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Statistical reconstruction of three-dimensional porous media from two-dimensional images
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A method of modeling the three-dimensional microstructure of random isotropic two-phase materials is
proposed. The information required to implement the technique can be obtained from two-dimensional images
of the microstructure. The reconstructed models share two-point correlation and chord-distribution functions
with the original composite. The method is designed to produce models for computationally and theoretically
predicting the effective macroscopic properties of random matesgatsh as electrical and thermal conductiv-
ity, permeability and elastic moduli To test the method we reconstruct the morphology and predict the
conductivity of the well known overlapping sphere model. The results are in very good agreement with data for
the original model[S1063-651%97)02309-X]

PACS numbg(s): 47.55.Mh, 44.30tv, 81.05.Rm, 61.43.Bn

Predicting the macroscopic properties of composite or pomental data by around a factor of 3. This can be partially
rous materials with random microstructures is an importanattributed to the fact that percolation threshold of the recon-
problem in a range of fieldgl,2]. There now exist large- Structed models is around 10%, while the experimental sys-
scale computational methods for calculating the properties dems had thresholds of less than 3%. Recent work in
composites given a digital representation of their microstrucimicrostructure modeling led to a general schei®@2-27
ture (e.g., permeability3,4], conductivity[3-5], and elastic  (Sec. ) which includes the model employed by Quiblier.
moduli [6]). A critical problem is actually obtaining an ac- Importantly, other models in the scheme can mimic the low
curate three-dimensional description of this microstructurépercolation thresholds observed in sandstotesd many
[3,7,8. For particular materials it may be possible to simu-other material$22]). It is therefore timely to reconsider sta-
late microstructure formation from first principles. Generally tistical methods of reconstructing composite microstructure.
this relies on a detailed knowledge of the physics and chem- Prior methods of statistical reconstruction produce three-
istry of the system, the accurate modeling of each materigdlimensional models which share fir¢tolume fraction and
requiring a significant amount of research. Where such inforsecond-two-point correlation functionorder statistics with
mation is unavailable an alternative is dorectly [9—15] or  the original sample. However the complete statistical de-
statistically [3,4,8,16—2] reconstruct the microstructure Scription of a random disordered material requires higher-
from experimental images. order information8,28] (e.g., the three- and four-point cor-

Several techniques oflirect reconstruction have been relation functiony information which in turn is a crucial
implemented. A composite can be repeatedly sectioned ariigredient of rigorous theories of macroscopic properties
imaged, and the results combined to reproduce a thred1,28,29, and therefore important to the success of the
dimensional digital image of the microstructy@-11]. For ~ model. In this paper we show that reconstructions based on
porous materials, time-consuming sectioning can be avoideghatching first- and second-order statistics do not necessarily
by using laser microscopyl2] which can image pores to Pprovide good models of the original composifec. I). An
depths of around 15@m. Recent microtomography studies alternative method of reconstruction is proposed and tested
have also directly imaged the three-dimensional microstructSec. ll). The procedure is employed to reconstruct a com-
ture of porous sandstong43,14] and magnetic gel§l5].  posite generated from identical overlapping sph¢i®s’s),

The complexity and restrictions of these methods provide th@nd successfully predicts the electrical conductivity of the
impetus to study alternative reconstruction methods. model (Sec. V).

Based on the work of Joshl6], Quiblier[17] introduced
a method of generating a three-dimensicstatisticalrecon-
struction of a random composite. The method is based on
matching statistical properties of a three-dimensional model
to those of a real microstructure. A key advantage of this TO study the statistical properties of composites it is con-
approach is that the required information can be obtainedéentional to introduce a phase functief(r) which equals
from a two-dimensional image of the sample. Recently theunity or zero as is in phase 1 or 2. The volume fraction of
method was applied to the reconstruction of sandstonghase 1 ip=(¢), while the standard two-point correlation
[4,8,18,19 and a material composed of overlapping spheredunction is defined asp®(r)=(¢(r,)¢(ry)), with r=
[3]. Computations of the permeability and conductivity |[r,—r;| (assuming the material is statistically homogeneous
[3,4,18 of the reconstructed images underestimate experiand isotropig. p®@)(r) represents the probability that two

points a distance apart will lie in phase 1, from the defini-
tion p®(0)=p and lim ...p@(r)—p? The surface area
*Present address: Department of Materials, University of Oxfordper unit volume iss=—4dp‘®/dr|,_, [30]. Higher-order
Parks Rd., Oxford OX1 3PH, United Kingdom. functions can be analogously defined, these playing a central
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role in rigourous theories of composite propertj@8]. In  whereH is the Heaviside step function. The joint probability
practice the correlation functions of real composites beyondlistribution of the correlated random variables

second order are difficult to measure, and there are signifiy=[y(r,),y(r,), ....y(r,)]" is
cant advantages in developing models for which the func-
tions are exactly known. The primary models in this class are Po(Y)=((27)"|G|) Yeexp — 3y"G " 1y),

the identical overlapping sphere mod8ll], its generaliza-
tion to overlapping annul[22], and models derived from where the elements oG are g;;=g(ri;) =(y(r;)y(r;)).
Gaussian random fieldSRF’s) [5,22,32,33 which are cen-  Therefore then-point correlation function is
tral to reconstruction procedures. N

