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Statistical reconstruction of three-dimensional porous media from two-dimensional images

Anthony P. Roberts*
Faculty of Environmental Sciences, Griffith University, Nathan, Queensland 4111, Australia

~Received 16 April 1997!

A method of modeling the three-dimensional microstructure of random isotropic two-phase materials is
proposed. The information required to implement the technique can be obtained from two-dimensional images
of the microstructure. The reconstructed models share two-point correlation and chord-distribution functions
with the original composite. The method is designed to produce models for computationally and theoretically
predicting the effective macroscopic properties of random materials~such as electrical and thermal conductiv-
ity, permeability and elastic moduli!. To test the method we reconstruct the morphology and predict the
conductivity of the well known overlapping sphere model. The results are in very good agreement with data for
the original model.@S1063-651X~97!02309-X#

PACS number~s!: 47.55.Mh, 44.30.1v, 81.05.Rm, 61.43.Bn
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Predicting the macroscopic properties of composite or
rous materials with random microstructures is an import
problem in a range of fields@1,2#. There now exist large-
scale computational methods for calculating the propertie
composites given a digital representation of their microstr
ture ~e.g., permeability@3,4#, conductivity@3–5#, and elastic
moduli @6#!. A critical problem is actually obtaining an ac
curate three-dimensional description of this microstruct
@3,7,8#. For particular materials it may be possible to sim
late microstructure formation from first principles. Genera
this relies on a detailed knowledge of the physics and ch
istry of the system, the accurate modeling of each mate
requiring a significant amount of research. Where such in
mation is unavailable an alternative is todirectly @9–15# or
statistically @3,4,8,16–21# reconstruct the microstructur
from experimental images.

Several techniques ofdirect reconstruction have bee
implemented. A composite can be repeatedly sectioned
imaged, and the results combined to reproduce a th
dimensional digital image of the microstructure@9–11#. For
porous materials, time-consuming sectioning can be avo
by using laser microscopy@12# which can image pores to
depths of around 150mm. Recent microtomography studie
have also directly imaged the three-dimensional microstr
ture of porous sandstones@13,14# and magnetic gels@15#.
The complexity and restrictions of these methods provide
impetus to study alternative reconstruction methods.

Based on the work of Joshi@16#, Quiblier @17# introduced
a method of generating a three-dimensionalstatisticalrecon-
struction of a random composite. The method is based
matching statistical properties of a three-dimensional mo
to those of a real microstructure. A key advantage of t
approach is that the required information can be obtai
from a two-dimensional image of the sample. Recently
method was applied to the reconstruction of sandst
@4,8,18,19# and a material composed of overlapping sphe
@3#. Computations of the permeability and conductiv
@3,4,18# of the reconstructed images underestimate exp

*Present address: Department of Materials, University of Oxfo
Parks Rd., Oxford OX1 3PH, United Kingdom.
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mental data by around a factor of 3. This can be partia
attributed to the fact that percolation threshold of the rec
structed models is around 10%, while the experimental s
tems had thresholds of less than 3%@3#. Recent work in
microstructure modeling led to a general scheme@5,22–27#
~Sec. I! which includes the model employed by Quiblie
Importantly, other models in the scheme can mimic the l
percolation thresholds observed in sandstones~and many
other materials@22#!. It is therefore timely to reconsider sta
tistical methods of reconstructing composite microstructu

Prior methods of statistical reconstruction produce thr
dimensional models which share first-~volume fraction! and
second-~two-point correlation function! order statistics with
the original sample. However the complete statistical
scription of a random disordered material requires high
order information@8,28# ~e.g., the three- and four-point cor
relation functions!, information which in turn is a crucia
ingredient of rigorous theories of macroscopic propert
@1,28,29#, and therefore important to the success of t
model. In this paper we show that reconstructions based
matching first- and second-order statistics do not necess
provide good models of the original composite~Sec. II!. An
alternative method of reconstruction is proposed and te
~Sec. III!. The procedure is employed to reconstruct a co
posite generated from identical overlapping spheres~IOS’s!,
and successfully predicts the electrical conductivity of t
model ~Sec. IV!.

I. MODEL COMPOSITE MATERIALS

To study the statistical properties of composites it is co
ventional to introduce a phase functionf(r ) which equals
unity or zero asr is in phase 1 or 2. The volume fraction o
phase 1 isp5^f&, while the standard two-point correlatio
function is defined asp(2)(r )5^f(r1)f(r2)&, with r 5
ur22r1u ~assuming the material is statistically homogeneo
and isotropic!. p(2)(r ) represents the probability that tw
points a distancer apart will lie in phase 1, from the defini
tion p(2)(0)5p and limr→`p(2)(r )→p2. The surface area
per unit volume iss524dp(2)/drur 50 @30#. Higher-order
functions can be analogously defined, these playing a cen
,

3203 © 1997 The American Physical Society
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3204 56ANTHONY P. ROBERTS
role in rigourous theories of composite properties@28#. In
practice the correlation functions of real composites bey
second order are difficult to measure, and there are sig
cant advantages in developing models for which the fu
tions are exactly known. The primary models in this class
the identical overlapping sphere model@31#, its generaliza-
tion to overlapping annuli@22#, and models derived from
Gaussian random fields~GRF’s! @5,22,32,33# which are cen-
tral to reconstruction procedures.

