even or odd function of the bias. The kernels themselves The equivalence of Eq3.3) with (3.11) can be seen from
are defined in terms of the series expressions the iterative solution of Eq(3.11) with the insertion of the
series(3.12. Indeed one finds that the ensuing expression for
. - t (o), coincides with Eq(3.3). Following similar lines, the
KS (L) =2, (—1)“71J,dt2n71' o equivalence of Eq(3.4) with Eq. (3.13 can be shown.
=t ‘ So far, our treatment has been exact for gen&fa) and
ts - () (%) g(t). In the following, for simplicity, we consider the trans-
X ft dtAnn({tjH27" 21 Fro'Chl. fer matrix elementA as time independent. In the particular
== cases, we deal with a static straigp as well as with a time-
(3.12  dependent bias(t) as in Eq.(2.2).

ionE ) ) i ti
The product functions-;~'Cr~" depend on B flip times. IV. ANALYTIC RESULTS IN VARIOUS LIMITS
The first one and the last one are identifiedtbyand with . . _ o
t. The 21— 2 intermediate flip times are integrated out. A. The noninteracting-blip approximation
It is now important that the functions{*) are modified In practical calculations, suitable truncations in the series

influence functions involving suitable subtractions of prod-expansions of the kernels must be performed. In certain pa-
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rameter regimes, the average blip length is small against the&hich is the Markov limit. Now,Q( ) takes the form
average sojourn length. Under this assumption, which has to .

be confirmed self-consistently, the blip-blip correlations Q(7)=2aIn(w/27T)+2maT|r|+imasgr(7), (4.2
A are negligible. Also the sojourn-blip interactiodg
may be disregarded except those withj — 1. The latter are
approximately given b¥; ; - 1=Q"(r;). This approximation
has been termed the noninteracting-blip approximajfin
In the NIBA, the influence functio® (" is approximated by

in which the first term is an integration constant chosen such
that Eq.(3.10 smoothly maps on Eq4.2) at highT. By this
term, the bare tunneling frequenay is dressed into the
temperature-dependent effective frequency

an expression depending on the blip lengthg alone, 5=A27Tlw)*=A,(27TIA,)®. (4.3
n
In the second form, we have introduced the renormalized
(n) _ ’ i ” )
(DNIBA_gl [Q"(7) —1&7;-1Q"(7]. tunneling matrix elemeri4]
— al(1—a)
Because interblip correlations are disregarded (@}, , the Ar=A(Alw) ' .4
modified influence factor& ) are zero fom#1, and the For the form(4.2), the interactions in\; , cancel out so
expression$3.12 and (3.14 are truncated to that the NIBA become®xactin the Markov limit. For a
static bias, the GME3.11) and the relation3.13 may be
K<Z+>(t,t’)=AZQ—Q'“—t')CogQ"(t_t')]cog,s(t,t'), solved by Laplace transformation and algebraic resolution.
Upon inserting the transforms of the kernels,
(-) N A2,— Q' (t—t") i Mt 41\ i ’
Ky (1) =A% @ Dsif Q"(t—t")]sind(t,t"), KS(N) = A+ 2maTl[(A+2maT)?+ €],
and K(Zf)()\)= SPmraeyg/[(N+2maT)?+ eg],
+) N -Q'(t—t"a; My 4 ’
Kt t)=Ae QO simQ"(t—t')Jcosd(t,t'), KON = (mal MK (N,
K(t,t)=Ae Q' "cog Q"(t—t)]sind(t,t'). K=K\ (rad),

Evaluation of Eq.(3.11) and of the relationg3.13 and  We find

3.15 with these kernels gives the evolution of the damped
3.19 g P 1/ (maeg—\—2maT)s

TSS within the NIBA. Note that the deterministic forces are (o, (\))== (4.5
fully taken into account. The dynamics ¢fr,), for time- z N(N) '
periodic driving has been studied in Ref40-13,18. The

regimes in which the NIBA is valid have been discussed in (o M=KV OVINHK T (Do (V)), (4.6