We utilize two methods of generating isotropic GRF’s. N *
Each has specific advantages which we discuss. The first p' )_f_mf_m e f_xpn(Y)iHl d(y(r))dy. (4
method develops the random field in a cube of side lefigth

using a Fourier summation The volume fraction of phase 1 =pY=h=(psz—p.,),

where p,=(27) " Y[%_e 24t and p@(r)=h(r) with
N N N . (32.33
y(r)= 2 2 2 CImnelklmn.rv 1) ,
I=—N m=-N n=-N 2

h(r)=h2+4 1 (o) dt « exp( o

wherek,,= (27/T)(li+mj+nk). The statistics of the field (= 2 )o 1—12 1+t

are determined by the random variablgs,,=a;mn+i1bimn

(aymny and by, rea). We require thaty is real ©m,= ) B a’—2apt+ p? ~ B2 )

C_|-m—n), and that(y)=0 (cgpo=0). To ensure isotropy ex 2(1—1?) ex 1+t) |

we also takee;,n=0 for k;mn=|Kimn|=27N/T. To generate

a Gaussian field the coefficients,,, are taken as random The auxiliary variables and h(r) are needed below. The
independent variableésubject to the conditions om,,,)  three-point correlation functioni28] have also been evalu-
with Gaussian distributions such tHat,,)=0 and(a?,,)=  ated[5,22].

L o(Kimn) (271 T)2 (similarly for by,,). The functionp(k) is We now show how new models can be developed. S_up-
a spectral density. It can be shown that a random field dePose¢:(r) and ¢,(r) are the phase functions of two statis-
fined in this manner has field-field correlation function tically independent composites with volume fractignsand

p, and correlation functionp!{? andp$? . New model com-
o ) sinkr posites can be formed from the intersection and union sets of
g(N)=(y(ryy(rz))= fo 4mk P(k)Tdk- (20 each structure. The intersection )= ¢,(r) X ¢,(r) has
volume fractionp=(¢1(r) o(r))=($1(r)){$2(r))=p1p2

By conventiong(0)=1 which sets a constant of proportion- and correlation function

ality on p(k). Definition (1) can be efficiently evaluated by a @2)(r)—
Fast Fourier transform routiné&] and isT periodic in each PEN=(d1(r1) ¢a(r) éa(r2) $a(r2))
direction. This is valuable for approximating an infinite me- =(1(r1) P1(r)) Pa(ry) do(rs))
dium in calculations of macroscopic properties. ) 2
Alternatively a random field can be generated using the =p;7(r)pz7(r). (6)

random-wave” form[32,34 In a similar way a composite can be modeled as the union of

two independent models. In this case the phase function is

12 N
y(r):(3> S cogkk 1+, @ H=di)+ do()=di(r)olr) 50 that p=p,+p;
N/ &1 o —p1p, and
is a uni i K, is uni p?(1)=p(r)(1=2p2) +p5”(r)(1-2py)
whered,; is a uniform deviate of0,27), andk; is uniformly 1 2 2 1
distributed on a unit sphere. The magnitude of the wave vec- +2p.pot p(lz)(r)p(zz)(r). @

torsk; are distributed of0,,0) with a probability (spectral

densityP(k) [foP(k)dk=1]. In terms of the first definition, Therefore if the statistical properties of the original mor-

P(k)=4mk?p(Kk). In this case the fields are not periodic, but phologies are knowie.g., level-cut GRF’s or the overlap-

N can be chosen arbitrarily largely over a specifiechnge.  ping sphere modglthe properties of their union and inter-

This is especially useful for resolving(k) [so that Eq(2)  section sets are also know27]. Note that these results

holds| in cases where it is strongly spikge.g.,P(k) = 6(k) apply to arbitrary independent phase functions, and are sim-

[33]]. ply extended to three or more independent sets, as well as to
Model composite materials can be defined from a GRRhe calculation of higher-order correlation functions. These

y(r) by taking the region in space where<y(r)<g as simple results greatly extend the classes of morphology

phase 1, and the the remaining regiong(r)<« and which can be reproduced by the models.

y(r)>pB] as phase 2. This is the “two-level cut” random  To simplify matters we now restrict attention to a few

field of Berk [34]. In the casea=— the more common primary models of microstructure. Consider first structures

“one-level cut” field is recovered5,17,33. The phase func- derived using the normal two-level cut GRF schefmadel

tion of this model is¢(y(r))=H(y(r)—a)—H(y(r)— B), N). These have the basic statistical propergiesh (recall
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FIG. 1. Six different microstructures generated by the level-cut T (um)
scheme. In the top row we show a one-cut field and its intersection
and union with a statistically identical structure. In the bottom row  FIG. 2. The theoreticallines) and measure¢symbols correla-
we show analogous structures derived from a two-cut field. Th&jon functions of the six models shown in Fig. 1. The squares cor-
images have a side length of 10m. respond to the models constructed from one-cut fiffdgs. 1(a)—
1(c)], and the triangles to the the two-cut fieldsgs. 1(d)—1(f)].