We utilize two methods of generating isotropic GRF
Each has specific advantages which we discuss. The
method develops the random field in a cube of side lengtT
using a Fourier summation

y~r !5 (
l 52N

N

(
m52N

N

(
n52N

N

clmne
iklmn•r, ~1!

wherek lmn5(2p/T)( l i1mj1nk). The statistics of the field
are determined by the random variablesclmn5almn1 iblmn
(almn and blmn real!. We require thaty is real (clmn5

c̄ 2 l ,2m,2n), and that̂ y&50 (c00050). To ensure isotropy
we also takeclmn50 for klmn5uk lmnu>2pN/T. To generate
a Gaussian field the coefficientsalmn are taken as random
independent variables~subject to the conditions onclmn)
with Gaussian distributions such that^almn&50 and^almn

2 &5
1
2 r(klmn)(2p/T)3 ~similarly for blmn). The functionr(k) is
a spectral density. It can be shown that a random field
fined in this manner has field-field correlation function

g~r ![^y~r1!y~r2!&5E
0

`

4pk2r~k!
sinkr

kr
dk. ~2!

By conventiong(0)51 which sets a constant of proportion
ality on r(k). Definition ~1! can be efficiently evaluated by
Fast Fourier transform routine@5# and isT periodic in each
direction. This is valuable for approximating an infinite m
dium in calculations of macroscopic properties.

Alternatively a random field can be generated using
‘‘random-wave’’ form @32,34#

y~r !5S 2

ND 1/2

(
i 51

N

cos~ki k̂ i•r1f i !, ~3!

wheref i is a uniform deviate on@0,2p), andk̂ i is uniformly
distributed on a unit sphere. The magnitude of the wave v
tors ki are distributed on@0,̀ ) with a probability~spectral!
densityP(k) @*0

`P(k)dk51#. In terms of the first definition,
P(k)54pk2r(k). In this case the fields are not periodic, b
N can be chosen arbitrarily largely over a specifiedk range.
This is especially useful for resolvingr(k) @so that Eq.~2!
holds# in cases where it is strongly spiked@e.g.,P(k)5d(k)
@33##.

Model composite materials can be defined from a G
y(r ) by taking the region in space wherea<y(r )<b as
phase 1, and the the remaining regions@y(r ),a and
y(r ).b] as phase 2. This is the ‘‘two-level cut’’ random
field of Berk @34#. In the casea52` the more common
‘‘one-level cut’’ field is recovered@5,17,32#. The phase func-
tion of this model isf„y(r )…5H„y(r )2a…2H„y(r )2b…,
d
fi-
-
e

.
rst

e-

e

c-

F

whereH is the Heaviside step function. The joint probabili
distribution of the correlated random variable
y5@y(r1),y(r2), . . . ,y(rn)#T is

Pn~y!5„~2p!nuGu…21/2exp~2 1
2 yTG21y!,

where the elements ofG are gi j 5g(r i j )5^y(r i)y(r j )&.
Therefore then-point correlation function is

p~n!5E
2`

` E
2`

`

. . . E
2`

`

Pn~y!)
i 51

n

f„y~r i !…dy. ~4!

The volume fraction of phase 1 isp5p(1)5h5(pb2pa),
where pa5(2p)21/2*2`

a e2t2/2dt and p(2)(r )5h(r ) with
@32,33#

h~r !5h21
1

2pE0

g~r ! dt

A12t2
3FexpS 2

a2

11t D
22 expS 2

a222abt1b2

2~12t2!
D 1expS 2

b2

11t D G . ~5!

The auxiliary variablesh and h(r ) are needed below. The
three-point correlation functions@28# have also been evalu
ated@5,22#.

We now show how new models can be developed. S
posef1(r ) andf2(r ) are the phase functions of two stati
tically independent composites with volume fractionsp1 and
p2 and correlation functionsp1

(2) andp2
(2) . New model com-

posites can be formed from the intersection and union set
each structure. The intersection setf(r )5f1(r )3f2(r ) has
volume fractionp5^f1(r )f2(r )&5^f1(r )&^f2(r )&5p1p2
and correlation function

p~2!~r !5^f1~r1!f2~r1!f1~r2!f2~r2!&

5^f1~r1!f1~r2!&^f2~r1!f2~r2!&

5p1
~2!~r !p2

~2!~r !. ~6!

In a similar way a composite can be modeled as the unio
two independent models. In this case the phase functio
f(r )5f1(r )1f2(r )2f1(r )f2(r ) so that p5p11p2
2p1p2 and

p~2!~r !5p1
~2!~r !~122p2!1p2

~2!~r !~122p1!

12p1p21p1
~2!~r !p2

~2!~r !. ~7!

Therefore if the statistical properties of the original mo
phologies are known~e.g., level-cut GRF’s or the overlap
ping sphere model! the properties of their union and inte
section sets are also known@27#. Note that these result
apply to arbitrary independent phase functions, and are s
ply extended to three or more independent sets, as well a
the calculation of higher-order correlation functions. The
simple results greatly extend the classes of morphol
which can be reproduced by the models.

