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Fracture deformation and influence on permeability
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One of the simplest aspects of coupling between mechanics and hydromechanics of fractures is addressed by
the numerical resolution of the mechanical and hydrodynamic equations in three dimensions at the local level.
A mean field approximation is derived that may include nonlinear effects because of the variations of the
contact surface. Three types of fractures were studied, namely, model deterministic, Gaussian, and self-affine.
Numerical results relative to the closure of the fracture, the normal stiffness, and the permeability are presented
and discussed. They are satisfactorily compared to available experimental f¢&1M683-651X97)16108-§

PACS numbds): 83.50—v

[. INTRODUCTION the determination of permeability by solving the Reynolds
equation[7].
The major purpose of this paper is to study the deforma- The successful application of the asperity model requires
tion of fractures under normal loads and to determine th&/arious surface geometry measurements that necessarily in-
resulting changes in permeability. Since the permeability of %/olve some uncertainties. Joints with inhomogeneous sur-

; ; aces or with loose material do not follow the theoretical
EL?C? n;hggtr\]: é el-i It(r?gvtvvr\]/ Ot?,v;ﬁ;y aa:yﬂs];;“”\(/jaﬁgﬂvzﬂ i(:]f tthhizpredictions[S]. Moreover, fractures with correlated surfaces

dist iderabl dify the f Such variati require measurements of the correlation distance.
istance may considerably modify the flow. Such variations Surprisingly, in view of the complexity of the problem,

oceur for geological fractures' beg:ause of the constant m.Odi[here are few numerical models. A joint deformation model
fications of stresses and strains in the underground mediuny, 55 developed by Hopkiret al.[8] in order to analyze the
_ Some analytical approaches of this problem can be foungeationship between the normal joint stiffness and the spatial
in the literature. The elastic deformation of a rough SurfaC%eometry of the joint. The joint deformation was supposed to
in contact with a perfectly flat elastic surface was analyzethe a combination of the deformation of the half spaces
by Greenwood and Williamsofl] by using an asperity around it and the compression of the asperities separating
model; they used the Hertzian contact theory and assumoint surfaces. The asperities were modeled as disks under-
tions about the radius of curvature and heights of asperitiegoing an elastic compression. The effect of the contact ge-
and found a relationship between the normal stress and th@metry on the joint stiffness was studied by using a model
deformation between a reference surface and the plane efith asperities of equal height regularly distributed over the
contact. A “bed of nails” model for the fracture asperities fracture plane.
was developed by Gan{R] to study the permeability varia- Unger and Mas¢9] performed a numerical study of the
tion of a fracture with the normal load. Tsang and Wither-hydromechanical behavior of fractures with rough self-affine
spoon[3] considered the closure of a fracture as the result ofurfaces. Each surface was represented as a series of asperi-
the deformation of voids located between the asperities; thdes resting upon a solid half space. During closure, asperities
behavior of the fracture under a normal stress and the flowhat come into contact undergo compression as one-
variation through it were obtained. Walsh and Grosenbauglbimensional rectangular columns and punch into the support-
[4] analyzed the stiffness of joints considering the deformaing solid half space. The deformation of the asperities and of
tions of the asperities and of the surrounding matrix. the half spaces is determined at a given clodir¢he mean
The asperity model was generalized by Brown and Scholzontact stres®, over the contact zone is subsequently de-
[5] by including the composite topography of the fractureduced.
surfaces in the joint closure analysis. Theory agreed quanti- Some additional references about experimental results on
tatively with experiments on ground glass surfaces. Browrtlosure of a single fracture subjected to normal load are dis-
and Schol46] demonstrated later that the theory can be suceussed in Secs. V and VI, which compare the numerical
cessfully applied to mated surfaces of fractures if the spatiatomputations and the experimental data.
cross correlations of the surfaces are taken into account. This paper is organised as follows. Section Il is devoted
Such a description of fracture surfaces was also applied t a general presentation of the problem. Basically, a fracture
separates two semi-infinite solid blocks on which a uniform
load is applied at infinity. Because of this load, the fracture
*Permanent address: Institute for Problems in Mechanics, Russiaundergoes some deformation that tends to reduce the fracture
Academy of Sciences, 101 prosp. Vernadskogo, Moscow 11752¢ermeability. The resolution of this problem necessitates
Russia. several ingredients. The solid matrix is assumed to be an
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elastic solid and the local displacements are obtained by @ o, ot
solving the basic equations of elastostatics. The flow through _ ’ A Sy + ;
the fracture is derived from the Stokes equations; the perme- = A - -

abilities of the initial and of the deformed fractures are easily Syl | =
obtained by calculating the average flow rate. ' -

Three types of fractures are addressed in this paper. A —] A pr
simple deterministic case is studied for comparison purposes. | .
Two random fractures are generated with a Gaussian distri- l/\ff' Spe
bution of the surface heights; these heights are correlated in
the fracture plane either by a Gaussian or by a self-affine St
correlation.