h=ps—p.), pP@(r)=h(r) ands=—4h’(0). Wealso take
P,=CX(1—p)/2 andps=p,+p (ce[0,1]) to specify the measured from three-dimensional realizatidnsing 128
level-cut parameters; for example=0 corresponds to a pixels) of the models and plotted against its theoretical value
one-cut field p, ;=0 or a=—) andc=1 to a symmet- iy Fig. 2. The agreement is very good. In Sec. Il we also
ric two-cut field [paﬁ:%—(p/Z),%+(p/2) or a=-—p]. consider each of the models at an intermediate value=of
Second, we take a class of models based on the intersectignThe extra three models, along with the six shown in Fig. 1
set(modell) of two statistically identical level-cut GRF’'s. give nine primary classes of microstructure with which to
For this modelp=h?, p®(r)=h?(r) ands= —8\/Bh’(0), compare real composites. These broadly cover the types of
with p,=c(1—+p)/2 and Ps=Pat Jp. Finally, we morphology obtainable by combining two composites gener-
introduce a model based on the union @ebdelU) of two ~ ated by the level-cut GRF scheme.
level-cut fields. In this casep=2h—h? p@(r)=2h?
+2h(r)(1—2h)+h*r), and s=-—8J1—ph’(0), with Il. STATISTICAL RECONSTRUCTION
pP,=Cvy1l—p/2 andpg=p,+1—y1-p. )

To generate examples of the models defined above, we The two most common experimentally measured morpho-

employ the field-field correlation functioi27,35,36 logical quantities of composites are the volume fractiggy,
and the two-point correlation functiop)(r) (e.g., Refs.
e "t~ (r./&)e e sin 27r/d [4,19,21,37,3B. Consider how this information might be
g9(r)= 1-(r./é) 21/d (8 used to reconstruct the composite using the simple one-cut

GRF model (model N, c=0 or a=—=). The level-
characterized by a correlation lengihdomain scalel, and cut parameter § can be obtained by solving
a cutoff scaler.. This has the Fourier transform pexptz(277)’1’2f‘fwe*‘2’2dt and the field-field function ob-

tained by numerical inversion of
T A(E—ro) T tENd
[d2+ £2(kd—2m)?][d?+ £%(kd+2m)?]

p(k)=
2 B

) 1 (o) dt
pexpt(r)zpexpt"'z 0 ﬁex BEETIE (11

7 2(E—rg) " trid o
[d2+r2(kd—2m)2|[d?+r2(kd+2m)?] ®

Fromg(r) we can obtairp(k) by inverting Eq.(2) and using
either Eq.(1) or (3) to obtainy(r) and hence the model
phase functiong(r). The reconstruction shares first- and
second-order statistical properties with the image, and would
therefore be expected to yield a reasonable model of the
original composite. This is similar to the procedure of Quib-
lier [17] employed in previous studiel3,4,8,18-2], al-

Note thatg(r) is symmetric inr. and &, and remains well

defined in the limits .— & andr; or §é—o. In the latter cases
p(K)— 8(k—2ar/d)/4mk? [33]. For the purposes of calculat-
ing the surface area,

2 1/2
—h’(0)= E(eflIZaz_i_efl/Z,Bz) 4l+ 1 (10) though the formulation of the model is different. There are
27 6d? 2rcé several operational problems with this reconstruction proce-

dure. First, the numerical inversion of Ed.1) may not be
In the case . or £&—0 a fractal surface resulf25,33. Cross  robust or well defined. Furthermore experimental error in
sections of six of the model microstructures obtained withpfj(%l(r) is carried over tg(r). Second, the inversion of Eq.
r.=1, £&=2, andd=2um are illustrated in Fig. 1p®(r) is  (11) may vyield a spectral density(k) which is not strictly
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Model N (c=0) -
-~~~ Model N (c=1)
—-—-- Model I (c=1)
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FIG. 3. The correlation functiong{?(r) (lines) of four recon-
structed models obtained by fitting “experimental” désymbols.
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FIG. 4. Realizations of “experimental” and reconstructed com-
posites. Top row: A material with a monotonically decaying corre-
lation function(a) compared with four reconstructioiils)—(e). The
two point correlation functions of each composite are practically
identical (see Fig. 3 Bottom row: A model composite exhibiting
an oscillatory correlation functioff) and four reconstruction@)—

(i). In each case the region shown isX100 xm?.

with 1,=2.0 um. The “experimental” data for the recon-
struction p{3)(r;) are evaluated using E¢5) at 80 points
distributed uniformly on the intervdl0,4] wm (shown as

positive. We now generalize the method to incorporate thgympols in Fig. 3 The minimization algorithm is used to

modelsN, I, andU of Sec. I, and show how these problems
can be avoided.