To simplify matters we now restrict attention to a fe
primary models of microstructure. Consider first structu
derived using the normal two-level cut GRF scheme~model
N). These have the basic statistical propertiesp5h ~recall
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56 3205STATISTICAL RECONSTRUCTION OF THREE- . . .
h5pb2pa), p(2)(r )5h(r ) ands524h8(0). We also take
pa5c3(12p)/2 andpb5pa1p (cP@0,1#) to specify the
level-cut parameters; for example,c50 corresponds to a
one-cut field (pa,b50,p or a52`) andc51 to a symmet-

ric two-cut field @pa,b5 1
2 2(p/2),1

2 1(p/2) or a52b#.
Second, we take a class of models based on the interse
set ~model I ) of two statistically identical level-cut GRF’s
For this modelp5h2, p(2)(r )5h2(r ) and s528Aph8(0),
with pa5c(12Ap)/2 and pb5pa1Ap. Finally, we
introduce a model based on the union set~modelU) of two
level-cut fields. In this casep52h2h2, p(2)(r )52h2

12h(r )(122h)1h2(r ), and s528A12ph8(0), with
pa5cA12p/2 andpb5pa112A12p.

To generate examples of the models defined above,
employ the field-field correlation function@27,35,36#

g~r !5
e2r /j2~r c /j!e2r /r c

12~r c /j!

sin 2pr /d

2pr /d
~8!

characterized by a correlation lengthj, domain scaled, and
a cutoff scaler c . This has the Fourier transform

r~k!5
p22~j2r c!

21j4d4

@d21j2~kd22p!2#@d21j2~kd12p!2#

2
p22~j2r c!

21r c
4d4

@d21r c
2~kd22p!2#@d21r c

2~kd12p!2#
. ~9!

Note thatg(r ) is symmetric inr c and j, and remains well
defined in the limitsr c→j andr c or j→`. In the latter cases
r(k)→d(k22p/d)/4pk2 @33#. For the purposes of calcula
ing the surface area,

2h8~0!5
A2

2p
~e21/2a2

1e21/2b2
!S 4p2

6d2
1

1

2r cj
D 1/2

. ~10!

In the caser c or j→0 a fractal surface results@25,33#. Cross
sections of six of the model microstructures obtained w
r c51, j52, andd52mm are illustrated in Fig. 1.p(2)(r ) is

FIG. 1. Six different microstructures generated by the level-
scheme. In the top row we show a one-cut field and its intersec
and union with a statistically identical structure. In the bottom r
we show analogous structures derived from a two-cut field. T
images have a side length of 10mm.
ion

e

h

measured from three-dimensional realizations~using 1283

pixels! of the models and plotted against its theoretical va
in Fig. 2. The agreement is very good. In Sec. II we a
consider each of the models at an intermediate value ofc5
1
2. The extra three models, along with the six shown in Fig
give nine primary classes of microstructure with which
compare real composites. These broadly cover the type
morphology obtainable by combining two composites gen
ated by the level-cut GRF scheme.

II. STATISTICAL RECONSTRUCTION

The two most common experimentally measured morp
logical quantities of composites are the volume fractionpexpt

and the two-point correlation functionpexpt
(2) (r ) ~e.g., Refs.

@4,19,21,37,38#!. Consider how this information might b
used to reconstruct the composite using the simple one
GRF model ~model N, c50 or a52`). The level-
cut parameter b can be obtained by solving
pexpt5(2p)21/2*2`

b e2t2/2dt and the field-field function ob-
tained by numerical inversion of

pexpt
~2! ~r !5pexpt

2 1
1

2pE0

g~r ! dt

A12t2
expS 2

b2

11t D . ~11!

Fromg(r ) we can obtainr(k) by inverting Eq.~2! and using
either Eq. ~1! or ~3! to obtain y(r ) and hence the mode
phase functionf(r ). The reconstruction shares first- an
second-order statistical properties with the image, and wo
therefore be expected to yield a reasonable model of
original composite. This is similar to the procedure of Qu
lier @17# employed in previous studies@3,4,8,18–21#, al-
though the formulation of the model is different. There a
several operational problems with this reconstruction pro
dure. First, the numerical inversion of Eq.~11! may not be
robust or well defined. Furthermore experimental error
pexpt

(2) (r ) is carried over tog(r ). Second, the inversion of Eq
~11! may yield a spectral densityr(k) which is not strictly

t
n

e
FIG. 2. The theoretical~lines! and measured~symbols! correla-

tion functions of the six models shown in Fig. 1. The squares c
respond to the models constructed from one-cut fields@Figs. 1~a!–
1~c!#, and the triangles to the the two-cut fields@Figs. 1~d!–1~f!#.
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3206 56ANTHONY P. ROBERTS
positive. We now generalize the method to incorporate
modelsN, I , andU of Sec. I, and show how these problem
can be avoided.

First select one of the three models (N, I , or U) and a
value ofc50, 1

2, or 1 ~giving a total of nine combinations! so
that a and b are fixed bypexpt. It remains to findg(r ).
Instead of inverting an analog of Eq.~11! we assume this
function is of the general form given by Eq.~8! @this guar-
antees thatr(k) is positive#. The three length scale param
eters are obtained by a best-fit procedure which minimi
the normalized least-squares error;

Ep~2!5(
i 51

M

@pfit
~2!~r i !2pexpt

~2! ~r i !#
2/(

i 51

M

@pexpt
~2! ~r i !2pexpt

2 #2.

~12!

