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Fluctuations of spatial patterns as a measure of classical chaos

Zhen Cao and Rudolph C. Hwa
Institute of Theoretical Science and Department of Physics, University of Oregon, Eugene, Oregon 97403-5203

~Received 7 February 1997; revised manuscript received 7 April 1997!

In problems where the temporal evolution of a nonlinear system cannot be followed, a method for studying
the fluctuations of spatial patterns has been developed. That method is applied to well-known problems in
deterministic chaos~the logistic map and the Lorenz model! to check its effectiveness in characterizing the
dynamical behaviors. It is found that the indicesmq are as useful as the Lyapunov exponents in providing a
quantitative measure of chaos. When applied to the Ising system of finite size, it is shown howmq can be used
to determine the critical temperature.@S1063-651X~97!10407-X#

PACS number~s!: 05.45.1b, 24.60.Lz
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I. INTRODUCTION

An important feature of classical nonlinear systems is t
a trajectory traced out by time evolution is well defined,
the distance between nearby trajectories is a meanin
function of time. The Lyapunov exponents that character
the distance function have therefore been used widely to
scribe the chaotic behaviors of such systems. Certain q
tum systems, however, do not have such a feature. In
ticular, self-coupled quantum fields such as those in thef3

theory do not have evolutionary histories that can readily
described by trajectories, since the number of degree
freedom changes with time. In such problems alternative
teria for chaos beside the use of Lyapunov exponents m
be found. A measure useful in the study of QCD part
showers is a set of indicesmq that characterize the nature o
fluctuations of spatial patterns@1#. It is the purpose of this
paper to apply that measure to classical nonlinear syst
and investigate its usefulness as an alternative criterion
chaos.

In microscopic quantum systems it is often impossible
track the time evolution of their states without disturbing t
systems. Instead, it is the final state that can be meas
with high accuracy. A prime example of problems of th
type is the inelastic collision of elementary particles at ve
high energy, where many particles are created. The mom
of all charged particles in the final state can be determi
precisely in experiments. Thus for each collisional event
momenta of those particles constitute a spatial pattern in
mentum space. From event to event those patterns ch
not only in the magnitudes and directions of the moment
vectors, but also in the total number of such vectors. T
challenge has been in finding an efficient way of charac
izing the fluctuation of those patterns in experiments wh
millions of events are measured. Moreover, it has been
interest to find out whether the notion of chaos has a
meaning for such multiparticle production processes.

In order to answer the latter question, i.e., the meaning
chaos for self-reproducing nonclassical systems, it is ne
sary to apply a chosen measure of fluctuations in such
tems to some classical problems for which the criteria
chaos are well known. The issue becomes the following:
classical chaotic system exhibits certain familiar characte
tics in its time evolution, what can be said about the nature
561063-651X/97/56~1!/326~8!/$10.00
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the spatial patterns associated with its trajectories? In find
an answer to this question, we shall have succeeded in m
ing two beginnings: on the one hand, we shall gain so
insight into whether the concept of chaos can be general
to include self-reproducing quantum systems; on the ot
hand, an alternative approach to the study of classical ch
will be opened up. The latter is an unexpected bonus
results from attempts to deal with the demands and conc
of a very different field of physics.

In order to render this paper self-contained, a review
the measure of fluctuations will be given~in Sec. II! without
the particle physics in which it is originated. The body of th
paper is the application of that measure to the logistic m
and the Lorenz attractor@2#. We compare the dependences
the Lyapunov exponentsl on the control parameterr with
those of the indicesmq . It is the close correspondence b
tween the two measures for both deterministic systems
supports our view on the usefulness ofmq.0 as a criterion
for chaos.

At the end of this paper we shall show how our meas
of the fluctuations of spatial patterns can be applied to r
spatial systems, and can provide quantitative description
their properties not necessarily related to chaotic behavio
particular, we shall show howmq can characterize phas
transition in a two-dimensional~2D! Ising system.