Refs. [4,6] for a static bias, and in Ref$10,13 for the
driven case. Quite generally one has found that the NIBAWhere
describes the dynamics ¢&,), fairly well for high enough
temperatures and/or strong enough damping. Indeed, this is
confirmed numerically(cf. Fig. 2). In this parameter regime
and in the absence of driving, the NIBA correctly predicts
either damped oscillations or monotonous relaxation toward
the equilibrium values (o). = (A/eg)tanh(/2T) and
(o0)-=tanhE/2T). When T—0, this implies (0= €0l2T, {(0)u=6%2AT, (4.9
(oy)—All€o] and|[{o;)..|—1. This shows unphysical di-
vergence of the coherence fep—0 and trapping of the and by the three poles given by the zeros of the cubic equa-
population in the lower well for arbitrarily smad,. Hence, tion N(\)=0. At first sight, it seems that there are additional
the NIBA becomes unreliable in this regintef. Figs. 3-3.  contributions to{ o), because of the poles #{*)(\) and
This supports the relevance of interblip correlations at Iovx/Kg(—)()\)_ However, it turns out that the residues of the two
T. contributions cancel each other.
The characteristics of the cubic equatid\)=0 are as
B. Markov limit follows (see also the discussion in R¢R3)). In the limit
|€g| < 8, the zeros ofN(\) consist of a real root\=— 1y,
describing a relaxational contribution, and of a complex con-
jugate pair,A=—y=*if), up to temperaturd =T, where
1=(6—€228) I ma+0(el). In the regime T;<T<T,,
whereT,= 6%/4maleg| + | €| [2ma+ O(| &%), all three roots
are negative real. Far>T,, two of them are again complex
conjugate. Aseg| is raised, the transition temperatures
and T, run towards each other, and they coincide at the
Re(Z(1)£(0))r=4amT(1), (4.1)  critical bias strengtheo| = 5/2\/2. For any stronger bias, two

NN =A[(A+27aT)?+ €3]+ 82(\ +2mwaT). (4.7

From this we see that in the Markov limit the dynamics is
completely described by the pole a&=0, the residue of
Which represents the equilibrium value

In the remainder of this section, we deal with the impor-
tant case of weak damping<1 for which the coherent
regime extends over a broad temperature range. In this su
section, we investigate the high-temperature regime in th
so-called Markov limit.

For the Ohmic form(2.4), the force correlation function
(2.3) becomess correlated for highl and largew,,
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of the roots are complex conjugate for all temperatures. We Aszze‘q. (4.16
now concentrate on this regime. The Vieta relations for

Yr»¥, and() read For super-Ohmic dampingst1), we have

Y+ 2y=4maT, 4.9 .
= — 2
NP+ 0%)=2maT &, (4.10 a= Trfo dod(w)/w” (4.1
Y +2yy,+Q2=47%a’T2+ &+ 8% (4.1))

For Ohmic damping =1), this integral is infrared diver-
gent. It is regularized with a lower cutoff frequency, which is
self-consistently identified with, [4,6], yielding to leading
order the renormalized tunneling matrix eleméht)). Keep-

Upon picking up the four simple poles by Laplace contour
integration, we obtain

(or=a.8” "+ {(0)+[(1—a;—(0o,).)codt ing g in the exponent for weak damping is important when
. o the cutoff frequencyw, is very large.
+apsint]e™” (4.12 Interestingly enough, the series expressions of the kernels

can be summed in linear order @ 7). Following the lines
sketched in Refd.14,25, thez kernels in the weak-damping

a,=[ Q%+ y2— 8~ (Q2+ y2)<(rz)x]/D, limit are found to read
(4.13

with the amplitudes

KS(t,t') = A2cosH(t,t')[1+q—Q' (t—t")]
a=[(y,—yart+y(1—(0,))]Q,

t ty
4 .
whereD =02+ (y—v,)2. Similarly, we have A, ft,dtZJ't, dt;sind(t,t)
(a)=b18" "'+ (o)~ [(by+(0).) cost X(o ) Sind(ty,t)[Q' (t=t)+Q" (t,—ty)
~bpsinC2tje (414 ~Q'(t=t)=Q'(t-ty)], (4.18