Section 1l is devoted to a mean field analysis of the de-
formation of the fracture surfaces. The basic element of this
analysis is a classical lubrication-type formulef. Landau
and Lifshitz [10]), which gives the deformation of a solid bp sy
half space when the distribution of the surface stresses is
known. A mean field approximation of the stress distribution ,
enables the calculation of the fracture closure and of the
normal joint stiffness in the linear and the nonlinear regimes.

Since realistic stochastic models of fractures are em-
ployed and no approximation is used in the calculation of
deformations and flow, numerical tools are necessarily em-
ployed. All the relevant details and the range of parameters
studied are given in Sec. IV. Such a direct treatment of this
physical situation has never been done to the best of our
knowledge.

Section V presents the variations of fracture closure with
applied normal loadP. The evolution of the local fracture
apertureb with the loadP is for a Gaussian fracture; it is
shown that the deformation field is almost uniform for small £, 1. Conventions and notations for the fracture geometry.
contact areasS;. Then, the variation of the mean aperture only one unit cell is displayed ife) and two in(b).
with P is presented; the new contacts are shown to signifi-
cantly influence the evolution of the aperture. The normalThe aperturd of a fracture is the difference betwekn and
stiffness is analyzed as a function of the fractional contach~ when it is non-negative
areaS; . A satisfactory agreement with the predictions of the

mean field theory and available experimental data is ob- b w, w=0

tained. 10, w<0, 1)
The variations of the fracture permeability with normal

stress are discussed in Sec. VI. The dependence of the hy- w=h"—h".

draulic aperture upoR is similar to the mechanical proper- ) ) ) )
ties. The hydraulic and mean aperture data approximatelhenw is hegative, the surfaces are considered to be in
verify a linear relation. The comparison with experimentalcontact anch™=h"=0.

data is satisfactory. Some concluding remarks end this paper. The closure of a fracture under normal load can be de-
fined in the following way. In experimental studies, a uni-

form normal load is exerted on a fractured sample, and local
displacements are measured. In order to reduce effects of
A. General description nonuniform loading, the averages of several strain gauge out-
. . . puts are taken. The mean closure of a fracture is directly
Consider two semi-infinite pieces of rocks that are par- . . .
. . o .~~~ . measured by linear variable displacement transducers
tially in contact on an almost plane surface; this situation is

depicted in Fig. 1; the fracture is the void volume between(LVDT)’ which are located close to the fractyfi] or com-

the two solid half spaces. A fluid is flowing through the puted by subtracting the deformation of the solid sample

fracture. Suppose now that external forces are exerted 0from the deformation of the part of the sample containing the

these tWo roF():FIls in order to produce a uniform presE i!?acture[6]. Then, the closure of a fracture is defined as the

o P P mean difference between the displacements of each fracture

an infinite distance of the fracture. The two rocks are mod-
. . : surface

eled as perfectly elastic solids. Because of this external pres-

sure, they will undergo deformation and the shape of the V=(Ah*—Ah"). )

fracture will be modified. The new geometry of the fracture

will influence the flow and subsequently the permeability of|t can be shown from Eqg1) and(2) that the closur&/ may

the fracture. be expressed as
The two surfaces of a fracture are described by the heights

z=h*(x,y) above an arbitrary reference plaze 0 (Fig. 1). V={(b;,)—(b), (3)

Il. GENERAL
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whereb,, is the initial aperture of the fracture. The averageAs a general rule, in the numerical calculations, the space is

value (b) is calculated over the total area of the fracturereplaced by a three-dimensional unit cell centered around the

projection. mean fracture plane; spatially periodic boundary conditions
This definition is used in the present work though otherare imposed on the two lateral boundaries parallel toctlze

definitions are possibléct., for instance, Unger and Mase andy-z planes and denoted by, in Fig. 1.