II. ENTROPY INDICES µq

Consider the problem of describing a system by mak
many experimental measurements, each of which is calle
event. An event consists of a spatial pattern
d-dimensional space. LetFq be a measure of that pattern
be described below. From event to eventFq can fluctuate.
After N events, a large number, one has a distribution
Fq , which we denote byP(Fq), normalized to 1. By taking
the normalized moments ofP(Fq), defined by

Cp,q5^Fq
p&/^Fq&

p, ~1!

we have a quantification of the fluctuations of the spa
patterns.

Returning to the definition ofFq itself, it is necessary to
recognize first that any description of a spatial pattern
pends on the resolution used. Let thed-dimensional space
326 © 1997 The American Physical Society
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56 327FLUCTUATIONS OF SPATIAL PATTERNS ASA . . .
~call it the phase space, although it can be just the coordi
space, or just the momentum space, or both! be divided into
M bins, each having a volumeVbin5dd. Furthermore, let the
intensity of the pattern be discretized at the bin level so t
at thei th bin the bin multiplicity

ni5E
Vi

r~r !ddr ~2!

is rounded out to an integer, wherer(r ) is the density at the
point r . For each eventFq is defined, for any integerq>2,
by

Fq5
1

M(
i51

M

ni~ni21!•••~ni2q11!Y S 1M(
i51

M

ni D q. ~3!

If Qn denotes the distribution of bin multiplicityn in the
M bins, normalized toSnQn51, thenFq can also be written
as

Fq5^n@q#&h /^n&h
q , ~4!

wheren@q#5n!/(n2q)! and ^ &h is a ~horizontal! average
overQn . By horizontal, we mean averaging over the mu
plicity distribution in a given event, to be distinguished fro
vertical averaging, such as in Eq.~1!, which is an average
over all events.

The virtue of the normalized factorial momentsFq is that
they are trivial for statistical fluctuations@3#. Let Qn be a
Poisson transform,

Qn5E
0

`sn

n!
e2sD~s!ds, ~5!

whereD(s) may be regarded as some dynamical distrib
tion, whose convolution with the Poisson distribution~of sta-
tistical origin! gives rise to the observedQn . It is clear that,
since

^n@q#&h5E
0

`

sqD~s!ds, ~6!

trivial dynamics represented byD(s)5d(s2n̄) results in
Fq51 for all q. Indeed, Eq.~6! indicates that the statistica
fluctuation is filtered out from the factorial moments, yiel
ing just the simple moments of the dynamicalD(s). Thus
Fq provides an effective description of the dynamical flu
tuations that generate the spatial pattern under study.

Now let us consider the nature of the fluctuations fro
event to event. First, Eq.~1! can be rewritten in the form

Cp,q5^Fq
p&, Fq5

Fq

^Fq&
. ~7!

While much information can be revealed by studying all m
mentsp of P(Fq), it is sufficient for our purpose here t
examine only the neighborhood ofp51. It is analogous to
studying the information dimensionD1 , which is the fractal
dimension at order 1@4#. With the definition
te

at

-

-

-

Sq5
d

dp
Cp,qup51 , ~8!

we have, on the one hand,

Sq5^FqlnFq&. ~9!

On the other hand, ifCp,q has a power-law behavior inM ,

Cp,q}M
cq~p!, ~10!

which has been referred to as erraticity@5#, then we also have

Sq}
d

dp
cq~p!up51 ln M . ~11!

For brevity, we define

mq5
d

dp
cq~p!up51 ~12!

and refer to them as entropy indices. It then follows that

mq5
]Sq

] lnM
~13!

in the scaling region, i.e., whereSq exhibits a linear depen
dence on lnM. It is not difficult to show howmq is related to
an entropy defined in the event space@1,4#, but that connec-
tion is not needed here.