Herepfit
(2)(r i)5p(2)@g(r i ;r c ,j,d)# is the correlation function

appropriate for modelN, I , or U. Once r c , j and d have
been obtained the reconstructionf(r ) can be generated. I
the one-cut model (N, c50) is chosen, we assume that th
results will not differ significantly from those obtained usin
Quiblier’s method.

To illustrate the procedure we reconstruct a material w
known statistical properties. For this purpose we choos
normal two-cut GRF model withpa,b50.4,0.6~i.e., model
N, c51) obtained from the field-field function@5#

g~r !5e2~r / l 0!2
, r~k!5

l 0
3

~4p!3/2
e2~kl0/2!2

~13!

TABLE I. The parameters obtained in the reconstruction pro
dure@Eq. ~12!# of a test composite. The surface area of the origi
model is 0.87mm21. Here, and in subsequent tables,n@m# denotes
n310m.

Cl c rc j d Ep(2) sfit

N 0 0.4033 0.4031 7.7069 1@-3# 1.13
N 1 2.3702 2.3688 6.2140 3@-5# 0.89
I 1 0.9739 0.9729 9.1032 4@-4# 1.05
U 1 4171.1 6651.8 8.3899 4@-3# 0.98

FIG. 3. The correlation functionspfit
(2)(r ) ~lines! of four recon-

structed models obtained by fitting ‘‘experimental’’ data~symbols!.
e

s

h
a

with l 052.0 mm. The ‘‘experimental’’ data for the recon
struction pexpt

(2) (r i) are evaluated using Eq.~5! at 80 points
distributed uniformly on the interval@0,4# mm ~shown as
symbols in Fig. 3!. The minimization algorithm is used to
find r c , j andd for four different models. Numerical result
are reported in Table I, and the best-fit functionspfit

(2) are
plotted in Fig. 3. Each of the models is able to provide
excellent fit of the data. As expected, modelN (c51) pro-
vides the least value ofEp(2). However the relative improve
ment over the other three models is not large, and proba
of little significance in the presence of experimental err
Cross sections of the original composite and the reconst
tions are shown in Fig. 4~a!–~e!. The extremely different
morphologies exhibited by the reconstructions provide
graphical illustration of the nonuniqueness ofp(2)(r ). There-
fore for prediction of macroscopic properties~which will dif-
fer dramatically for materials shown in Fig. 4! it is necessary
to find a more discriminating method of distinguishing com
posites. From the cross-sectional images the best candid
appear to be modelsN (c51) andU (c51) shown in Figs.
4~c! and 4~e!. Obviously it is preferable to establish som
quantitative test to choose the best representation.

A second useful illustration of the method is provided

-
l

FIG. 4. Realizations of ‘‘experimental’’ and reconstructed co
posites. Top row: A material with a monotonically decaying cor
lation function~a! compared with four reconstructions~b!–~e!. The
two point correlation functions of each composite are practica
identical ~see Fig. 3!. Bottom row: A model composite exhibiting
an oscillatory correlation function~f! and four reconstructions~g!–
~j!. In each case the region shown is 10310 mm2.

FIG. 5. Correlation functions of two reconstructions~lines! of a
material exhibiting an oscillatoryp(2)(r ) ~symbols!. A ‘‘mild’’ two-
cut model~dashed line! is unable to reproduce the strong oscill
tions accurately.
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56 3207STATISTICAL RECONSTRUCTION OF THREE- . . .
reconstructing a material with a strongly oscillating corre
tion function. For this case we take as a test composit
one-cut model withp50.2 andpa,b50.0, 0.2~i.e., modelN,
c50) based on the field-field function@5#

g~r !53r 23~k1
32k0

3!21~sink1r 2sink0r !

23r 22~k1
32k0

3!21~k1cosk1r 2k0cosk0r ! , ~14!

r~k!53@4p~k1
32k0

3!#21@H~k2k0!2H~k2k1!# ,
~15!

with k053.0 andk154.5 (mm! 21. The oscillatory behavior
of the correlation function~see Fig. 5! can only be repro-
duced by three of the nine basic microstructures; modelsN,
I , andU with c50 ~i.e., those formed from one-cut fields!.
For these modelsEp(2),0.005, whereasEp(2).0.02 for
those based on two-cut structures (c> 1

2, so 0,pa,pb). To
illustrate this we show the best fit of a normal two-cut mod

with pa,b50.05,0.25 (N, c5 1
8 ). As can be seen in Fig. 5 thi

‘‘mild’’ two-cut model ~shown as a dashed line! cannot re-
produce the behavior of the experimental data~see Table II!.
Realizations of the original material and reconstructions
shown in Figs. 4~f!–4~j!. Each appears to provide a reaso
able representation.

In contrast to the case of a monotonically decay
p(2)(r ) ~which was reproduced by four distinct model!
strong oscillations appear to be a signature of morpholo
generated by the single level-cut model. Unless there ex
some reason to employ modelsU and I in such a case it is
likely that the standard one-cut GRF~i.e., the model em-
ployed in prior studies! will be appropriate. There is also
physical basis for this argument when spinodal decomp
tion plays a role in the microstructural formation. In this ca
Cahn@39# showed that the evolution of the phase interface
described by the level-set of a sum of random waves sim
to Eq. ~3!.