First select one of the three model,(l, or U) and a
value ofc=0, 3, or 1 (giving a total of nine combinationso
that « and B8 are fixed bypeyy. It remains to findg(r).
Instead of inverting an analog of E¢l1l) we assume this
function is of the general form given by E() [this guar-

find r., ¢ andd for four different models. Numerical results
are reported in Table |, and the best-fit functiqui¢’ are
plotted in Fig. 3. Each of the models is able to provide an
excellent fit of the data. As expected, modiel(c=1) pro-
vides the least value & p‘?). However the relative improve-
ment over the other three models is not large, and probably
of little significance in the presence of experimental error.

antees thap(k) is positivd. The three length scale param- ¢,os5 sections of the original composite and the reconstruc-
eters are obtained by a best-fit procedure which minimizeg,ns are shown in Fig. @—(e). The extremely different

the normalized least-squares error;

M M
Ep®= 2 [pif (1)~ P 11)1% 2 [Pepdri) —Pesel”
(12

Herep{?)(r;)=p@[g(r;;r.,&d)] is the correlation function
appropriate for modeN, |, or U. Oncer., £ andd have
been obtained the reconstructigr{r) can be generated. If
the one-cut modelN, c=0) is chosen, we assume that the
results will not differ significantly from those obtained using
Quiblier's method.

To illustrate the procedure we reconstruct a material with

known statistical properties. For this purpose we choose
normal two-cut GRF model witip, ;=0.4,0.6(i.e., model
N, c=1) obtained from the field-field functiofb]

3
0 o (kig/2?

(477)3/2

g(r)=e "M% p(k)= (13)

TABLE I. The parameters obtained in the reconstruction proce-

dure[Eq. (12)] of a test composite. The surface area of the original
model is O.SZLm’l. Here, and in subsequent table§m] denotes
nx10™.

cl c re & d Ep@ Sti

N 0 0.4033 0.4031 7.7069 [-B] 1.13
N 1 2.3702 2.3688 6.2140 (5] 0.89
| 1 0.9739 0.9729 9.1032 [4] 1.05
U 1 4171.1 6651.8 8.3899 (4] 0.98

morphologies exhibited by the reconstructions provide a
graphical illustration of the nonuniquenesspdf)(r). There-
fore for prediction of macroscopic propertigshich will dif-
fer dramatically for materials shown in Fig) # is necessary
to find a more discriminating method of distinguishing com-
posites. From the cross-sectional images the best candidates
appear to be models (c=1) andU (c=1) shown in Figs.
4(c) and 4e). Obviously it is preferable to establish some
guantitative test to choose the best representation.

A second useful illustration of the method is provided by

0.20 T T T ]
, b — Model N, c=0 (p,;=0.00,0.20)
[4

Model N, ¢=0.125 (p, 5=0.05,0.25) ]

015F\ -
e Expt. PA1)

~—~
ot
N’

8 010}
Q" L

005}

0.00 . s \
0

2 r(um)3

FIG. 5. Correlation functions of two reconstructioflises) of a
material exhibiting an oscillatorg®(r) (symbol3. A “mild” two-
cut model(dashed lingis unable to reproduce the strong oscilla-
tions accurately.
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TABLE II. Reconstruction of a normal one-cut model with an 0.20
oscillatory correlation function. Models formed from two-cut fields 4
(i.e., p,>0) were unable to reproduce the oscillationspéf(r) 1
(see, e.g., row ¥ The surface area of the original model is 0.15 h
1.00 um™ 1, ’ 1
= ]
cl c re £ d Ep® Sti 5/0 1ol : 1
N 0 1.6326 1.6330 1.6586 [&] 1.01 s i ]
| 0 2.8276 2.8305 1.7220 (4] 1.20 F 1
U 0 3.9019 3.8935 1.7263 [4] 1.10 0.05 i ]
N 46684 46893 19215 [@] 1.28

reconstructing a material with a strongly oscillating correla-
tion function. For this case we take as a test composite ¢
one-cut model witp=0.2 andp,, ;= 0.0, 0.2(i.e., modelN,

c=0) based on the field-field functidi] FIG. 6. Three different types of microstructures. A one-cut
=313 L3\ =1/ o model with a well-defined domaifor repeak scale(left), a two-cut
g(r)=3r"(ky—kp) “(sinkyr —sinkor) model obtained from the same GREentej, and a one-cut field
—3r2(k3— k3) (K, coskyr — koCokgr ), (14) with no domain scaléright). The oscillations op(® are very weak
1o ! ! 0 o for the central model, even though the domain scale is obvious to
the eye.

p(K)=3[4m(ki —k§)]1 *[H(Kk—ko) —H(k—ky)],
(15) structures[27]. For comparison we also show a structure

with ko=3.0 andk,;=4.5 (um) L. The oscillatory behavior With no repeat scalémodelN, c=0, with r;=3, £=3, and
of the correlation functior(see Fig. % can only be repro- d=100 pm).
duced by three of the nine basic microstructures; molels
I, andU with c=0 (i.e., those formed from one-cut fields  !ll. COMPARISON OF HIGHER-ORDER STATISTICAL
For these model€E p®<0.005, wherea€p(®>0.02 for PROPERTIES
those based on two-cut structur@s>(3, 5o 0<p,<pp). To We have shown that reconstructions exhibiting quite dif-
illustrate this we show the best fit of a normal two-cut modelsa ant morphological properties can share the same two-point
with p, ;=0.05,0.25 N, c=35). As can be seen in Fig. 5 this correlation function. Here we propose and test three methods
“mild” two-cut model (shown as a dashed lineannot re-  with the aim of finding a way of selecting the best recon-
produce the behavior of the experimental date Table I\ struction. Following Yaoet al. [8], we can compare the
Realizations of the original material and reconstructions are¢hree-point correlation function of the model and experimen-
shown in Figs. &)—4(j). Each appears to provide a reason-tal materials. To do so we define a normalized least-square
able representation. measure of the error as

