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Fluctuations of spatial patterns as a measure of classical chaos
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In problems where the temporal evolution of a nonlinear system cannot be followed, a method for studying
the fluctuations of spatial patterns has been developed. That method is applied to well-known problems in
deterministic chaosthe logistic map and the Lorenz mojléb check its effectiveness in characterizing the
dynamical behaviors. It is found that the indigeg are as useful as the Lyapunov exponents in providing a
quantitative measure of chaos. When applied to the Ising system of finite size, it is showr,lean be used
to determine the critical temperatuf&1063-651X97)10407-X

PACS numbsgs): 05.45+b, 24.60.Lz

I. INTRODUCTION the spatial patterns associated with its trajectories? In finding
an answer to this question, we shall have succeeded in mak-
An important feature of classical nonlinear systems is thatng two beginnings: on the one hand, we shall gain some
a trajectory traced out by time evolution is well defined, soinsight into whether the concept of chaos can be generalized
the distance between nearby trajectories is a meaningfiif include self-reproducing quantum systems; on the other
function of time. The Lyapunov exponents that characterizdand, an alternative approach to the study of classical chaos
the distance function have therefore been used widely to dewill be opened up. The latter is an unexpected bonus that
scribe the chaotic behaviors of such systems. Certain quafiesults from attempts to deal with the demands and concerns
tum systems, however, do not have such a feature. In papf a very different field of physics.
ticular, self-coupled quantum fields such as those ingfe In order to render this paper self-contained, a review of
theory do not have evolutionary histories that can readily bédhe measure of fluctuations will be givéim Sec. 1) without
described by trajectories, since the number of degrees dhe particle physics in which it is originated. The body of this
freedom changes with time. In such problems alternative cripaper is the application of that measure to the logistic map
teria for chaos beside the use of Lyapunov exponents mu&nd the Lorenz attract¢®]. We compare the dependences of
be found. A measure useful in the study of QCD partonthe Lyapunov exponents on the control parameter with
showers is a set of indicgs, that characterize the nature of those of the indiceg.,. It is the close correspondence be-
fluctuations of spatial patterrid]. It is the purpose of this tween the two measures for both deterministic systems that
paper to apply that measure to classical nonlinear systen§ipports our view on the usefulnessof>0 as a criterion
and investigate its usefulness as an alternative criterion foior chaos.
chaos. At the end of this paper we shall show how our measure
In microscopic quantum systems it is often impossible toof the fluctuations of spatial patterns can be applied to real
track the time evolution of their states without disturbing thespatial systems, and can provide quantitative descriptions of
systems. Instead, it is the final state that can be measurdbeir properties not necessarily related to chaotic behavior. In
with high accuracy. A prime example of problems of thatparticular, we shall show how, can characterize phase
type is the inelastic collision of elementary particles at verytransition in a two-dimensiondPD) Ising system.
high energy, where many particles are created. The momenta
of aI_I cha_rged par_ticles in the final state ca_n_be determined Il. ENTROPY INDICES
precisely in experiments. Thus for each collisional event the ) o )
momenta of those particles constitute a spatial pattern in mo- Consider the problem of describing a system by making
mentum space. From event to event those patterns changeany experimental measurements, each of which is called an
not only in the magnitudes and directions of the momentunfVvent. An event consists of a spatial pattern in
vectors, but also in the total number of such vectors. Thél-dimensional space. L&t be a measure of that pattern to
challenge has been in finding an efficient way of characterDe described below. From event to evént can fluctuate.
izing the fluctuation of those patterns in experiments wheréAfter A events, a large number, one has a distribution of
millions of events are measured. Moreover, it has been ofq. Which we denote by(F,), normalized to 1. By taking
interest to find out whether the notion of chaos has anyhe normalized moments &(F), defined by
meaning for such multiparticle production processes.
In order to answer the latter question, i.e., the meaning of Cpq=(FD/(FP, 1)
chaos for self-reproducing nonclassical systems, it is neces-
sary to apply a chosen measure of fluctuations in such sysve have a quantification of the fluctuations of the spatial
tems to some classical problems for which the criteria forpatterns.
chaos are well known. The issue becomes the following: if a Returning to the definition oF itself, it is necessary to
classical chaotic system exhibits certain familiar characterisrecognize first that any description of a spatial pattern de-
tics in its time evolution, what can be said about the nature opends on the resolution used. Let ttiedimensional space
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(call it the phase space, although it can be just the coordinate d