If there is no strict scaling behavior inM , then Eq.~10!
may have to be generalized to accommodate a possible
ing law in g(M ),

Cp,q}g~M !cq~p!, ~14!

whereg(M ) is some function ofM . In such casesSq and
mq are defined as in Eqs.~8! and ~12!, the only difference
being thatM is replaced byg(M ) in Eqs. ~11! and ~13!.
Thus, instead of Eq.~11!, we would have

Sq~M ,r !}mq~r !lng~M !, ~15!

where we have introduced a control parameterr , the depen-
dence on which has been assumed implicitly in the fore
ing, but will become explicit in the following sections. Th
factorizable form of Eq.~15! suggests thatg(M ) may be
determined fromSq(M ,r ) by evaluating it at a particula
r 0 , so that

Sq~M ,r !}bq~r !Sq~M ,r 0!, ~16!

where

bq~r !5mq~r !/mq~r 0!. ~17!

In this waymq(r ) can be determined only up to an overa
factor for all r .

We have described above a procedure by which one
takeN events of fluctuating, spatial patterns, and by us
Eqs.~3!, ~7!, ~9!, and~13! @or Eqs.~16! and~17!# determine
a set of indicesmq , q52,3,..., that can efficiently charac
terize the nature of the fluctuations. In practice, it is n
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328 56ZHEN CAO AND RUDOLPH C. HWA
necessary to examine a large number ofmq ; m2 and m3
should suffice. In the following sections we shall usem2 as a
measure to study the properties of the logistic and Lor
problems, and compare its behaviors with those of
Lyapunov exponentsl.

III. LOGISTIC MAP

The simplest and best understood example of determ
tic chaos is the logistic map@2,6#. We consider this example
to illustrate the use ofm2 , since the value ofl for it is well
known and can therefore readily provide a comparison w
our result onm2 .

In the one-dimensional interval 0,x,1, the map is

xj115rx j~12xj !. ~18!

By repeated iteration one generates a sequenceT(x0)
5$x0 ,x1 ,... ,xj ,...%, starting from a chosen initial poin
x0 . Every such sequence can be regarded as a trajecto
time evolves, where the time is identified with the number
iterations. The distancedj between two trajectoriesT and
T8 is uxj2xj8u at the j th step. Forr.r c53.569 945 6..., but
,4, dj can grow exponentially for two nearby trajectori
with d05ux02x08u5e infinitesimally small. Except for cer-
tain narrow intervals betweenr c and 4,l is positive, and the
system exhibits chaotic behavior.

The first question to face is how such a behavior in ti
evolution can be treated from the point of view of spat
patterns, which is whatmq are designed to describe. Since
trajectory in this case is automatically a collectionT(x0) of
discrete points inx, the answer is, of course, obvious.
judicious choice of a subset ofT(x0) is a spatial pattern o
interest, and each event corresponds to a particular in
value x0 . To see which subset is appropriate, in Fig. 1
show a plot ofdj vs j for r53.99 and for various smal
values ofd0 . The value ofl can be read off from the initia
exponential growth,dj5d0e

jl, to bel50.66, very close to
the analytical value ln2 atr54. A significant aspect of Fig. 1

FIG. 1. Exponential growth of the distancedj between two tra-
jectories as the time stepj is increased.
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is that even ford0510212 it takes only 40 time steps fo
dj to reachO~1!, beyond whichdj fluctuates with no appar
ent order. At smaller values ofr , but abover c , l would be
smaller, and it takes longer fordj to go beyond the exponen
tial growth phase. Two spatial patterns having infinitesim
d0 would be nearly the same if the corresponding subset
T(x0) andT8(x08) consist of only the points in the growt
phase. To exhibit chaotic behavior it is necessary thaj
.l21lnd0

21, so our subsetS(x0),T(x0) should consist of
points above that value ofj . Since we want to study the
relationship betweenl andm2 for all interesting values of
r , our choice of points forS(x0) is as follows:

S~x0!5$xD ,x2D ,...,xmD%x0 , ~19!

whereD5100 andm520. Each event of that type has
specific x0 , not included inS(x0). We generateN5105

events whose initialx0 are all randomly generated within
small interval (X0 ,X011025) around an arbitrarily chosen
valueX0 . For the results to be shown below,X0 is 0.354 35.
Thus allN events correspond to initially nearby trajectorie
and the distances between any two of which diverge afte
certain number of steps.