In contrast to the case of a monotonically decaying NN
pA(r) (which was reproduced by four distinct models _ 5 < <0 x° (3
strong oscillations appear to be a signature of morphologieEp :Z'l 121 g’l [Psic (Ti,S;, 6
generated by the single level-cut model. Unless there exists

some reason to employ modélksand| in such a case it is 5 Ne Ns Ny .

likely that the standard one-cut GRFe., the model em- —prS 0012 ) 2 D D [Pl .S 6)
ployed in prior studieswill be appropriate. There is also a =1j=1k=1

physical basis for this argument when spinodal decomposi- _pgxpt]Zl (16)

tion plays a role in the microstructural formation. In this case
Cahn[39] showed that the evolution of the phase interface isThe three-point functiorp®)(r,s, ) gives the probability
described by the level-set of a sum of random waves similathat three points distancesr, s and t=(r?+s?
to Eq. (3). —2rscosd)'? apart all lie in phase 1. For our examples we
Finally we comment on the morphological origin of the take N, ; ,=8 with a uniform distribution ofr ands on
oscillations, and why they cannot be well reproduced by0,2] um and# on[0,7]
two-cut models. In Fig. 6 we show®)(r) and an image of A second method of characterizing morphology is to cal-
modelN, c=0 withr.=2, {=4, andd=1um. The material culate microstructure parameters which appear in theoretical
has strong oscillatory correlations, these representing thiBounds on transport and elastic properfie29]. We there-
“regular” alternating domains which appear in the image.fore expect the parameters to contain critical information
Compare this with data shown for the two-cut modl, ( about the aspects of microstructure relevant to macroscopic
c=13) obtained from the same GRF: the alternating structurdroperties. These are
is still present but the oscillations are practically extin- 9 (=g
guished. This is due to the sharper de@aryequivalently the _ 2 [rer
doubled specific surfag@ssociated with the thinner two-cut 2pqlo 1

[
5 ) duPAWirse) (A7)
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TABLE lll. A comparison of the statistical and transport prop- e AARAAAAAN | RARRARALL | RARAAARRA | RARRARR] ARAAAARAL
erties of the four reconstructed modéRable ) with those of the 3 — EXpt. data
“experimental” composite. The measured surface area of the digi- .
tal reconstructions is also shown. 0.6 B ~=--- Model N (c=0)

- — ok - ~-- Model N (c=1)
Cl ¢ Ep® e See Ep® Ep® ooy R == Model I (c=1)
N §-3] 032 029 106 025 0.62 0.032 o :': —-+— Model U (c=1)

0
N 1 9-5] 074 054 075 0.04 011 0.114
1 2-3] 047 037 098 020 048 0.069
U 1 ¢-3] 087 070 1.02 0.02 0.15 0.120

“Expt.” data 0.72 0.54 0.87 0.110

57 150 wdrfwdeld b (uf 18
n_ﬁ_i_m OT 0? 4 u 4(u) (I’,S,@), ( )

where f(r,s,0)=p®(r,s,0)—p@(r)p?(s)/p, q=1-p,
u=cos, andP,(u) denotes the Legendre polynomial of or- 0 1 2 3 4
dern. The parametef occurs in bounds on the conductivity r (um)
and the bulk modulus, while occurs in bounds on the shear
moduli. As p{y and p{3); are available for our test models, ~ FIG. 8. The chord distributioffor phase 2 of an “experimen-
the parameters can be calculatg22]. Techniques have tal” composite compared with data for four reconstructi¢see the
also been suggested for directly evaluating the parameteggption of Fig. 7.
from experimental imagef40,41. We anticipate that the S S _
closer g is 0 {expr the better the reconstructed model. NotewrllICh lie in phase 1. The chorq distribution is defined as
that £ and 7 contain only third-order statistical information, #™(r)=n(r)/fgn(r)dr, so thatp™)(r)dr is the probability
and higher-order information is potentially important for our that a randomly selected chord will have length between
purposes. andr+dr. p@(r) is defined in an analogous manner. At
A third simple measure of microstructure is the chord-presentitis not possible to evaluate this function analytically
distribution function of each phagd0,42,43. For phase 1 for the level-cut GRF media, but it can be simply evaluated
this is obtained by placing lines through the composite androm realizations of the experimental and reconstructed ma-
counting the number of chords(r) of a given lengthr  terials. To quantify the difference between the chord distri-
butions, we again employ a least-squares error,

T T

T

- L M M
A —— Bptdan oS (- ) S Lo, @9
[ -+ Model N (c=0) =1 =1
12 . - —-- Model N (c=1) _ with j=1 and 2. Note thatp’(r) contains information
10: . --~-- Model I (c=1) ; about the degree of connectedness in phasand thus is

likely to incorporate important information regarding macro-
scopic propertie$44].