Finally we comment on the morphological origin of th
oscillations, and why they cannot be well reproduced
two-cut models. In Fig. 6 we showp(2)(r ) and an image of
modelN, c50 with r c52, j54, andd51mm. The material
has strong oscillatory correlations, these representing
‘‘regular’’ alternating domains which appear in the imag
Compare this with data shown for the two-cut model (N,

c5 1
2 ) obtained from the same GRF: the alternating struct

is still present but the oscillations are practically ext
guished. This is due to the sharper decay~or equivalently the
doubled specific surface! associated with the thinner two-cu

TABLE II. Reconstruction of a normal one-cut model with a
oscillatory correlation function. Models formed from two-cut field
~i.e., pa.0) were unable to reproduce the oscillations ofp(2)(r )
~see, e.g., row 4!. The surface area of the original model
1.00 mm21.

Cl c rc j d Ep(2) sfit

N 0 1.6326 1.6330 1.6586 2@-4# 1.01
I 0 2.8276 2.8305 1.7220 4@-3# 1.20
U 0 3.9019 3.8935 1.7263 4@-3# 1.10
N 1

8 4.6684 4.6893 1.9215 3@-2# 1.28
-
a

l

re
-

s
ts

i-
e
s
r

y

he
.

e

structures@27#. For comparison we also show a structu
with no repeat scale~modelN, c50, with r c5 1

6, j5 1
2, and

d5100 mm!.

III. COMPARISON OF HIGHER-ORDER STATISTICAL
PROPERTIES

We have shown that reconstructions exhibiting quite d
ferent morphological properties can share the same two-p
correlation function. Here we propose and test three meth
with the aim of finding a way of selecting the best reco
struction. Following Yaoet al. @8#, we can compare the
three-point correlation function of the model and experime
tal materials. To do so we define a normalized least-squ
measure of the error as

Ep~3!5(
i 51

Nr

(
j 51

Ns

(
k51

Nu

@pfit
~3!~r i ,sj ,uk!

2pexpt
~3! ~r i ,sj ,uk!#

2Y (
i 51

Nr

(
j 51

Ns

(
k51

Nu

@pexpt
~3! ~r i ,sj ,uk!

2pexpt
3 #2. ~16!

The three-point functionp(3)(r ,s,u) gives the probability
that three points distancesr , s and t5(r 21s2

22rs cosu)1/2 apart all lie in phase 1. For our examples w
take Nr ,s,u58 with a uniform distribution ofr and s on
@0,2# mm andu on @0,p#

A second method of characterizing morphology is to c
culate microstructure parameters which appear in theore
bounds on transport and elastic properties@1,29#. We there-
fore expect the parameters to contain critical informat
about the aspects of microstructure relevant to macrosc
properties. These are

z5
9

2pqE0

`dr

r E0

`ds

s E21

1

du P2~u! f ~r ,s,u! ~17!

FIG. 6. Three different types of microstructures. A one-c
model with a well-defined domain~or repeat! scale~left!, a two-cut
model obtained from the same GRF~center!, and a one-cut field
with no domain scale~right!. The oscillations ofp(2) are very weak
for the central model, even though the domain scale is obviou
the eye.
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h5
5z

21
1

150

7pqE0

`dr

r E0

`ds

s E21

1

du P4~u! f ~r ,s,u!, ~18!

where f (r ,s,u)5p(3)(r ,s,u)2p(2)(r )p(2)(s)/p, q512p,
u5cosu, andPn(u) denotes the Legendre polynomial of o
dern. The parameterz occurs in bounds on the conductivit
and the bulk modulus, whileh occurs in bounds on the she
moduli. As pfit

(3) and pexpt
(3) are available for our test models

the parameters can be calculated@5,22#. Techniques have
also been suggested for directly evaluating the parame
from experimental images@40,41#. We anticipate that the
closerzfit is to zexpt the better the reconstructed model. No
that z andh contain only third-order statistical information
and higher-order information is potentially important for o
purposes.

A third simple measure of microstructure is the cho
distribution function of each phase@40,42,43#. For phase 1
this is obtained by placing lines through the composite a
counting the number of chordsn(r ) of a given lengthr

TABLE III. A comparison of the statistical and transport pro
erties of the four reconstructed models~Table I! with those of the
‘‘experimental’’ composite. The measured surface area of the d
tal reconstructions is also shown.

Cl c Ep(3) zfit hfit srec Er (1) Er (2) s rec/s1

N 0 5@-3# 0.32 0.29 1.06 0.25 0.62 0.032
N 1 9@-5# 0.74 0.54 0.75 0.04 0.11 0.114
I 1 2@-3# 0.47 0.37 0.98 0.20 0.48 0.069
U 1 6@-3# 0.87 0.70 1.02 0.02 0.15 0.120

‘‘Expt.’’ data 0.72 0.54 0.87 0.110

FIG. 7. The chord distribution~for phase 1! of an ‘‘experimen-
tal’’ composite@Fig. 4~a!# compared with data for the four recon
structions shown in Figs. 4~b!–4~e!. Both modelsN andU (c51)
appear to mimic the ‘‘experimental’’ data. The lines in the gra
are guides to the eye only.
rs

-

d

which lie in phase 1. The chord distribution is defined
r (1)(r )5n(r )/*0

`n(r )dr, so thatr (1)(r )dr is the probability
that a randomly selected chord will have length betweer
and r 1dr. r (2)(r ) is defined in an analogous manner. A
present it is not possible to evaluate this function analytica
for the level-cut GRF media, but it can be simply evaluat
from realizations of the experimental and reconstructed m
terials. To quantify the difference between the chord dis
butions, we again employ a least-squares error,

Er~ j !5(
i 51

M

@r rec
~ j !~r i !2rexpt

~ j ! ~r i !#
2Y (

i 51

M

@rexpt
~ j ! ~r i !#

2 , ~19!

with j 51 and 2. Note thatr ( j )(r ) contains information
about the degree of connectedness in phasej , and thus is
likely to incorporate important information regarding macr
scopic properties@44#.