For each of theN events generated according to the p
scription described above, we divide the unit interval in
M bins of d size, count the number of points that fall int
each bin, and calculateFq(M ) for that event by use of Eq
~3!. TheSq(M ) is determined by performing the appropria
vertical averaging in Eq.~9!. With focus onq52, the depen-
dence ofS2(M ) on lnM is shown in Fig. 2~a! for a few
representative values ofr . Evidently, there is no linear de
pendence. We thus use the generalized scaling form
pressed in Eq.~14!, and consider the plot of Eq.~16!. That is
done in Fig. 2~b!, which shows a good linear behavior. Th
value of r 0 is chosen to be 3.9. The slopesb2(r ) can be
determined from the best fits of all the points for eachr , and
give, by Eq.~17!, values ofm2(r ) apart from a multiplicative
constant.

Figure 3 shows the comparison ofl andm2 , where the
overall normalization ofm2 in the figure is adjusted to agre
with l at r53.8. The error bars on the values ofm2 are due
to the deviations from strict straight lines in Fig. 2~b!.
Clearly, m2(r ) agrees very well withl(r ) throughout the
whole range ofr , except that whenl(r )<0,m2(r ) can only
be zero, since it is a nonnegative quantity.

It is by virtue of Fig. 3 that we infer the effectiveness
using the positivity ofm2 as a criterion for chaos. In fact
mq for higher q have the same property, but they are n
needed for the simple system under consideration. Thus
conclude that the fluctuations of spatial patterns can be u
to reveal the chaotic behavior through the study ofmq , as
much as one can learn from the temporal evolution of nea
trajectories.

IV. LORENZ ATTRACTOR

We now consider another problem to explore the eff
tiveness ofmq in a dissipative dynamical system. The prim
example of such systems is the Lorenz model, described
the following equations:
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FIG. 2. Behaviors ofS2 for
the logistic map as a function o
~a! lnM and~b! S2(r 0) for various
values of the control paramete
r . The value ofr 0 is chosen to be
3.9.
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ẋ52s~x2y!,

ẏ5rx2y2xz,

ż52bz1xy. ~20!
We fix, as with Lorenz@7#, s510 andb5 8

3, and varyr as
the control parameter. We discretize the time variable,
solve Eq.~20! by repeated iterations starting from some
bitrary point away from the fixed points. The critical valu
r c of the control parameter, above which the trajectory
comes unstable, depends on the size of the time stepdt used.
It is found thatr c increases slowly whendt is decreased. Fo
computational efficiency we have chosendt51023. Figure 4
shows how rapidly thet dependence of the distance functio
d(t) changes, whenr is increased infinitesimally from below
to abover c . We determine the value ofl from straight-line
fits of the rising portions of logd(t) for every value ofr
examined. However, because logd(t) does not rise linearly
with t for r.r c , a range of values ofl can be extracted
from the fits. We shall indicate the result by shaded band
l(r ).

FIG. 3. A comparison ofm2 with the Lyapunov exponentl for
the logistic map.
d
-

-

in

We use the same technique as described in Sec. II
generate a spatial pattern for each event. Forr.r c the tra-
jectory is the familiar Lorenz attractor. Since it is in thre
dimensions, we select 70 points spaced one time unit a
~i.e., 103 time steps ofdt!, and then make a projection o
them to thex-y plane. Figure 5 shows a typical event. A tot
of 104 events are generated, each of which starts out initia
at a random point in a small cube of size 10210 on each side,
located at the pointx050, y051, andz050. Since the Lo-
renz attractor is confined to a finite region of space, whi
when projected onto thex-y plane, shows the points mainl
along the diagonal ofx'y. We have rotated the coordinate
by p/4 so that the pattern of points is mainly along the n
x axis shown in Fig. 5 (230<x<30) with a dispersion in
the expanded newy axis (210<y<10). This 2D rectangu-
lar space is divided intoM square bins, and the multiplicity
n of points in each bin is counted for the computation
Fq in Eq. ~3! for each event. Using the procedure describ
in Sec. II, the quantityS2 is determined and plotted again
log10M in Fig. 6~a! for various values ofr . Scaling is ob-
tained by plotting againstS2(r 0), as in Fig. 6~b!, wherer 0 is

FIG. 4. The behaviors of the distance functiond(t) for the Lo-
renz attractor at two values ofr close tor c .
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330 56ZHEN CAO AND RUDOLPH C. HWA
chosen to be 28. From the slopes of the lines in the la
figure the indicesm2(r ) are determined apart from an overa
factor, which is fixed by normalizingm2(r )5l(r ) at r
522.9.