space, or just the momentum space, or po#h divided into Eq:d_cp,q|p=1r (8)
M bins, each having a volumé,,= 5%. Furthermore, let the P

intensity of the pattern be discretized at the bin level so thajye have, on the one hand,

at theith bin the bin multiplicity

3q=(Dgindy). )
nj= fV_P(f)ddf (2 On the other hand, i€, , has a power-law behavior i,
Cpqg=M VP, (10)

is rounded out to an integer, whesér) is the density at the

pointr. For each evenk, is defined, for any integei=2,  which has been referred to as errati¢By, then we also have
by

d
1 M 1 M a 2qc’cd—plﬂq(lo)h):l In M. (13)
qumzl ni(ni=1)---(ni—q+1) _21 nl. @
" " For brevity, we define
If Q, denotes the distribution of bin multiplicityp in the

d
M bins, normalized t&,Q,= 1, thenF, can also be written Ka=dp Yg(P)|p-1 (12)
as
Fq=<n[“])h/(n>ﬂ, @ and refer to them as entropy indices. It then follows that
. . &Eq
wherenl=n!/(n—q)! and ( )}, is a (horizonta) average 4= Z M (13

overQ, . By horizontal, we mean averaging over the multi-
plicity distribution in a given event, to be distinguished from ;, the scaling region, i.e., wheie, exhibits a linear depen-
vertical averaging, such as in E(l), which is an average gence on IM. It is not difficult to show howu, is related to

over all events. _ _ _ an entropy defined in the event spdted], but that connec-
The virtue of the normalized factorial momerig is that  {ion is not needed here.

the_y are ftrivial for statistical fluctuations]. Let Q, be a If there is no strict scaling behavior M, then Eq.(10)
Poisson transform, may have to be generalized to accommodate a possible scal-
N ing law ing(M),
»s
— ~ a-s
Qn Jo € D(S)ds, ® Cpq*g(M)¥lP), (14

whereg(M) is some function oM. In such case&, and
uq are defined as in Eq¢8) and (12), the only difference
being thatM is replaced byg(M) in Egs. (11) and (13).

Thus, instead of Eq11), we would have

where D(s) may be regarded as some dynamical distribu
tion, whose convolution with the Poisson distributi@f sta-
tistical origin) gives rise to the observeg, . It is clear that,
since

2g(M,r)ecpg(r)Ing(M), (15

[y, — [ sID(s)ds, 6
(M fo s'D(s)ds © where we have introduced a control parametethe depen-

dence on which has been assumed implicitly in the forego-

trivial dynamics represented b (s)=8(s—n) results in ing, but will become explicit in the following sections. The
Fq=1 for all q. Indeed, Eq(6) indicates that the statistical factorizable form of Eq(15) suggests thag(M) may be
fluctuation is filtered out from the factorial moments, yield- determined from,(M,r) by evaluating it at a particular
ing just the simple moments of the dynami@y(s). Thus g, So that
Fq provides an effective description of the dynamical fluc-
tuations that generate the spatial pattern under study. 3 (M) Bg(r)Zg(M,ro), (16)