We also compute the conductivity of samples~size 1283

pixels! using a finite-difference scheme@5#. We choose the
conductivity of phase 1 ass151 ~arbitrary units! and phase
2 as insulating (s250). At this contrast the effective con
ductivity s is very sensitive to the microstructure. The r

i-

TABLE IV. A comparison of the statistical and transport pro
erties of the three reconstructed models~Table II! which are able to
reproduce the oscillatory correlation function of a test composit

Cl c Ep(3) zfit hfit srec Er (1) Er (2) s rec/s1

N 0 9@-5# 0.24 0.20 1.00 0.001 0.003 0.025
I 0 5@-3# 0.33 0.25 1.16 0.137 0.036 0.032
U 0 5@-3# 0.20 0.17 1.10 0.008 0.127 0.009

‘‘Expt.’’ data 0.24a 0.20a 0.023

aReference@5#.

FIG. 8. The chord distribution~for phase 2! of an ‘‘experimen-
tal’’ composite compared with data for four reconstructions~see the
caption of Fig. 7!.
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56 3209STATISTICAL RECONSTRUCTION OF THREE- . . .
sults therefore allow us to gauge the ability of a reconstr
tion to predict macroscopic properties. This contrast a
occurs commonly in a range of systems~e.g., electrical con-
ductivity of brine saturated porous rocks or thermal cond
tivity of aerogels and foams!.

We calculated the morphological quantities defined ab
for the first four reconstructions~reported in Table I!. The
results are shown in Table III. First note thatEp(3) is greater
thanEp(2) by a factor of 2–5@45# in each case, and is prob
ably of little use in an actual reconstruction. The values
the microstructure parametersz andh are conclusive, as we
expect they indicate that modelN (c51) is best. The chord
distributions of the experimental and reconstructed mate
are shown in Figs. 7~phase 1! and 8~phase 2!. From Table
III we see that the chord distribution provides a very stro
signature of the microstructure. The results indicate that
ther modelN (c51) or modelU (c51) is the best recon
struction. The fact that the conductivity of each model is
close to the experimental data provides some evidence
matching the chord distributions is more important th
matchingz and h. The same comparison is shown for th
reconstructions of the test composite which exhibits an
cillatory p(2)(r ) in Table IV. ModelN (c50) provides the
best reconstruction based on both the chord distribution
the microstructure parameters. This leads to a good pre
tion of the conductivity.

In Sec. II we showed that it was possible to generat
number of morphologically distinct reconstructions whi
share first- and second-order statistical properties with
experimental composite. Here we have suggested t
methods of choosing the best reconstruction. AsEp(3) is
relatively small for all seven reconstructions shown in Tab
III and IV, p(3) ~like p(2)) does not appear to provide
strong signature of microstructure@45#. It is therefore not
possible to conclude that a good reproduction ofp(3) ~or
p(4)) implies a successful reconstruction, as was done in R
@8#. In contrast, both the chord distributions and the mic
structure parameters appear to provide a strong signatu

TABLE V. A comparison of the statistical properties of 11 r
constructions with those of the IOS model at porosity 20%. Mos
the models are able to reproduce the low-order statistical prope
of the IOS model.

Cl c Ep(2) Ep(3) sfit zfit hfit Er (1) Er (2)

N 0 1@-4# 9@-4# 0.94 0.31 0.28 0.066 0.26
N 1

2 3@-3# 5@-3# 0.79 0.74 0.54 0.35 0.15
N 1 2@-3# 8@-3# 0.79 0.84 0.63 0.59 0.31
I 0 2@-4# 7@-4# 0.98 0.35 0.30 0.024 0.24
I 1

2 6@-4# 1@-3# 1.07 0.50 0.38 0.042 0.65
I 1 4@-4# 1@-3# 1.05 0.52 0.40 0.030 0.63
U 0 2@-4# 1@-3# 0.92 0.28 0.26 0.077 0.30
U 1

2 1@-2# 2@-2# 0.91 0.79 0.62 0.49 0.11
U 1 1@-2# 2@-2# 0.91 0.87 0.70 0.40 0.15
I 5 7@-4# 6@-4# 1.00 0.40 0.33 0.003 0.23
I 10 1@-3# 5@-4# 1.00 0.43 0.35 0.003 0.13

‘‘Expt.’’ data ~IOS! 0.96 0.52 0.42
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composite morphology, and hence a method of selectin
useful reconstruction of the original material.