[9]). A uniform normal loadP (i.e., a force per unit surfage For the sake of clarity, the numerical method of solution

is applied at an infinite distance of the fracture to both solidis postponed to Sec. IV.

half spaces. The total displacemedtare calculated for each

value of P by solving the elastostatic equations; it is impor- B. Deformation model

tant to notice that the local stresses are neither uniform, nor . o . ) )
normal close to the fracture surface. The closurés de- The solid matrix in which the fracture is embedded is

duced from Eq.(3), and the geometrical evolution of the supposed to be perfectly elastic. The equations that govern
void volume is characterized. the elastic behavior of the material are the basic equations of

Once the deformation of the fracture is determined as glastostatics. Letr denote the stress tensor; in the absence of

function of the loacP, the permeability of the fracture has to &Y external volumetric force, the equilibrium equation reads
be estimated. The hydraulic properties of the fractures arés

characterized by the Stokes permeabiBtyand the hydrau- V.o=0. (69)

lic aperture of the fracturbs. The Stokes permeability ten-

sor Bs is defined by the equation The strain tensoe is expressed in terms of the displacement

du

_ 1 —_—
Qs Bs TP, (@) e=[Vd+(Vd)')/2, (6b)

whereQg is the mean flow rate per unit fracture widgathe  where the superscript denotes the transposition operator.
fluid viscosity, andVp the macroscopic pressure gradient. Only isotropic solid matrices are considered here. Hence, the
When the fracture is isotropiBg reduces tdBgl wherel is  stress tensor is given by
the two-dimensional unit tensor. The permeabilty is de-
rived from the solution of the Stokes equations, which are o=| tre-1+2me, (60
described in Sec. Il C. For isotropic fractures, the hydraulic
aperturebg is defined as wherel andm are the familiar Lameoefficients. For future
use, the Young modulug=(3l+2m)m/(I+m) and the
bs=(12Bg)*. (5)  Poisson ratiov=1/2(1+m) can be defined.
These equations have to be supplemented with boundary
In real fractures that contain an incompressible fluid, theconditions at the free fracture surfac8s. Let us simply
deformation of the matrix may be considered as the result ofssume that no external force is exerted at this interface
the equilibrium between the applied normal stresses and thghose unit normal is:
fluid pressure acting on the fracture surfaces. In most cases,
the variations of the fluid pressure along the fracture plane o-n=0 on §,. (6d)
are negligible compared to the mean pressure acting on the
surfaces. Hence, the deformations can be calculated for trequivalently, the equilibrium equation can be expressed in
effective normal load, which is the difference between theterms of the displacemeunt,
real applied load and the mean fluid pressure in the fracture.
Therefore, the mechanical and hydraulic behaviors of the (I+m)V(V-d)+mV2d=0 (78
fracture are considered separately; this means that the solid
matrix displacements under the applied |dadre calculated together with the condition of no stress at the bound&yrgf
without taking into account the fluid pressure in the fracturethe solid phase
Thus, the stress strain behavior of a fracture embedded in
an elastic solid matrix is studied in terms of the applied {m[Vd+(Vd)']+I(V-d)I}-n=0, o-n=0 on Sy
normal loadP and of the fracture closuré. (7b)
Before this general presentation is concluded, the follow-
ing limitation should be emphasized. The deformations of Periodic conditions are applied on the vertical boundaries
the solid matrix are determined by the linear elasticity theory/7o of the unit cell of the periodic system. Far from the
where only small deformationd can be studied. WheR  fracture plane, a uniform fixed normal lo&lis applied:
increasesd increases linearly. For some critical valge,
opposite surfaces of the fracture eventually touch each other 0,7~=—P, z—*x. (8
and some new contact zone appears. This new contact should
be taken into account in the calculation of the displacement When the fracture surfaces touch one another, they are
field for P>P,; hence, the initial fracture geometry should assumed to be cemented and the stress and strain are con-
be modified and a new displacement field calculated. tinuous at the contact surfa&y:
The general equations that govern the physical situation L L
depicted in Fig. 1 will be presented in the rest of this section. o'=0", d'=d° on Sy 9
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When the elastic problem is solved, the mean apefoye Bg calculated by numerically solving the Navier-Stokes
and the fracture closuré are easily calculated as functions equations in the low Reynolds number limit as done by
of the normal loadP. The normal joint stiffness can be de- Mourzenkoet al. [16].