The amplituded; andb, are given by
K (1,t7)=A2sind(t,t")Q"(t—t')
by=[€g6%/A—(Q2+ v?14){0)..]ID, t t
(4.1 —Afj dtzf “dtysind(t,t,)
t’ t’

by=[mad? A+ (y,— y)b1— Y 0)-1/Q.
2= Y= ¥)01— ¥(0%)=] X () {2k o8ty ,t)[Q"(t—t")

The formulas(4.12—(4.15 are the exact dynamical expres-

sions fora<1 in the Markov regimeT aboveT,, where —Q"(ta—t")]. (4.19
Tq is of the order ofA, . These expressions are nonperturba-
tive in the damping strength. In these forms, the first terms represent the NIBA. The

respective residual term describes a double-blip contribution,
which is decorated at the sojourn intertat-t; in between
with (o,){>) . This insertion accounts for all possible inter-

In the regimea<1 andT<T,, the Markov assumption is diate t i s bei il d by th .
not valid. At such low temperatures, even the noninteracting[ne late tunneling events being uninfiuénced by the environ-

blip assumption breaks down for weak damping. This is e ment Indeed for weak damping, we may drop the bath cor-

(=) (=) . - relations in the insertions. Nevertheless, we Asénstead of
cause the kernels; ™’ andK;~’ may receive already in lin- C . ;
X I . A in view of the possibility thatw. is very large. Thus we
ear order ine contributions from all orders iA. On the

other hand, in the NIBA only the lowest order Anis kept. have
For zero bias and weak dazm))ing, terms of hig(h()ar order in - t n
A contribute to the kerneK{"’, while not to KS"’. For 0 _ A2 nf _ s
nonzero bias and weak damping, the NIBA approximation is <(Tz>t't0_nzo (—4r) tODZ”{t'}jﬂl COSI (7). tzy-)-
inconsistent for both kernels!*) andK{*). From this we

infer that the NIBA does not describe properly the dynamicsgjmilarly, the kernelK (*)(t,t’) take the form

of (o) for T<T, and zero bias. For nonzero bias, |Gy
and weak damping, also the dynamics ot), is not treated
properly by the NIBA. This is confirmed below.

C. Weak damping and low temperatures

KT (1,t)=(A%/A)cosd(t,t')Q"(t—t’)

Consider now systematically the regime of weak damping t ty
and lowT. To be general, we assume the power-law form +(Af/A)f/dt2f, dt,cosd(t,t,)
J(w)xw® at low frequencies. It is convenient to absorb the ! ‘
leading cutoff dependence f(7) in a Franck-Condon fac- X( o) ioh,COSV(ty,t")

tor that renormalizes the bare tunneling matrix. The renor-
malized frequency scale is X[Q"(t—t")—Q"(t,—t")]. (4.20
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K{(t,t) = (AYA)sind (1,1 )[1+q— Q' (t—t")]
t t
+(Af/A)f dtgf “dt,cosd(tt)
t t’

X(o ) Sind(ty, t)[Q (t=t) + Q' (t—ty)
~Q'(t,=t)—Q'(t—ty)]. (4.2

Consider now first the case in which the driving force

f(t) is zero. Then, the insertion at the intermediate sojourn in

the expression§4.18—(4.21) reads[cf. Eq. (2.6)]
<Uz>

where Q=(A2+¢€2)Y2 The insertion describes the un-

(0, = €5/ Q%+ (AZIQ?)co (t,— 1), (4.22

damped full dynamics in the interval between a correlated

blip pair. Upon interchanging the time integrals in Egs.
(4.18—(4.21) with the frequency integral definin@(7), the
kernels can be calculated in analytic fof@b].