IV. RECONSTRUCTION OF THE IOS MODEL

Realizations of the IOS model@31# ~or Poisson grain
model @46#! are generated by randomly placing spheres i
a solid or void. In the latter case the morphology is thoug
to provide a reasonable model of the pore space in gran
rocks ~so transport occurs in the irregular void region!. As
the model has a different structure from the level-cut G
model, it provides a useful test of reconstruction procedu
@3#. The correlation function of the material@31# is
p(2)(r )5pv(r ) for r ,2r 0 andp(2)(r )5p2 for r>2r 0, where

v~r !511
3

4S r

r 0
D2

1

16S r

r 0
D 3

. ~20!

For this model it is also possible to calculate the pore ch
distribution asr (1)(r )523/4r 03 lnp p3r/4r 0 @43#.

We first consider the IOS model at a volume fracti
pexpt50.2. The system is 80% filled with spheres of radi
r 051mm. Nine reconstructions are generated~by minimiz-
ing Ep(2)), and their higher-order statistical properties a
compared with those of the IOS model in Table V. Based

Ep(2) ~andEp(3)) we note that modelU (c5 1
2 ,1) performs

poorly, while the standard one-cut model is very good. T
microstructure parametersz andh indicate that the best re

construction is modelI (c51) followed by modelI (c5 1
2 ).

However both models fail to reproduce the solid chord d
tribution (Er (2).0.6) which is better mimicked by modelsI
(c50) andN (c50). The ambiguity of the results indicat
that none of models considered may be appropriate.

f
es

FIG. 9. The chord distribution of the IOS model~open sym-
bols!, model I 10 ~solid symbols!, and the standard one-cut mod
~broken line, symbols omitted for clarity!. The heavy line is the
theoretical curve for the IOS model, and the lighter lines are gui
to the eye only.
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The IOS model can be thought of as the intersection se
infinitely many composites comprised of a single sphere
phase 2@so f(r )50 within the sphere#. This suggests tha
the morphology may be better modeled with the level-
scheme by increasing the number of primary composites
yond two. To this end we generalize modelI to the case ofn
independent one-cut fields, so thatp(2)(r )5hn(r ) with
pa50, pb5p(1/n) and s524np121/nh8(0). This is termed
modelI n . The statistical properties of the reconstructions
the casesn55 and 10 are shown in rows 10 and 11 of Tab
V. The models reproduce the ‘‘experimental’’ pore cho
distribution very well, and offer a progressively better rep
sentation of the solid chord distribution and microstructu
parameters. The chord distributions of modelI 5 are shown in
Fig. 9 along side those of the standard one-cut model and

TABLE VI. The results of the reconstruction procedure for t
IOS model. The specific surfaces of the IOS model
s50.71, 0.96, 1.08, and 1.10mm21 as p increases. Generally
model I 10 provides a better match of the chord distributions th
model I5. In each casepb5p1/n for model I n .

p Cl r c j d Ep(2) sfit Er (1) Er (2)

0.1 I 5 0.8770 0.8769 3.8336 3@-4# 0.69 0.011 0.33
I 10 1.2472 1.2470 3.8608 5@-3# 0.70 0.011 0.31

0.2 I 5 0.9942 0.9947 3.9055 8@-4# 1.00 0.003 0.23
I 10 1.4173 1.4174 3.9777 1@-3# 1.00 0.003 0.13

0.3 I 5 1.0974 1.0973 3.9756 1@-3# 1.14 0.003 0.23
I 10 1.6047 1.6053 4.0375 1@-3# 1.13 0.003 0.19

0.4 I 5 1.2148 1.2151 4.0250 1@-3# 1.17 0.006 0.16
I 10 1.8146 1.8158 4.1244 1@-3# 1.15 0.004 0.18

FIG. 10. Reconstructions of the overlapping sphere~IOS! model
at porosity p50.2. To aid visualization, the pores are shown
solid, and solid as void. The images shown here and the ch
distributions~Fig. 9! indicate that modelI 10 provides the best re
construction of the IOS model.
of
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IOS model. The good agreement between the measured
theoretical value ofr (1)(r ) for the IOS model demonstrate
the accuracy with which this function can be evaluated fo
sample of 1283 pixels.

To determine which morphological measure (z andh or
Ep(1) and Ep(2)) should be used to select the best reco
struction, we examine the model morphology and conduc
ity. Three-dimensional images of modelsN (c50), I
(c51), andI 10 are shown alongside the IOS model in Fi
10. The pore space of the single-cut GRF@Fig. 10~a!# is more
disconnected than that of the IOS model, while the pores
too large and uniform in the intersection model@Fig. 10~b!#.
Model I10 @Fig. 10~c!# appears better able to reproduce t
interconnected structures characteristic of overlapp
spheres. The results for the conductivity are,s50.038 for
model N (c50), s50.080 for modelI (c51), s50.052
for modelI 10, ands50.063 for IOS. The fact that modelI 10
better mimics IOS morphology and conductivity than mod
I (c51) provides evidence that minimizingEr ( j ) should be
given more weight than matching experimental values oz
andh.

We adopt this strategy to reconstruct the IOS mode
p50.1, 0.3, and 0.4. In each case modelsI 10 and I 5 provide
the best agreement with the experimental chord distributio

e

rd

FIG. 11. The IOS model~a!–~d! and reconstructions~e!–~h!
which reproduce the correlation function~Fig. 12! and chord distri-
butions~Fig. 9! of the model. The conducting pore space is sho
in black and the images are 10310 mm2.