We also compute the conductivity of sampleize 128
pixels) using a finite-difference schenj&]. We choose the
conductivity of phase 1 ag;=1 (arbitrary unit3 and phase
2 as insulating §,=0). At this contrast the effective con-
ductivity o is very sensitive to the microstructure. The re-

Model U (c=1)

TABLE IV. A comparison of the statistical and transport prop-
erties of the three reconstructed moddlable 1) which are able to
reproduce the oscillatory correlation function of a test composite.

~ o ]

Cl ¢ Ep® g M Sec EpM Ep? oyeiloy

N 0 9-5] 024 020 1.00 0.001 0.003 0.025
I 0 §-3] 033 025 116 0.137 0.036 0.032
FIG. 7. The chord distributioffor phase 1 of an “experimen- U 0 §-3] 0.20 0.17 1.10 0.008 0.127 0.009
tal” composite[Fig. 4(a)] compared with data for the four recon-
structions shown in Figs.(d)—4(e). Both modelsN andU (c=1) “Expt.” data 0.242 0.202 0.023
appear to mimic the “experimental” data. The lines in the graph

are guides to the eye only. aReferencd5].




56 STATISTICAL RECONSTRUCTION OF THREE- ... 3209

TABLE V. A comparison of the statistical properties of 11 re-

constructions with those of the IOS model at porosity 20%. Most of
the models are able to reproduce the low-order statistical propertie:
of the IOS model.

cl ¢ Ep® Ep® sy Zw  mw  Ep®  Ep®

N 0 14 9-4 094 031 028 0.066 0.26

N % 33 5-3 079 074 054 035 0.15

N 1 2Z-3] §-3] 079 084 063 059 031

| 0 24 74 098 035 030 0.024 0.24

I i 6-4 1-3] 107 050 038 0.042 0.65

I 1 4-4 1-3] 105 052 040 0.030 0.63

U o0 24] 1-3] 092 0.28 026 0.077 0.30

U : 1-2] 2-2] 091 079 062 049 0.1

U 1 1-2] 2[-2] 091 087 070 040 0.15

ls 7-4] 6[-4] 100 0.40 0.33 0.003 0.23

l10 1-3] 5-4 1.00 043 0.35 0.003 0.13
“Expt.” data (10S) 0.96 052 0.42

. FIG. 9. The chord distribution of the I0S mod@&pen sym-

sults therefore allow us to gauge the ability of a reconstrucs .
i ; dict : " Thi trast al bols), modell, (solid symbol$, and the standard one-cut model
Ion 10 predic ma_lcroscoplc properies. IS an ras as?broken line, symbols omitted for clarityThe heavy line is the
occurs commonly in a range of systefiesg., electrical con-  heoretical curve for the 10S model, and the lighter lines are guides
ductivity of brine saturated porous rocks or thermal conductg the eye only.
tivity of aerogels and foams

We calculated the morphological quantities defined abovgomposite morphology, and hence a method of selecting a
for the first four reconstructiongreported in Table)l The  useful reconstruction of the original material.
results are shown in Table lIl. First note thap®) is greater
thanEp® by a factor of 2—§45] in each case, and is prob- IV. RECONSTRUCTION OF THE 10S MODEL
ably of little use in an actual reconstruction. The values of

the microstructure parametefsand  are conclusive, as we  Realizations of the I0S moddB1] (or Poisson grain
expect they indicate that modil (c=1) is best. The chord model[46]) are generated by randomly placing spheres into
) solid or void. In the latter case the morphology is thought

distributions of the experimental and reconstructed materiat : )
are shown in Figs. Tphase 1and 8(phase 2 From Table o provide a reasonable model of the pore space in granular
' rocks (so transport occurs in the irregular void regioAs

lll we see that the chord distribution provides a very strongthe model has a different structure from the level-cut GRF

signature of the microstructure. The re;ults indicate that €imodel, it provides a useful test of reconstruction procedures
ther modeIN (c=1) or modelU (c=1) is the best recon-

. e g . The correlation function of the materidl31] is
struction. The fact _that the conduct|\_/|ty of each mpdel is sop(z)(r): p*®™ for r<2r, andp®@(r) = p? for r=2r,, where
close to the experimental data provides some evidence that
matching the chord distributions is more important than 3/t 1/{r\3
matching{ and . The same comparison is shown for the v(r)y=1+ — r_) - 1—6( r_) . (20
reconstructions of the test composite which exhibits an os- 0 0

. 2 . _ .
cillatory p(r) in Table IV. ModeIN (c=0) provides the £ this model it is also possible to calculate the pore chord
best reconstruction based on both the chord distribution angictribution asp™D(r) = — 3/4r o X Inp g4 0 [43].

the microstructure parameters. This leads to a good predic- We first consider the 10S model at a volume fraction
tion of the conductivity.