The GME(3.1)) is solved by Laplace transformation and
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bo=(AZAQ)[ma+ eo v — V)%= (o) / Q.
The equilibrium value is
(0)»=(A2/AQ)tanH Q/2T). (4.28

It is important to note that these results for I@wsmoothly
match those of Sec. IV B aroun=A, .
For <1, a useful quantity is the linear combination

N(t)=(eo/Q)(o )¢+ (A Q)1 (4.29

which describes the difference between the populations of
the ground state and the excited state. We get

N(t)=tanh(Q/2T)[1—e "]

+(eg/Q)[e "+ (y,/Q)sin(Qt)e "],  (4.30

This describes relaxation from the initial valeg/Q) to the
equilibrium value tanH@/2T). There is also a minor contri-

algebraic resolution. The inversion of the Laplace transforpbution in Eq.(4.30 representing a damped oscillation.

mation yields

<0'z>t:[5(2)/92_<0'z>oo]e_yrt+<0'z>oc

+[(A?%/Q?)cot+aysinQt]le™ ™,  (4.23
with amplitudea, and equilibrium valu€ o)., ,
2= (yreg+ YA~y (0,). 10,

(4.29

(0= (€9/Q)tani(Q/2T).

The incoherent relaxation ratg and the damping rate of
the oscillatory contribution are given H25]

¥ =(A%1202)3(Q)coth( Q/2T),

(4.25
Y=y, 12+ 2w ads (€51 Q)T,
which reduce in the Ohmic case to
v, = ma(A?/Q)coth Q/2T),
y=v 12+ 27a( el Q?)T. (4.26)

These expressions are exact for weak Ohnde 1) and
weak super-Ohmicg>1) damping. For sub-Ohmic damp-
ing (s<1), there is no consistent weak damping limit of the
form discussed herel4]. According to Eq(3.15, the quan-
tity (o), is obtained by differentiation of Eq4.23.

The dynamics of o), results from Eq(3.13 by use of
Eq. (4.23 and of the kernel$4.20 and (4.21). We find

<0'x>t: [EOArZ/AQZ_ <0'x>oc:|87 ity <0'x>OO
—[(€oA2/AQ?)codt—bysinQt]e ™,
(4.27)

where

Following these lines, the dynamics ¢&,); under the
influence of a monochromatic high-frequency field has been
studied in Ref.[14]. Alternative approaches based on
second-order perturbation in the TSS-bath coupling have
been frequently employed in this parameter regime. In these
treatments, the adiabatic renormalization of the bare tunnel-
ing matrix element is usually disregarded. For a discussion
of (o,); andN(t) under monochromatic low-frequency driv-
ing, we refer to Ref[26].

V. THE INTERACTING-BLIP CHAIN APPROXIMATION

In this section, we deal with the random force beyond the
NIBA for generala. The treatment of the stochastic force is
improved by taking into account, besides the intrablip inter-
actions, the correlations between all nearest-neighbor blips
Aj -1, and the full interactions of the nearest-neighbor
sojourn-blip pairsX| ; ;.

Diagrammatically, we have a chain of blips in which the
nearest-neighbor interblip correlations are fully included. A
pictorial description illustrating the contribution of three
blips to (o ,), is sketched in Fig. 1. Because of the pictorial
appearance, this approximation has been termed the
“interacting-blip chain approximation’{21]. In the IBCA,
the influence functiord(™ is

n n
‘I’fS)CAZjZl [S—i¢; ﬂj—lxj,j—1]+j22 §i€i-1j 1
with the full nearest-neighbor sojourn-blip interaction
X} i-1=Q2j -1 Qoj-15-2~ Qzj5-2-

Again, the deterministic biasing force is fully included.
Consider now the dynamics pf; ,(t) in the IBCA. First

of all, we introduce the conditional probabilities_(t; ) and

R_(t;7) for the particle that is released from the diagonal

stateno=+1 at time zero and that hops at tirhe 7 into the

final off-diagonal statef;=+1 and &= —1, respectively,
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|