Figure 7 shows the results of our calculations of bo
l(r ) andm2(r ). As mentioned earlier, because of the co
plicated t dependence ofd(t), there is a band of values o
l for eachr . We have determinedl(r ) only for some rep-
resentative values ofr . Given the errors involved, the agre
ment betweenl(r ) andm2(r ) should be regarded as bein
quite good. The most important point is that they both sh
stepwise increases atr c . Thus the utility of the positivity of
m2(r ) as a criterion for chaos is clearly as effective as tha
l(r ).

V. LARGE-M BEHAVIOR

In the previous two examples we determined the slo
b2(r ) from Figs. 2 and 6 and by use of Eq.~16!; from
b2(r ) we obtainm2(r ) apart from an overall constant. Wha
we want to emphasize here is that the scaling behaviors
for a range ofM that is not asymptotically large, i.e., bin siz
d is not infinitesimally small. For generic problems in stat

FIG. 5. The spatial pattern of one event for the Lorenz attrac
when projected onto thex-y plane and rotated byp/4.
er

-

f

s

re
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tical physics and fractal geometry, the extension tow
larger values ofM is the conventional procedure. Howeve
for problems that we consider here such an extension is
appropriate. To explain that is the aim of this section.

In fractal geometry, for example, one can take the ma
ematical limit of smaller and smaller scale. The fractal obj
can always be examined with finer and finer resolution. B
in high-energy physics, on the other hand, the number
particles produced in any collisions is finite at finite energ
In the limit d→0 the bin multiplicities can only be 0 and 1
and allFq50 for q>2. For the logistic and Lorenz problem
we have examined, we have taken a finite number of po
~20 and 70, respectively! to display the spatial patterns. Thu
theM→` limit would also be inappropriate. Knowing ex
actly where all the points are in phase space gives too m
information, and is not what we seek to determine as
measure that can inform us about chaotic behavior.

What can one say about the largeM regions above those
considered in Figs. 2 and 6, but not large enough to ren
all Fq50? We assert that they are of no dynamical intere
For q52 it is only necessary to examine theM region in
which the bins are small enough to contain two or less po
in each bin, but not more. LetMn

e be the number of bins in

r FIG. 7. A comparison ofm2 with the Lyapunov exponentl for
the Lorenz attractor.
z
FIG. 6. Same as for Fig. 2, but for the Loren
attractor, and withr 0528.
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56 331FLUCTUATIONS OF SPATIAL PATTERNS ASA . . .
the eth event with multiplicity n. Then for that event we
have

F25
1

M(
j
nj~nj21!Y S NM D 252MM2

e/N2, ~21!

whereN is the total number of points in the event. IfN2
denotes the number of events out of the totalN events in
whichM2Þ0, butMn50 for n>3, then we obtain

^F2&5
2M

NN2(
e
M2

e52Mr 2^M2&/N
2, ~22!

where

^M2&5
1

N2
(
ePN2

M2
e , ~23!

andr 25N2 /N is the fraction of events for whichF2
eÞ0, but

Fq.2
e 50. From Eqs.~7!, ~21!, and~22! we have

F2
e5M2

e/r 2^M2&, ~24!

so that from Eq.~9! it follows that

S25
1

N2
(
e
Be lnBe2 lnr 2 , ~25!

whenBe5M2
e/^M2&. In the limit of largeM whenM2

e→1
for nearly all events, thenBe→1, and

S2;2 lnr 2 . ~26!

Now, the probability for a bin in such events to haven52 is
M22. Since this can be for any of theM bins, we have

r 2;M21. ~27!

It then follows from Eq.~13! that

m251. ~28!