FIG. 12. The correlation functions of the IOS model compar
with the ‘‘best-fit’’ function associated with each reconstructio
Measurements ofp(2) obtained from realizations of the models a
also shown.
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The numerical results are shown in Table VI, and cross s
tions of each model shown in Fig. 11. We plotpfit

(2)(r ),
pexpt

(2) (r ) and measurements of the function from the rec
structed samples in Fig. 12. The measured data show s
deviation frompfit

(2)(r ) for p50.3. This is due to the accu
mulation of errors as we form the intersection sets of p
gressively more phase functions. Conductivity data are gi
in Table VII and plotted in Fig. 13. ModelsI 5 and I 10 pro-
vide a progressively better estimate of the conductivity. W
anticipate that increasing the order of modelI n would yield
better estimates. The results indicate that we have succ
fully reconstructed the IOS model.

In Fig. 13 we also plot other data for the IOS model. K
and Torquato@47# ~KT! estimateds for the IOS model using
a random walker algorithm specifically designed to han
locally spherical boundaries. In the worst casep50.1 our
data underestimate that of KT by a factor of 1.6~the error
decreases significantly at higher volume fractions!. This is
probably due to the discretization effects of our finit
difference scheme@5#. This does not alter our conclusions
all the data presented at a given volume fraction are pres
ably effected in the same manner. The data of Bentz
Martys @3# for the IOS model and their one-cut reconstru
tion are consistently lower than ours.

V. CONCLUSION

We have developed a method of reconstructing thr
dimensional two-phase composite materials from inform
tion which can be obtained from digitized micrographs. Fi
a range of models are generated which share low-order~vol-
ume fraction and two-point correlation function! statistical
properties with the experimental sample. The model wh
most closely reproduces the chord distributions of the exp
mental material is chosen. The distribution functions p
vided a better signature of microstructure than the thr
point correlation function, and are simpler to measure th
the microstructure parametersz and h. Significantly the
three-point and higher-order correlation functions of the
constructions can be calculated and employed in rigor
analytical microstructure-property relationships. Thre
dimensional realizations of the models can also be sim
generated for the purpose of numerically evaluating mac
scopic properties.

We found that materials with practically identical two
point correlation functions can have very different morpho
gies and macroscopic properties. This demonstrates tha
constructions based on this information alone@3,4,8,16–21#

TABLE VII. The conductivity of the IOS model and variou
reconstructions. Models which match the IOS chord distributio
(I 5,10) provide better estimates of the conductivity than a rec
struction based on the single level-cut model~Rec.N).

p IOS ~KT! a IOS Rec.N Rec.I 5 Rec.I 10

0.1 0.022 0.014 0.003 0.007 0.011
0.2 0.076 0.063 0.038 0.042 0.052
0.3 0.16 0.14 0.094 0.120 0.13
0.4 0.25 0.24 0.180 0.210 0.22

aKim and Torquato, Ref.@47#.
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do not necessarily provide a useful model of the origin
material. If the correlation function exhibits strong oscill
tions, we found evidence that prior methods will provid
satisfactory reconstructions. In this case it is important
compare the chord distributions of the model and experim
tal materials.

Our method can be applied to a wider range of compo
and porous media than prior reconstruction techniques.
generality of the method is achieved by incorporating n
models based on the intersection and union sets of leve
GRF models. The former have recently been shown to
applicable to organic aerogels@27# and porous sandstone
@26#, while the latter may be useful for modeling closed-c
foams. Techniques based on the single-cut GRF model
not reproduce the low percolation thresholds of these m
rials @22#. The method was successfully used to reconstr
several test composites and the overlapping sphere m
over a range of volume fractions. The reconstructions
better able to model the morphology and transport proper
of the IOS model than prior studies@3#.

There are several problems with the reconstruction pro
dure. First, it is possible that two materials with differe
properties may share first- and second-order statistical in
mation and chord-distribution functions. In this case the
construction method could fail to yield good estimates of
macroscopic properties. Second, the generality of the mo
we have employed is not sufficient to mimic all real compo
ites ~although prior studies have shown them to be appro
ate for a wide range of materials@22–27#!. An example is
provided above where our nine basic reconstructions w
unable to model the chord distribution of the IOS model.
this case a further generalization was found to be succes
Others are possible. For example, the restriction that
level-cut and length-scale parameters are identical for e

s
-

FIG. 13. Conductivity of the IOS model~solid symbols! com-
pared with various reconstructions~open symbols!. Model I 10 pro-
vides a very good prediction of the actual conductivity. Other d
are from Refs.@47# ~KT! and @3# ~BM!.
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component of the intersection, and union sets can be rela
or overlapping spheres can be incorporated in the level
scheme. However, the problem remains. It is unlikely,
example, that the morphology of randomly packed h
spheres could be mimicked by this scheme. Third, mod
formed from the union and intersection sets contain sh
edges which are energetically unfavorable in many mater
However there is little evidence that these play a strong
in determining macroscopic properties.

New techniques of characterizing microstructure are c
rently being developed such as those based on informa
entropy@46#. These may contribute to the problem of sele
ing the best reconstructions. Our work also has applicatio
i-

ys
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the inverse problem of small-angle x-ray scattering fro
amorphous materials. In this case the problem is made m
difficult by the absence of higher-order information such
chord distributions~although some progress may be possi
@42#!. Work is underway to model anisotropic composit
and apply the method to experimental systems.
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