; : =0.2. The system is 80% filled with spheres of radius
In Sec. Il we showed that it was possible to generate ;ex’“ y 0 p

b f holoaically distinct ructi hich o=1um. Nine reconstructions are generatég minimiz-
number of morphologically distinct reconstructions wnic ing Ep®), and their higher-order statistical properties are

share_ first- and secor)d-order statistical properties with a@ompared with those of the 10S model in Table V. Based on
experimental composite. Here we have suggested three

methods of choosing the best reconstruction. B is Ep® (and.Ep(3)) we note that model (C:.%'l) performs
relatively small for all seven reconstructions shown in Tableg?00rly, while the standard one-cut model is very good. The
Il and 1V, p® (like p®) does not appear to provide a microstructure parametetsand » indicate that the best re-
strong signature of microstructufd5]. It is therefore not construction is model (c=1) followed by model (c=3).
possible to conclude that a good reproductionpé? (or  However both models fail to reproduce the solid chord dis-
p) implies a successful reconstruction, as was done in Refribution (Ep®>0.6) which is better mimicked by modells
[8]. In contrast, both the chord distributions and the micro-(c=0) andN (c=0). The ambiguity of the results indicate
structure parameters appear to provide a strong signature fat none of models considered may be appropriate.
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FIG. 11. The I0S modela)—(d) and reconstructionge)—(h)
which reproduce the correlation functidfig. 12 and chord distri-
butions(Fig. 9) of the model. The conducting pore space is shown
in black and the images are 100 um?.

I0OS model. The good agreement between the measured and
theoretical value op*)(r) for the I0S model demonstrates
the accuracy with which this function can be evaluated for a
sample of 128 pixels.
; To determine which morphological measuednd » or
(c) Recon. T1o (d) 10S model Ep™ and Ep®®) should be used to select the best recon-
struction, we examine the model morphology and conductiv-
FIG. 10. Reconstructions of the overlapping spH#@s) model  ity. Three-dimensional images of modeN (c=0), |
at porosityp=0.2. To aid visualization, the pores are shown as(c=1), andl,, are shown alongside the I0S model in Fig.
solid, and solid as void. The images shown here and the chordQ. The pore space of the single-cut Gg. 10a)] is more
distributions(Fig. 9) indicate that model o provides the best re- disconnected than that of the I0S model, while the pores are
construction of the I0S model. too large and uniform in the intersection mogElg. 100b)].
Model |44 [Fig. 10c)] appears better able to reproduce the
The 10S model can be thought of as the intersection set ohterconnected structures characteristic of overlapping
infinitely many composites comprised of a single sphere obpheres. The results for the conductivity ases 0.038 for
phase Zso ¢(r)=0 within the spherp This suggests that modelN (c=0), o=0.080 for modell (c=1), o=0.052
the morphology may be better modeled with the level-cutfor modell ;,, ando=0.063 for I0S. The fact that modgj,
scheme by increasing the number of primary composites bayetter mimics I0S morphology and conductivity than model
yond two. To this end we generalize modléb the case oh | (c=1) provides evidence that minimizirgp) should be
independent one-cut fields, so that?)(r)=h"(r) with  given more weight than matching experimental valueg of
P,=0, pg=p™™ ands=—4np'~h’(0). This is termed  and 7.
modell,,. The statistical properties of the reconstructions for We adopt this strategy to reconstruct the 10S model at
the cases=5 and 10 are shown in rows 10 and 11 of Tablep=0.1, 0.3, and 0.4. In each case modglgand| 5 provide
V. The models reproduce the “experimental” pore chordthe best agreement with the experimental chord distributions.
distribution very well, and offer a progressively better repre-
sentation of the solid chord distribution and microstructure 0.40
parameters. The chord distributions of mobighre shown in AN
Fig. 9 along side those of the standard one-cut model and th

T T T T T

e Recon. Model I;
- - - Fitted Model I
— I0S Model

0.30%

TABLE VI. The results of the reconstruction procedure for the
IOS model. The specific surfaces of the 10S model are 7>
$=0.71, 0.96, 1.08, and 1.1@m™! as p increases. Generally, a\/

model |, provides a better match of the chord distributions than 0-20:

model Is. In each caqu)B:pl’” for modell , . -
p C r. & d  Ep® s Ep® Ep®@ 0.10%
0.1 15 0.8770 0.8769 3.8336 [d] 0.69 0.011 0.33
o 1.2472 1.2470 3.8608 [8] 0.70 0.011 0.31 0.005
0.2 15 0.9942 0.9947 3.9055 [&] 1.00 0.003 0.23 00 0.5 10 15 2.0 25 30

l,o 1.4173 1.4174 3.9777 [43] 1.00 0.003 0.13
0.3 I 1.0974 1.0973 3.9756 [B] 1.14 0.003 0.23
lip 1.6047 1.6053 4.0375 [B] 1.13 0.003 0.19 FIG. 12. The correlation functions of the I0S model compared
0.4 s 1.2148 1.2151 4.0250 [B] 1.17 0.006 0.16 with the “best-fit” function associated with each reconstruction.

l,o 1.8146 1.8158 4.1244 [B] 1.15 0.004 0.18 Measurements gb® obtained from realizations of the models are
also shown.
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TABLE VII. The conductivity of the IOS model and various T " " T T

reconstructions. Models which match the 10S chord distributions I . :
(Is,10 provide better estimates of the conductivity than a recon- _- ® 4 10S: KT, This work, BM ’
struction based on the single level-cut mo¢eéc.N). o Recon. Model 1,4 = &

) o Recon. Model I Q A A
p I0S (KT) 10S Rec.N Rec.l5 Rec.lg 0_10[- o Recon. Model N = E
0.1 0.022 0.014  0.003  0.007 0.011 ' A  Recon. BM . a ]
0.2 0.076 0.063 0.038 0.042 0.052 — o
0.3 0.16 0.14 0.094 0.120 0.13 Q I ‘8 A
0.4 0.25 0.24 0.180 0.210 0.22 O I A
&im and Torquato, Ref(47]. .