The same line of reasoning also leads to the result

mq5q21. ~29!

In our numerical computation we have verified this result
that Figs. 2~a! and 6~a! exhibit straight-line behavior at larg
M with unit slope for all values ofr . Since only probabilistic
arguments have been used to derive the result, it is inde
dent of the structure of the model.

Thus in the search for scaling behavior in problems wh
N is finite, one should not go to the extreme largeM region
just before allFq→0, even thoughS2 exhibits a linear de-
pendence on lnM there. The behavior that is more relevant
the determination ofmq involvesg(M ), defined in Eq.~14!,
as the scaling variable, and it is the plots like Figs. 2~b! and
6~b! that yield the more pertinent straightline behaviors.

VI. ISING SYSTEM

In the preceding sections we demonstrated the effect
ness ofmq in characterizing the chaotic behaviors of clas
n-

e

e-
-

cal nonlinear systems. A key step involved is to generat
collection of spatial patterns from the time series that rep
sent the solutions of the dynamical problem for a set of i
tial conditions. However, there are many physical syste
that are inherently spatial, and whose behaviors in real sp
need not be constructed from time evolution. We now w
to show howmq can be used to describe the nature of t
fluctuations of the spatial patterns for such systems.
course, when the property of the time evolution is not t
central issue, the focus of the analysis cannot be on the
sibility of chaotic behavior, as we have done so far. Nev
theless, to demonstrate the versatility of our method, i
appropriate here to include a simple application to a typi
system whose main characteristic is fluctuating patterns.

The elucidation of a critical phenomenon by the Isi
model, where clusters of all sizes are formed near the crit
temperature, is an ideal place for us to apply our formalis
Our approach to the study of the scaling behavior of
fluctuating patterns makes possible a way of determining
critical temperatureTc more precisely than the usual metho
~such as by examining the magnetization!, when the system
is finite and the phase transition point blurred.

We work with the 2D Ising system on a lattice of sizeL
572. For the Monte Carlo simulation of the spin configur
tions, the Wolff algorithm@8# is used to avoid the problem o
critical slowing down. For every square binBi(d) of size
d2 we define the multiplicity in thei th bin to be

ni5 (
keBi

1

2
@11~sgnM!sk#, ~30!

wheresk561 is the spin component at thekth site, sgnM
is the sign of the total magnetization of the whole latti
M5Sksk , and the summation in Eq.~30! is only over the
sites in thei th bin. Note thatni counts only the up-spin sites
where ‘‘up’’ is defined by the sign ofM of the configura-
tion. The average spin per site is defined for each configu
tion by

s̄5uMu/L2. ~31!

We studys̄, which is always positive, rather thanM, for a
reason to be described now. The 2D Ising problem is w
understood, and needs no further analysis by us to pro
additional insight. Our aim is the reverse problem, i.e., to u
the Ising lattice system to illustrate the study of fluctuati
patterns. To that end we device a problem that has m
ambiguity than the ordinary case. The usual approach i
studyM as a function ofT in the presence of a small exte
nal fieldH; if the system is infinitely large,M exhibits a
break atT5Tc in the limitH→0. In our problem we do not
introduce an externalH, but studys̄ instead ofM, so there
is no cancellation of the positive and negativeM values in
different configurations. There is never a break ins̄ vs T;
indeed, the smaller the lattice the smoother the transit
Thus the determination of the critical point becomes m
difficult. We define the critical temperatureTc to be the one
at which clusters of all sizes occur, and the fluctuation
clusters from configuration to configuration is the large
One may regard the problem posed this way as an artifi
device to create a more challenging problem to test the u
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332 56ZHEN CAO AND RUDOLPH C. HWA
fulness of our method. But it actually also has a realis
application in the study of quark-hadron phase transiti
where the Ising model has been used to investigate the c
cal phenomenon in which the hadron multiplicity must ne
essarily be positive, even at a temperature just above
critical point@9#. In such a problem the hadron multiplicity i
identified withni in ~30! @10#. For our purpose here we nee
only consider the problem posed and illustrate the effect
ness of our method.