FIG. 1. Three-blip contribution t¢o,), in the IBCA. The solid line represents a sojourn and the wavy line a blip interval. The blip-blip
correlationsA; ;_, are symbolically sketched by a dashed curve and the sojourn-blip correlatjgng by a dotted curve. The intrablip
interactions and the individual interactions Ay ;_, are not displayed.

and afterwards remains there until timheShortly, we shall  ing sojourn and with the preceding blip. Performing the sum
present a set of coupled integral equations for the quantitiesver the two possible sojourn states in between, the kernel

R.(t; 7). reads
Upon integrating the conditional probabilitigR..(t;7)
over the periodr, one ends up with the off-diagonal elements A2
of the density matrix at time, Yeo(73,8,71)=— €' 7e‘Q'(72>‘f§'A2,1cosX21.
t (5.4
<O'X>t:deT[R+(t;T)+R_(t;T)], (5.1

Next, for a stay in a blip staté= =1, say lasting from time

(t t’ — 7 until time t’, one has to write a factor
(Uy>t=ldeT[RJr(t;T)—R,(t;T)]. (5.2
1 t, " n
The population(s,); ensues from Eq(5.2) by integration, B+(t',T)=eXF{il €07+ ftr, dt"f(t )” (5.5
t
<Uz>t:1_Afodt {oy)e, 5.3 which takes into account the influences of the deterministic

force in the blip in question. In the numerical computation, a
as follows from Eq.(3.15. Here, the integration ovet’ major difficulty is that the driving-induced contribution in
takes into account that the final hop back to the diagonakq. (5.5 depends on the absolute timgs- r andt’ of the
could be at any timé¢’ in the interval Gst’ <t. blip, and not on the blip length alone.

According to Egs(5.1)—(5.3), the dynamical problem is Next, we observe that the factorizing system-reservoir ini-
solved up to quadratures once the quantifRegt’;7) are tial state involves that the initial sojourn has infinite length
known in the interval & r<t’<t. since we putt;— —o. As a result, the initial sojourn-blip

To derive a set of inhomogeneous coupled integral equaair depends on the blip lengthalone. This special pair is
tions for the conditional probabilitieR. (t'; 7), we first de-  represented by a factor of the form
fine a kernel matrixY, . (7,,5;,7;) that depends on three
time intervals. The kernel matrix represents the possible el-
ementary blip-sojourn-blip processes. It describes a two-step
transition from the off-diagonal statg, which has been vis-
ited for a periodr, via an intermediate diagonal state, to the The iteration of the elementary sojourn-blip sequence gener-
off-diagonal state, which is visited for a periodr,. The ates all paths the system can travel. Readily, the sum over all
time spent in one of the two intermediate diagonal states ipossibilities of stringing together sojourn-blip sequences can
given bys;. The kernel contains the intrablip interaction of be combined in a set of integral equations. Piecing together
the last blip and the interactions of this blip with the preced-the element$5.4)—(5.6), we find

AL(T)=Fi(A2)exd —Q'(7)xiQ"(7)]. (5.6
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R.(t";7)=B.(t',7) Ai(7)+k2 Y s CAT
=+ JO