Now let us consider the nature of the fluctuations from

event to event. First, Eq1) can be rewritten in the form where
= Ba(r)=pma(r)/ pg(ro). 17)
Cpq=(DP), Bg=7—". ) _ .
p.q a’r 9 (Fq) In this way uq(r) can be determined only up to an overall

factor for allr.
While much information can be revealed by studying all mo- We have described above a procedure by which one can
mentsp of P(F,), it is sufficient for our purpose here to take N events of fluctuating, spatial patterns, and by using
examine only the neighborhood pf=1. It is analogous to Egs.(3), (7), (9), and(13) [or Egs.(16) and(17)] determine
studying the information dimensidn,, which is the fractal a set of indicesuq, q=2,3,..., that can efficiently charac-
dimension at order {4]. With the definition terize the nature of the fluctuations. In practice, it is not
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is that even ford,=10" 12 it takes only 40 time steps for
d; to reachO(1), beyond whichd; fluctuates with no appar-
ent order. At smaller values of but abover., A would be
smaller, and it takes longer fak to go beyond the exponen-
tial growth phase. Two spatial patterns having infinitesimal
do would be nearly the same if the corresponding subsets of
T(x) and T'(x() consist of only the points in the growth
phase. To exhibit chaotic behavior it is necessary that
>)C1Ind51, S0 our subseB(xy) CT(Xy) should consist of
points above that value ¢f. Since we want to study the
relationship between and w, for all interesting values of
r, our choice of points foS(xy) is as follows:

S(Xo) ={Xa X2a - Xmatx, » (19

16 % 0 %0 20 where A=100 andm=20. Each event of that type has a
specific Xy, not included inS(x,). We generateN'=10°
events whose initiak, are all randomly generated within a
small interval &q,Xo+107°) around an arbitrarily chosen
valueX,. For the results to be shown belo¥ is 0.354 35.
Thus all A events correspond to initially nearby trajectories,
necessary to examine a large numberuof; u, and us and the distances between any two of which diverge after a
should suffice. In the following sections we shall ysgas a ~ C€rtain number of steps. _

measure to study the properties of the logistic and Lorenz For each of theV events generated according to the pre-

problems, and compare its behaviors with those of théCription described above, we divide the unit interval into
Lyapunov exponents. M bins of § size, count the number of points that fall into

each bin, and calculaté,(M) for that event by use of Eq.
(3). TheX (M) is determined by performing the appropriate
vertical averaging in Eq9). With focus ong=2, the depen-
The simplest and best understood example of determiniglence of2,(M) on InM is shown in Fig. 2a) for a few
tic chaos is the logistic ma[2,6]. We consider this example representative values of Evidently, there is no linear de-

FIG. 1. Exponential growth of the distandg between two tra-
jectories as the time stgpis increased.

lll. LOGISTIC MAP

to illustrate the use oft,, since the value ok for itis well ~ pendence. We thus use the generalized scaling form ex-
known and can therefore readily provide a comparison wittpressed in Eq.14), and consider the plot of E¢L6). That is
our result onw.,. done in Fig. 2b), which shows a good linear behavior. The
In the one-dimensional interval<Ox< 1, the map is value ofrry is chosen to be 3.9. The slop@s(r) can be
determined from the best fits of all the points for eactand
Xj+1=IXj(1=X;). (18)  give, by Eq.(17), values ofu,(r) apart from a multiplicative
constant.
By repeated iteration one generates a sequenfe,) Figure 3 shows the comparison ®fand u,, where the

={Xg,X1,... Xj,...}, Starting from a chosen initial point overall normalization ofs, in the figure is adjusted to agree
Xo. Every such sequence can be regarded as a trajectory @gth A atr=3.8. The error bars on the values@f are due
time evolves, where the time is identified with the number ofto the deviations from strict straight lines in Fig(b2
iterations. The distancd; between two trajectorie3 and  Clearly, u,(r) agrees very well with\(r) throughout the
T is |x,——xj’| at thejth step. For>r.=3.569 945 6.., but  whole range of, except that when (r)<O0, u,(r) can only
<4, d; can grow exponentially for two nearby trajectories be zero, since it is a nonnegative quantity.

with do=|xo—X¢| = € infinitesimally small. Except for cer- It is by virtue of Fig. 3 that we infer the effectiveness of
tain narrow intervals betweem and 4,\ is positive, and the  using the positivity ofu, as a criterion for chaos. In fact,
system exhibits chaotic behavior. uq for higher g have the same property, but they are not