[ ]

The numerical results are shown in Table VI, and cross sec .01 - © A _
tions of each model shown in Fig. 11. We plpf?(r), : o ]
pZy(r) and measurements of the function from the recon-
structed samples in Fig. 12. The measured data show som A
deviation fromp{?)(r) for p=0.3. This is due to the accu- i O 4
mulation of errors as we form the intersection sets of pro- I
gressively more phase functions. Conductivity data are giver —
in Table VII and plotted in Fig. 13. Models; and| 4o pro- 0.1 ¢
vide a progressively better estimate of the conductivity. We
anticipate that increasing the order of motiglwould yield FIG. 13. Conductivity of the 10S modébolid symbol$ com-
better estimates. The results indicate that we have succegsared with various reconstructiofspen symbols Model | ;o pro-
fully reconstructed the I0S model. vides a very good prediction of the actual conductivity. Other data

In Fig. 13 we also plot other data for the I0S model. Kim are from Refs[47] (KT) and[3] (BM).
and Torquatd47] (KT) estimatedr for the I0S model using
a random walker algorithm specifically designed to handledo not necessarily provide a useful model of the original
locally spherical boundaries. In the worst cgse0.1 our  material. If the correlation function exhibits strong oscilla-
data underestimate that of KT by a factor of 1tbe error tions, we found evidence that prior methods will provide
decreases significantly at higher volume fractjorkhis is  satisfactory reconstructions. In this case it is important to
probably due to the discretization effects of our finite- compare the chord distributions of the model and experimen-
difference schemgs]. This does not alter our conclusions as tal materials.
all the data presented at a given volume fraction are presum- Our method can be applied to a wider range of composite
ably effected in the same manner. The data of Bentz an@nd porous media than prior reconstruction techniques. The
Martys [3] for the 10S model and their one-cut reconstruc-generality of the method is achieved by incorporating new
tion are consistently lower than ours. models based on the intersection and union sets of level-cut
GRF models. The former have recently been shown to be
applicable to organic aerogel7] and porous sandstones
[26], while the latter may be useful for modeling closed-cell

We have developed a method of reconstructing threefoams. Techniques based on the single-cut GRF model can-
dimensional two-phase composite materials from informanot reproduce the low percolation thresholds of these mate-
tion which can be obtained from digitized micrographs. Firstrials [22]. The method was successfully used to reconstruct
a range of models are generated which share low-drdér  several test composites and the overlapping sphere model
ume fraction and two-point correlation functjostatistical over a range of volume fractions. The reconstructions are
properties with the experimental sample. The model whichbetter able to model the morphology and transport properties
most closely reproduces the chord distributions of the experief the 10S model than prior studi¢8].
mental material is chosen. The distribution functions pro- There are several problems with the reconstruction proce-
vided a better signature of microstructure than the threedure. First, it is possible that two materials with different
point correlation function, and are simpler to measure thaproperties may share first- and second-order statistical infor-
the microstructure parameters and ». Significantly the mation and chord-distribution functions. In this case the re-
three-point and higher-order correlation functions of the re-construction method could fail to yield good estimates of the
constructions can be calculated and employed in rigorousacroscopic properties. Second, the generality of the models
analytical microstructure-property relationships. Three-we have employed is not sufficient to mimic all real compos-
dimensional realizations of the models can also be simplytes (although prior studies have shown them to be appropri-
generated for the purpose of numerically evaluating macroate for a wide range of material]22—-27). An example is
scopic properties. provided above where our nine basic reconstructions were

We found that materials with practically identical two- unable to model the chord distribution of the I0S model. In
point correlation functions can have very different morpholo-this case a further generalization was found to be successful.
gies and macroscopic properties. This demonstrates that r&thers are possible. For example, the restriction that the
constructions based on this information aldB8e4,8,16—21  level-cut and length-scale parameters are identical for each

V. CONCLUSION
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component of the intersection, and union sets can be relaxethe inverse problem of small-angle x-ray scattering from
or overlapping spheres can be incorporated in the level-cidmorphous materials. In this case the problem is made more
scheme. However, the problem remains. It is unlikely, fordifficult by the absence of higher-order information such as
example, that the morphology of randomly packed harcchord distributiongalthough some progress may be possible

spheres could be mimicked by this scheme. Third, modelg42]). Work is underway to model anisotropic composites
formed from the union and intersection sets contain shargnd apply the method to experimental systems.

edges which are energetically unfavorable in many materials.
However there is little evidence that these play a strong role
in determmmg macroscopic properties. ACKNOWLEDGMENTS
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