t'—7—s , ,
X . dr’'Y. \(7,8,7") ost

XRy(t'—7—5s;7")|. (5.7 0

The inhomogeneous coupled integral equati®®) are the
dynamical equations within the IBCA. As remarked before, 05} = TReesss ==
the dynamics is solved up to quadratures after having com-
putedR.. (t";7) from Eq.(5.7).
A simple numerical algorithm consists in solving Eg. - .
(5.7) by iteration on an equidistant grid in timi@1]. At
The method presented here differs from the iterative so-
lution of the GME(3.1)) (cf. Ref.[14]). To include nearest-  {5.);
neighbor blip correlations in the GME, the respective kernel
has to be considered at least in ordér However, iteration
of the GME does not lead to linked blip clusters of higher
order than considered in the kernel. Furthermore, the GME
(3.11) is in the form of a convolution in the absence of time-
dependent deterministic forces, while the dynamical equation
(5.7) is generally in nonconvolutive form. 0
As the nearest-neighbor blip correlations constitute the
most relevant corrections to the NIBA, the IBCA applies for
longer propagation times than the NIBA. The IBCA is most 05}
suitable for moderate-to-strong damping. ke 1, the treat-
ment given in Sec. IV C is superior.
Systematic improvement of the IBCA is possible along A
two lines of development. For weak-to-moderate damping, it At
is suggestive by itself to insert all possible tunneling events
of the undamped system into the intervals of the chain links, FIG. 2. The populatioqo,); and the coherendgr, ), are shown
a proceeding similar to that in Sec. IV C. For higher damp-for model | (¢=0.1, T=0.5A, €,=—0.5A). The solid curves rep-
ing, the first step to do would be to include all next-to- resent the Markov limit and the dashed curves the NIBA.
nearest-neighbor interblip correlations. The relevant kernels
Y, ¢ would then depend on five time intervals, namely, thecompared with the NIBA dynamics based upon the NIBA
lengths of three blips and of two sojourns in between. Uporkernels with the bath correlation functi¢d.9). The dynam-
bookkeeping more and more time intervals in the kernels, thées of (o,); and (o), are displayed separately. The dashed
range in which the bath correlations are taken into accoungurves represent the NIBA while the solid curves describe
exactly is systematically enlarged. The corresponding genethe Markov limit. Although the temperature is rather low, the
alization of the numerical algorithm is clear, but the numeri-underdamped dynamics is fairly well described within the

1

05}

cal costs increase drastically with each step. Markov approximation. The minor differences in the
asymptotic values originate from the linearization of the tan-
VI. NUMERICAL SIMULATIONS gens hyperbolicus implicit in Eq4.8). On the scale of the

figures, the curves of the IBCA are very close to the NIBA

In the following, we discuss several illustrative applica- curves. They are not drawn in Fig. 2. This confirms that
tions of the formulas presented in Secs. IV and V. In contrasinterblip correlations are of minor importance in this param-
to most of the previous works, besides the populafier);  eter regime. With increasing, damping gets larger while
we also study the coherences. Because of the simple relatiaghe differences between the NIBA and the Markov limit be-
(3.15, the discussion of the quantir), is disregarded. come systematically smaller.
We concentrate on four complementary cases. Without ex- In the remainder, the interest is focused on the dynamics
ception, we choose Ohmic dampirid.4) with cutoff fre-  of the TSS at lowT, as significant corrections to the NIBA
quencyw.=30A. In models | and Il, the bias is static. In are most likely to occur in this regime. In model Il, we
models Il and IV, the response to linear and to nonlinearchooseT=0.02A,a=0.05, and zero deterministic bias. In
harmonic driving is investigated. Fig. 3, the coherent dynamics of the populatiar), and of

In model |, we choose T=0.5A, «=0.1, and the coherencéo,), is depicted up to times where the system
€o=—0.5A for the static bias. This case serves to illustrateis almost completely relaxed. The solid curves show the dy-
that for weak damping the Markov limit is reached already atnamics according to the formul#4.23 and (4.27). For the
moderately high temperatures. In Fig. 2, the Markov dynampopulation, the NIBA(dashed curvenearly coincides with
ics as described by the formulas presented in Sec. IV B ishe solid curve. The IBCA curve is not displayed since de-
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FIG. 3. The populatiofo), and the coherendgry), are shown FIG. 4. The populatiofa); and the coherendgr,), are shown

for model Il (@=0.05, T=0.0%, €,=0). The solid curves repre- for model lll (a=0.25, T=0.08A, €,=0). The driving force has a
sent formulag4.23 and (4.27), and the dashed curves the NIBA. moderate amplitude,= 2.5, and the frequency is 5A. The solid
The dash-dotted curve in the plot @F,), represents the IBCA. curves represent the IBCA and the dash-dotted curves the NIBA. At

o ) _ long times, onlyodd harmonics contribute t0o,);, and onlyeven
viations from the other curves are almost undiscernibleharmonics ta/o); .