The first question to face is how such a behavior in timeneeded for the simple system under consideration. Thus we
evolution can be treated from the point of view of spatialconclude that the fluctuations of spatial patterns can be used
patterns, which is what are designed to describe. Since ato reveal the chaotic behavior through the studyugf, as
trajectory in this case is automatically a collectib(x,) of = much as one can learn from the temporal evolution of nearby
discrete points irx, the answer is, of course, obvious. A trajectories.
judicious choice of a subset df(x,) is a spatial pattern of
interest, and each event corresponds to a particular initial
valuexy. To see which subset is appropriate, in Fig. 1 we
show a plot ofd; vs j for r=3.99 and for various small We now consider another problem to explore the effec-
values ofd,. The value ofA can be read off from the initial tiveness ofu in a dissipative dynamical system. The prime
exponential growthdj=d0e“, to ber=0.66, very close to example of such systems is the Lorenz model, described by
the analytical value In2 at=4. A significant aspect of Fig. 1 the following equations:

IV. LORENZ ATTRACTOR
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x=—a(x—y), We use the same technique as described in Sec. Il to
generate a spatial pattern for each event. iFer the tra-
y=rx—y—Xz, jectory is the familiar Lorenz attractor. Since it is in three
) dimensions, we select 70 points spaced one time unit apart
z=—bz+xy. (200 (i.e., 1C time steps ofst), and then make a projection of

We fix, as with Loren4 7], o=10 andb=$, and varyr as  them to thex-y plane. Figure 5 shows a typical event. A total
the control parameter. We discretize the time variable, andf 10* events are generated, each of which starts out initially
solve Eq.(20) by repeated iterations starting from some ar-at a random point in a small cube of size tBon each side,
bitrary point away from the fixed points. The critical value located at the poink,=0, yo=1, andz,=0. Since the Lo-

r. of the control parameter, above which the trajectory berenz attractor is confined to a finite region of space, which,
comes unstable, depends on the size of the timediteged.  when projected onto the-y plane, shows the points mainly
It is found thatr . increases slowly whe#t is decreased. For along the diagonal af~y. We have rotated the coordinates
computational efficiency we have chosér=103. Figure 4 by @/4 so that the pattern of points is mainly along the new
shows how rapidly thé dependence of the distance function x axis shown in Fig. 5 £ 30<x=<230) with a dispersion in
d(t) changes, when s increased infinitesimally from below the expanded new axis (—10<y=<10). This 2D rectangu-
to abover.. We determine the value of from straight-line  lar space is divided intél square bins, and the multiplicity
fits of the rising portions of lod(t) for every value ofr n of points in each bin is counted for the computation of
examined. However, because dtf does not rise linearly F, in Eq. (3) for each event. Using the procedure described
with t for r>r., a range of values ok can be extracted in Sec. Il, the quantity., is determined and plotted against
from the fits. We shall indicate the result by shaded bands itog;gM in Fig. 6(@ for various values of. Scaling is ob-

A(r). tained by plotting against ,(r), as in Fig. 6b), wherer is
0.8 T T T T
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0.6
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FIG. 3. A comparison ofx, with the Lyapunov exponent for FIG. 4. The behaviors of the distance functidft) for the Lo-

the logistic map. renz attractor at two values ofclose tor..
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FIG. 5. The spatial pattern of one event for the Lorenz attractor FIG. 7. A comparison of., with the Lyapunov exponerx for
when projected onto the-y plane and rotated byt/4. the Lorenz attractor.

chosen to be 28. From the slopes of the lines in the lattefical physics and fractal geometry, the extension toward
figure the indicegu,(r) are determined apart from an overall |arger values oM is the conventional procedure. However,
factor, which is fixed by normalizingu,(r)=A(r) atr  for problems that we consider here such an extension is in-
=22.9. appropriate. To explain that is the aim of this section.