fined as[12] The analysis of Stokes flow is very similar to that made
for three-dimensional porous mediaf. Adler [17]). Con-

k= d_P (10 sider an infinite fracture made of identical unit cells of size

dav’ L XL in thex-y plane. The low Reynolds number flow of an

incompressible Newtonian fluid through a fracture is gov-

The normal joint stiffness is widely used to describe theerned by the usual three-dimensiol@D) Stokes equations
behavior of fractures under load and can be measured in the

laboratory[13—15. Vp=uV?, V.v=0 (11
C. Fluid flow model

For each value of the load, the geometry of the fracture wherev, p, andu are the velocity, pressure, and viscosity of
void volume can be determined and the mean permeabilitthe fluid, respectively. In general, satisfies the conditions

v=0 on the total surfaceS of the fracture (123
and

v is spatially periodic with period. in the plane of the fracture (12b

This system of equations and conditions applies locally atvhere o2 denotes the varianc&F—(F))?); the angular
each point of the interstitial fluid. In addition, it is assumed brackets correspond to the statistical average. For instance,
that the macroscopic pressure gradi€mt is specified; oy, denotes the root-mean-square roughness of the surface.

The apertureb of the fracture is defined by E¢l) and
may be described by its medh) and its variancerZ, which
are generally not equal to the mean separaliga(w) and
(13) to 0'5\,, respectively; of course, the differences between these
values is due to the partial overlap of the fractufes
Mourzenkoet al.[18]). Whenw is negative, the surfaces are

— 1
Vp= ;I L p ds=(a prescribed constant vectpr
70

where 7, is the volume of the fracture is bounded by the
two solid surfacesS, and the vertical boundary of the frac- . <iqared to be in contact and one hds=h~ = Z.

tion S, of the unit cell in the fracture volume, so that A series of fractures is obtained with the same fidids
=S,1US; (see Fig. 1 The mean flow rat®s per unit frac- ¢ gifferentb,,. For some values df,,, the initial separa-

ture width may be defined as tion w becomes negative and such zones correspond to initial
_ 1 contacts between the two fracture surfaces. In the initial
Qs=§ f v dir, (14)  state, which is characterized toy andb,,, the fracture is
T

[ considered to be in equilibrium. The deformation of the solid
) o — matrices is described by the incremeats".
whereS* is the area of the-y projection ofS, andS;. Qs The statistical properties of the fracture in they plane
is linearly related to the pressure gradiéi by the Stokes  can be characterized by the spatial correlations of the fields

permeability tensoBs by the classical relatiofd). Further  h+ andh~, which are described by the covariance functions
details on some technical points such as the spatially periodie,(r) andC,(r):

boundary conditions can be found in REE7].

Cr(n={Fxy) —(F)HF(x+Axy+ Ay)—<F>}>,(16)
D. Description of fractures

The two surfaces of the fracture are described by the r=VAX*+AY% F=Zw.
heightsz=h*(x,y) above an arbitrary reference plane0
(Fig. 1). Usually,h* are random functions; they can be char-
acterized by the two probability densitie§Z) and ¢(w) of
the mean surfac&=(h"+h7)/2 and of the distancav
=h"—h", which are often assumed to be Gaussian,

Two types of random fractures will be addressed in this
paper, namely, Gaussian and self-affine fractures. For the
so-called Gaussian fractures, all the quantitiés h™, Z,
andw were described by the quadratic covariance function

2
! F=(Fp?| cp<r>=aéexp[—|— , a7
‘P(F)—WGX%_—ZO_FT), F=Z,w,h, F

(15  wherelg is the correlation length of the field.
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Self-affine fractures were also used since there exist many B Fa

experimental observations where the self-affine character of Tt t Vo Tw

rock surfaces is demonstratgdl]. Self-affine surfaces have sh TR 702007

features over a broad range of characteristic length scales b P

and can be described by the covariance N ,“”’* Vb

2

Ch(r)=odl1-

1 (18)

wherel is a characteristic length angis the roughness ex- P P,-P P /
ponent that was found to be 081.07[19,20. TR */ﬁ‘ﬁ
Finally, the upper and lower surfaces can be either corre- W %
lated or not correlated. The correlation between the two sur- ©
faces is characterized by the correlation parameterl . . )