From this we see that the leading damping influence in the
populations is correctly taken into account by all three meth/n model I, we putT=0.0, a=0.25, »=5A, and a
ods. The minor deviations are due to the different considerg‘nodder""te ?)n;g“til;dgiag:Zésér.h\e/:vioclir;io?:lsfr’\é/%: (:elgreggh ':Lthe
ation of higher order terms in the individual approximations. €0~ L. e

In contrast, the NIBA(dashed curveclearly fails for BCA and the dash-dotted curves the NIBA.
{oy):- The IBCA (dash-dotted curyebrings about a consis- In Fig. 4, there are again only minor deV|a't|ons of the
tent improvement. The unbounded increaséf), beyond IBCA from the NIBA curve for<qz>t, while the differences
unity in the NIBA originates from the first term in E(B.13 are drastic for(ay),. At long times, both the population

: : ; difference (o ,); and the coherencéo,); reach the time-
(the second term does not corg&r;b_ute for zero)bmbe. time periodic asymptotic state. For sufficiently strong amplitude
integral over the NIBA kerneK} ™’ increases nearly linearly

. ) : €4, higher order harmonics of the driving frequency become
with t. In the systematic weak-damping treatment, the inyelevant in the asymptotic dynamics. In the absence of a
crease of the integral is eliminated afw,); reaches asymp- static bias,selection ruleshold. Namely, only theodd har-
totically the equilibrium value Eq(4.28, which is close to  monics persist at long times iv,);, as discussed in Ref.
one for model Il. The full curve represents Hg.27). The  [13]. Following similar lines, upon employing Eq$3.11)
IBCA curve describes the dynamics correctly at short timesand(3.13, and observing the symmetry of the kernels under
while it overestimates damping at long times. Upon includ-bias inversion, one finds that only tkgenharmonics persist
ing tunneling events within the intervals of the chain links inin the asymptotic dynamics dfo,); for zero bias. For the
Fig. 1, as discussed at the end of Sec. IV C, the modifiednoderate driving amplitude, chosen in Fig. 4, the funda-
IBCA coincides with the full curve. In the absence of dissi- mental mode governéo,); at long times. It is also visible
pation,{o,)=0 for all t=0 [Eq. (2.6)]. that (o,); asymptotically oscillates with twice the driving
In models IIl and 1V, we choose periodic driving frequency. The selection rules fap=0 have been con-
firmed in numerous simulations for different sets of param-
f(t)=e,sinvt. (6.2) eters.
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FIG. 5. Plots of(a,), for the parameters of model Il with
additional static biagy= —0.5A. For nonzera:,, also odd harmon-
ics persist at long times.
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_ When a static bias is added, there are again only minor 5\3‘,\ 5"\'_: ,,-“E\, b \‘,_\ "4“ VY

differences between the NIBA and the IBCA curve for I 7 1

(o, . For that, the corresponding curves are not shown. For ‘-,\! A ‘| WY

{o)t, the deviation in the asymptotic dynamics between the (| A U

IBCA and the NIBA is much smaller as compared with the ¥ ' ’