Figure 7 shows the results of our calculations of both In fractal geometry, for example, one can take the math-
A(r) and u,(r). As mentioned earlier, because of the com-ematical limit of smaller and smaller scale. The fractal object
plicatedt dependence ofi(t), there is a band of values of can always be examined with finer and finer resolution. But
A for eachr. We have determinedl(r) only for some rep- in high-energy physics, on the other hand, the number of
resentative values aof. Given the errors involved, the agree- particles produced in any collisions is finite at finite energy.
ment betweer\(r) and u,(r) should be regarded as being In the limit 5~0 the bin multiplicities can only be 0 and 1,
quite good. The most important point is that they both showand allF,=0 for g=2. For the logistic and Lorenz problems
stepwise increases g{. Thus the utility of the positivity of we have examined, we have taken a finite number of points
mo(r) as a criterion for chaos is clearly as effective as that of20 and 70, respectivelyo display the spatial patterns. Thus
A(r). the M— limit would also be inappropriate. Knowing ex-
actly where all the points are in phase space gives too much
information, and is not what we seek to determine as the
measure that can inform us about chaotic behavior.

In the previous two examples we determined the slopes What can one say about the larlykeregions above those
Bo(r) from Figs. 2 and 6 and by use of E(@L6); from  considered in Figs. 2 and 6, but not large enough to render
B>(r) we obtainu,(r) apart from an overall constant. What all F;=0? We assert that they are of no dynamical interest.
we want to emphasize here is that the scaling behaviors aféor =2 it is only necessary to examine tihé region in
for a range oM that is not asymptotically large, i.e., bin size which the bins are small enough to contain two or less points
8 is not infinitesimally small. For generic problems in statis-in each bin, but not more. Lédl; be the number of bins in

V. LARGE-M BEHAVIOR

0.141-

b}
01k

FIG. 6. Same as for Fig. 2, but for the Lorenz
attractor, and withr ;= 28.
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the eth event with multiplicityn. Then for that event we
have

2

=2MM$/N?, (21

1 N
FZ:M; nj(nj_l)/ (M

where N is the total number of points in the event. Af,
denotes the number of events out of the totdevents in
which M,#0, butM,=0 for n=3, then we obtain

2M . ,
(F2>=w—226‘, M$§=2Mr»(M,)/N?, (22)
where
1 e
<M2>:/\_/22N M3, (23
eeN,

andr,= A\, /N is the fraction of events for which5+ 0, but
Fg-2=0. From Eqgs(7), (21), and(22) we have

D3=M3/r(My), (24)

so that from Eq(9) it follows that
pX B INB—Inr,, 25
2= NZEE 2 (25

whenB=M$/(M,). In the limit of largeM whenM$—1
for nearly all events, theB,— 1, and
3,~—Inr,. (26)

Now, the probability for a bin in such events to have 2 is
M ~2. Since this can be for any of tHd bins, we have

~M~ L (27

It then follows from Eq.(13) that
wo=1. (28)

The same line of reasoning also leads to the result

Mq=0q— 1. (29

331

cal nonlinear systems. A key step involved is to generate a
collection of spatial patterns from the time series that repre-
sent the solutions of the dynamical problem for a set of ini-
tial conditions. However, there are many physical systems
that are inherently spatial, and whose behaviors in real space
need not be constructed from time evolution. We now want
to show howu, can be used to describe the nature of the
fluctuations of the spatial patterns for such systems. Of
course, when the property of the time evolution is not the
central issue, the focus of the analysis cannot be on the pos-
sibility of chaotic behavior, as we have done so far. Never-
theless, to demonstrate the versatility of our method, it is
appropriate here to include a simple application to a typical
system whose main characteristic is fluctuating patterns.

The elucidation of a critical phenomenon by the lIsing
model, where clusters of all sizes are formed near the critical
temperature, is an ideal place for us to apply our formalism.
Our approach to the study of the scaling behavior of the
fluctuating patterns makes possible a way of determining the
critical temperaturd . more precisely than the usual method
(such as by examining the magnetizajiowhen the system
is finite and the phase transition point blurred.