We use 104 sweeps to set up an initial configuration, a
then generate 104 configurations to calculate the avera
quantities. For the HamiltonianH52J(^ jk&sjsk without an
external field, the dependence ofs̄ on T ~in units ofJ/kB! is
shown in Fig. 8, where the solid line represents the meas̄
~averaged over all configurations!, while the vertical bars
represent the degree of fluctuations ofs̄. Evidently, for the
reasons just given above, the phase transition point is
distinctive. The means̄ does not vanish even whenT is
significantly above the transition region. To have a prec
determination ofTc , we now turn to our method of entrop
indices.

The factorial momentFq for each configuration and fo
each bin size can be calculated upon the substitution of~30!
into ~3!. Then, following the procedure in Sec. II, we fin
linear dependences ofSq on lnM, so the slopes give the
indicesmq , as specified in~13!. For clarity we show only
m2 in Fig. 9 on an expandedT scale. Clearly, the sharp pea
in m2 provides an incontrovertible specification ofTc at
2.290. For higherq the peaks ofmq are located at the sam
value of T. Indeed, for this Ising system we find thatmq
satisfies the relation

mq51.231023~q21!2.42. ~32!

What has been demonstrated by this example of the I
problem is thatmq is an effective measure of the fluctuatio
of the spin configurations that have clusters of all sizes.

FIG. 8. The average spin per site, averaged over all config
tions of the Ising system, vs temperatureT in units of J/kB . The
vertical bars indicate the degree of fluctuations from configura
to configuration.
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Similar to Figs. 3 and 7, wherem2 is plotted against the
control parameterr , in Fig. 9 we plotm2 againstT. Al-
though the physics of what they represent are very differe
viz. phase transition as opposed to chaos, the usefulnes
m2 is the same and the implication far reaching. Wheneve
complex system exhibits fluctuating spatial patterns, the
tropy indices can serve to quantify the scaling properties
those fluctuations.

VII. CONCLUDING REMARKS

By working with the two examples, the logistic map an
the Lorenz attractor, we demonstrated that the indexm2 is as
good asl in marking the chaotic regime of the control p
rameters. One may wonder why the complicated proced
to determinem2 should be considered when the computati
of l is significantly simpler. We reiterative that the rationa
for studying spatial patterns is rooted in the desire to exa
ine chaotic behaviors in systems where following the tem
ral evolution is not possible, or where trajectories are ill d
fined. Such problems are far more complicated than
simple nonlinear systems considered in deterministic cha
The complexity of the procedure described in Sec. II for t
determination of the entropy indicesmq is commensurate
with the complexity of the problems. Applying such a tool
study the logistic map seems to be an overkill. But it has
be done in order to show the significance of the method. I
only when the agreement betweenm2 andl is established for
problems with known behaviors ofl that one can claim tha
m2.0 is an effective criterion for chaos, whether the syst
under study is simple or complex.

Beyond the problem of characterizing chaotic behavio
we have further demonstrated that our method is applica
to real spatial systems. In the example of a finite-size
Ising system, it was shown howm2 can be used to determin
the critical temperature. There seems to be a wide rang
problems that could not previously be studied effectively, b
are now amenable to analysis by this method. They m
range from cracks in dry lake beds to galactic distributio

a-

n

FIG. 9. The indexm2 and s̄ vs T. The peak ofm2 occurs at
Tc52.290.
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56 333FLUCTUATIONS OF SPATIAL PATTERNS ASA . . .
When there is only one event, like the astrophysical prob
on galaxies, one should divide the whole space into m
subspaces, each constituting an event, study the multipl
fluctuations in bins of various sizes in each subspace~event!,
and then average the fluctuations of those patterns ove
subspaces. Even in problems of conventional determin
chaos, it is not always easy to fine tune the initial conditio
experimentally. Studying the properties of spatial patte
may allow an experimentalist to circumvent the fine-tuni
difficulty. It would be very interesting to explore through th
m
y
ty

all
ic
s
s

study ofm2 the possible universality among many fields th
have hitherto been regarded as totally unrelated.
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