caseeg=0. However, the deviation is still significant. This

indicates that interblip correlations are relevant fot), in

this parameter regime. In Fig. 5, both odd and even harmon- 05¢ = 10

ics contribute to{ o), at long times. This confirms that the At

above selection rules do not hold when symmetry is broken

by a static bias. FIG. 6. Plots of(c,), and (o), for model IV [same as model

Fina”y, consider model IV in which we choose a symmet_m, but e,=12A andv=5A which satisfy the localization criterion
ric TSS (e,=0) with T=0.05A and a=0.25, as in model for =0 (dash-dotted curvek F_ora=0.25, the Ioc_:alization is s_tiII
I, but with driving frequency v=5A and amplitude stable(o!ashed curvgson the time scale on which the undriven
€.=2.4v=12A. The parameters are chosen such that th&YStem is amost relaxe@ll curves. The curves of o), show an
system is dynamically trapped in the initial state in the ab_osmllatow transfer of population between the energy eigenstates of
sence of damping8] (dash-dotted curve in Fig.)6This  N€ undriven, undamped system.
genuine quantum effect is weakened by friction. Neverthe-
less even fowr=0.25, the destruction of dynamical localiza- which contain complete information about the average dy-
tion (DL) still occurs on a much longer time scale than thenamics of the reduced system. We have shown in Sec. Il B
tunneling period 2r/A [9] or the relaxation time 3/, of the  that (o), is related to(c,); by an integral relation, while
undriven TSSsee full curve in Fig. B Correspondingly, the (o), follows from (o), by differentiation. We have also
coherence o), oscillates around zero with a small ampli- presented an exact generalized master equatio dfg; .
tude. In the symmetric TSS considered h€ke,), is identi-  The expressions obtained are exact and hold for general ex-
fied with the difference between the populations of theternal modulation of both the transfer matrix element and the
ground state and of the excited state. Hence, even in thieias energy of the isolated TSS. In Sec. IV, we have dis-
presence of DL i), there is a periodic transfer of popu- cussed different analytical approaches ranging from the high-
lation between the lower and upper energy eigenstate of themperature or Markov limit to the asymptotic low-
isolated TSS. These findings for the driven TSS should béemperature regime.
compared with those far,= 0. In the absence of driving, the In Sec. V, we have put forward an approach in which the
coherence reaches asymptotically a value near (ufl correlations induced by the stochastic force are fully taken
curve, implying that mainly the ground state is occupied atinto account within all nearest-neighbor blip-sojourn-blip se-
long times. The differences between the NIBA and the IBCAguences. Because the bath-induced correlations decay with
are minor fore,=12A. time, the nearest-neighbor interactions represent the most
important corrections to the widely used noninteracting-blip
approximation. From this we infer that for low temperatures
the IBCA should render a correct description of the dynam-

We have studied the population differenge,), and the ics for lower o than the NIBA. Indeed, this has been con-
coherences(oy); and (oy); for the damped driven TSS, firmed numerically. Nevertheless, at very Idwvery long-

(=]

VIl. CONCLUSIONS
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ranged correlations that are not described properly by theve have studied the forced dynamics for a set of parameters
IBCA may become important at long times. We have givenof the monochromatic field for which the undamped TSS is
lines along which further improvement beyond the IBCA is “dynamically” localized (DL) in one of the eigenstates of
achieved. o,. For weak dissipation, DL is stable on short-time scales,
We have numerically compared the dynamics of the varisg that the system remains almost trapped in the initial state.
ous approaches in Sec. VI for numerous sets of parametergorrespondingly, the coheren¢e,), oscillates around zero
We have discussed examples in which the NIBA gives &yjth small amplitude. This indicates an oscillatory transfer of

fairly good description of the populatiofv,);, but fails to  yopulation between the lower and upper energy eigenstate.
describe the coherences. In the absence of a deterministic

bias, e.g., the NIBA expression foe, ), violates the unitar-
ity bound for lowT and even diverges with time, while the
IBCA result stays within the unitarity bound for all times. In
the presence of deterministic driving, the NIBA solution for  M.G. is grateful to P. Haggi and L. Hartmann for useful
(o)t heeds the unitarity bound, but the deviations from thediscussions. M.W. and U.W. benefitted from stimulating dis-
IBCA are still significant at lowT. cussions with A. Lak and H. Weber-Gottschick. M.G. ac-

Further, we have found that, for a harmonically modu-knowledges support by the Deutsche Forschungsgemein-
lated forcef(t) and zero static bias, selection rules governschaft (DFG) under Grant No. HA1517/14-1. M.W. and
the asymptotic dynamics. Namely, at long times, only oddU.W. acknowledge support by the DFG-SFB 382 “Ver-
higher harmonics contribute to the oscillatory dynamics offahren und Algorithmen zur Simulation physikalischer Pro-
(o), while only even harmonics persist foor,), . Finally,  zesse auf Hehstleistungsrechnern.”
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