We work with the 2D Ising system on a lattice of size
=72. For the Monte Carlo simulation of the spin configura-
tions, the Wolff algorithn{8] is used to avoid the problem of
critical slowing down. For every square bBy(5) of size
5% we define the multiplicity in théth bin to be

n=>, —[1+(sgn/\/l)sk]

EBl

(30)

wheres, = * 1 is the spin component at tikh site, sgn\M
is the sign of the total magnetization of the whole lattice
M=3,s¢, and the summation in Eq30) is only over the
sites in theth bin. Note than; counts only the up-spin sites,
where “up” is defined by the sign of\ of the configura-
tion. The average spin per site is defined for each configura-
tion by

s=|M|/L2 (31)
We studys, which is always positive, rather thakt, for a
reason to be described now. The 2D Ising problem is well
understood, and needs no further analysis by us to provide

In our numerical computation we have verified this result inadditional insight. Our aim is the reverse problem, i.e., to use
that Figs. 2a) and a) exhibit straight-line behavior at large the Ising lattice system to illustrate the study of fluctuating
M with unit slope for all values of. Since only probabilistic ~Patterns. To that end we device a problem that has more
arguments have been used to derive the result, it is indepe@Mbiguity than the ordinary case. The usual approach is to
dent of the structure of the model. study M as a function ofT in the presence of a small exter-

Thus in the search for scaling behavior in problems wherdal field 7; if the system is infinitely largeM exhibits a

N is finite, one should not go to the extreme lalgeregion
just before allF;—0, even thougt, exhibits a linear de-

break atT=T, in the limit 7/—0. In our problem we do not
introduce an externdl, but studys instead ofM, so there

pendence on M there. The behavior that is more relevant toiS No cancellation of the positive and negativé values in

the determination of. involvesg(M), defined in Eq(14),
as the scaling variable, and it is the plots like Figd)2nd
6(b) that yield the more pertinent straightline behaviors.

VI. ISING SYSTEM

different configurations. There is never a breaksins T;
indeed, the smaller the lattice the smoother the transition.
Thus the determination of the critical point becomes more
difficult. We define the critical temperatufig, to be the one

at which clusters of all sizes occur, and the fluctuation of
clusters from configuration to configuration is the largest.

In the preceding sections we demonstrated the effective©One may regard the problem posed this way as an artificial
ness ofu, in characterizing the chaotic behaviors of classi-device to create a more challenging problem to test the use-
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FIG. 8. The average spin per site, averaged over all configura- ] _
tions of the Ising system, vs temperatiifén units of J/kg. The FIG. 9. The indexu, ands vs T. The peak ofu, occurs at
vertical bars indicate the degree of fluctuations from configurationTc:z-zgo-
to configuration.
Similar to Figs. 3 and 7, wherg, is plotted against the

fulness of our method. But it actually also has a realisticcOntrol parameter, in Fig. 9 we plotu, againstT. Al-

application in the study of quark-hadron phase transitiont?0Ugh the physics of what they represent are very different,

where the Ising model has been used to investigate the critliZ- Phase transition as opposed to chaos, the usefulness of
cal phenomenon in which the hadron multiplicity must nec-#2 IS the same and the implication far reaching. Whenever a

essarily be positive, even at a temperature just above tht‘eompl_ex .system exhibits fluctuatjng spatial .patterns, the en-
critical point[9]. In such a problem the hadron multiplicity is FOPY indices can serve to quantify the scaling properties of
identified withn, in (30) [10]. For our purpose here we need those fluctuations.

only consider the problem posed and illustrate the effective-

ness of our method. VII. CONCLUDING REMARKS

We use 16 sweeps to set up an initial configuration, and
then generate fOconfigurations to calculate the average
quantities. For the HamiltoniaH = — J= ;,,s;S, without an
external field, the dependencebn T (in units of J/kg) is
shown in Fig. 8, where the solid line represents the mean
(averaged over all configurationswhile the vertical bars
represent the degree of fluctuationssofEvidently, for the
reasons just given above, the phase transition point is n
distinctive. The mears does not vanish even wheh is
significantly above the transition region. To have a precis
determination ofT ., we now turn to our method of entropy
indices.

The factorial moment, for each configuration and for
each bin size can be calculated upon the substitutiqB@f
into (3). Then, following the procedure in Sec. Il, we find
linear dependences &, on InM, so the slopes give the
indices uq, as specified in(13). For clarity we show only
Mo in Fig. 9 on an expanded scale. Clearly, the sharp peak
in u, provides an incontrovertible specification @f at
2.290. For higheq the peaks ofuq are located at the same
value of T. Indeed, for this Ising system we find that,
satisfies the relation

By working with the two examples, the logistic map and
the Lorenz attractor, we demonstrated that the indexs as
good as\ in marking the chaotic regime of the control pa-
rameters. One may wonder why the complicated procedure
to determineu, should be considered when the computation
of \ is significantly simpler. We reiterative that the rationale
cIpr studying spatial patterns is rooted in the desire to exam-
ine chaotic behaviors in systems where following the tempo-
ral evolution is not possible, or where trajectories are ill de-
%ined. Such problems are far more complicated than the
simple nonlinear systems considered in deterministic chaos.
The complexity of the procedure described in Sec. Il for the
determination of the entropy indicgs, is commensurate
with the complexity of the problems. Applying such a tool to
study the logistic map seems to be an overkill. But it has to
be done in order to show the significance of the method. It is
only when the agreement betwegp and\ is established for
problems with known behaviors af that one can claim that
u2>>0 is an effective criterion for chaos, whether the system
under study is simple or complex.

Beyond the problem of characterizing chaotic behaviors,
we have further demonstrated that our method is applicable
to real spatial systems. In the example of a finite-size 2D

Pq=1.2X 1073%(q—-1)*% 32 Ising system, it was shown how, can be used to determine
the critical temperature. There seems to be a wide range of
What has been demonstrated by this example of the Isingroblems that could not previously be studied effectively, but
problem is thaju is an effective measure of the fluctuations are now amenable to analysis by this method. They may
of the spin configurations that have clusters of all sizes. range from cracks in dry lake beds to galactic distribution.
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When there is only one event, like the astrophysical problenstudy of u, the possible universality among many fields that
on galaxies, one should divide the whole space into manyave hitherto been regarded as totally unrelated.
subspaces, each constituting an event, study the multiplicity

fluctuations in bins of various sizes in each subsgagen,
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subspaces. Even in problems of conventional deterministic

chaos, it is not always easy to fine tune the initial conditions One of us(R.C.H) would like to thank T. Hwa for helpful
experimentally. Studying the properties of spatial patternsliscussions. This work was supported, in part, by the U. S.
may allow an experimentalist to circumvent the fine-tuningDepartment of Energy under Grant No. DE-FGO03-
difficulty. It would be very interesting to explore through the 96ER40972.

[1] Z. Cao and R. C. Hwa, Phys. Rev. Letb, 1268(1999; Phys. [6] P. Collet and J. P. Eckmaitterated Maps on the Interval as

Rev. D53, 6608(1996. Dynamical System@irkhauser, Boston, 1980
[2] H. G. SchusterDeterministic ChaoqPhysik-Verlag, Wein- [7] E. N. Lorenz, J. Atmos. ScR0, 130(1963.
hein, 1984. [8] U. Wolff, Phys. Rev. Lett62, 361(1989.
[3] A. Biatas and R. Peschanski, Nucl. Phys2B3, 703 (1986); [9] Z. Cao, Y. Gao, and R. C. Hwa, Z. Phys.72, 661 (1996.
308 867(1988. [10] B. Bambah, J. Fingberg, and H. Satz, Nucl. PhyS3®, 629
[4] H. G. E. Hertschel and I. Procaccia, Physic#,D435(1983. (1990.

[5] R. C. Hwa, Acta Phys. Pol. B7, 1789(1996.