—0-2/20ﬁ which is 0 for uncorrelated surfaces and 1 for /G- 2. Mean field analysis of the deformation of the fracture
W i X - . surfaces under a loa®: (a) distribution of the normal stresB; in
fully Correlate.d surfaces. Hence, all the pOSSI.ble .Sltuatlonfhe contact surface(b) (re)duction of the mixed boundarycvalue
can be described by the nature of the correlation inxne problem to a Neumann probler) shift of the stress conditions;

plane gnd by the thrge p.arametb@/ah, \/an, gnd g, this (d) evaluation of the new position of the contact surface.
is equivalent to considering;, as the length unit.

d)

Ill. A MEAN FIELD ANALYSIS Pes=< P. (19b

In order to perform a first application of the set of equa-
tions that govern the phenomenon and provide a theoreticdihe problem reduces to a Neumann probigmterms of the
basis for the analysis of the numerical results relative to fracdisplacements with a stepwise distribution of stresses on
ture compression, a simple deformation model has been déhe fracture surfaces 0 arR} in the noncontact and contact
veloped. zones, respectiveljFig. 2(b)]. Obviously, this approxima-
Recall that in the initial stateR=0), the solid may be tion is only valid forX <X. If the contact zones are very
already strained, since a stress field and a displacement fiefdnall, the normal stresses a@n. act as point forces on the
with respect to a rest state where the fracture surfaces afeacture surfaces, and their exact distribution has little influ-
totally separated may exist. In such a case, the solid is aghce.
sumed to be everywhere in its elastic domain and the linear Finally, note that the deformation of a fracture surface can
elasticity theory applies. Therefore, these initial stresses anlge evaluated by shifting the stress conditions on the surface
strains may be ignored, and the additional displacendent and at infinity by—P. Each solid block is viewed as a semi-
resulting from an additional normal loal is determined infinite half space, undergoing a pressig—P in 2. and a
from Egs.(7)—(9). tensionP in X +— 3. [Fig. 2(c)]. Since the overall position of
The following derivation approximates the three- the fracture surface has been allowed to drift when the zero-
dimensional character of the problem at hand by using glisplacement condition was replaced by a stress condition on
lubrication approximation. Basically, the deformation of the2 ., the deformation of the surface has to be taken relative to
fracture surfaces with respect to their initial profile is evalu-the new positionsh. of the contact zones in order to evalu-
ated by assuming that the initial fracture surfaces are almostte the closure of the fractuf€ig. 2(d)], which is given by
plane and remain so under the loB¢d and that the surface
displacementssh are normal to this plane. This leads to a Ve i ” Shir)— shold?
mixed boundary value problem, where zero stress is imposed o ET[ (r) cJdr
on the open zones of the fracture surface and zero displace-

ment is imposed in the contact zor@ssuming that the frac- 2 —
ture is symmetrig The normal stresB in the contact sur- -3, fL s [Sh(r)—dhc]dr. (20)
face is not uniform and must satisfy the overall equilibrium ToTe
condition[Fig. 2(a)]: The factor 2 corresponds to the contributions of both sur-

faces to the closure. Sing#h is not uniform on3,;, sh, is

j J Pe(r)d?r=3+P, (193 defined as its average:
Ze
— 1 ’
where3; and 3. are the total area of the fracture and the 5hc:2_ fL oh(r)d<r. (21
c c

area of the contact zone, respectively.

This problem will be simplified further by assuming that
P¢s is uniform overX; it should be noticed that this as-
sumption is only a mean field approximation, which is the

The displacement of the surfadhd can be easily calculated
by the surface integrdltL0]

simplest possible estimate B; it does not mean that the 1— 2 P(r)d?r
deformation is plastic over the contact zone. The condition Sh(x)= ——— ff _—. (22
(19.9 yields 7E s [r=x|
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Equivalently, with Eq.(19b), dpP E S
=— =—k. (29
d(b 4(1-v9)L1-S
B 1—1? d’r  S.-3, d?r (b) (=% ¢
sh(x) = oE P jfETEC Ir—x| =, fLC [r—x[[ Suppose that the heights remain normally distributed with

(23)  the sameoy,. Because of ergodicity, the mean aperttiog
and the fractional contact areg are related to the mean

wherew is the Poisson ratio anBl the Young modulus. separatiorby, by
We introduce the contact functian, (r): 1 b
Se== {1—erf(—m>], (30)
o[ el o 2 201
(n= 0, reS, (24) b2
(by=(1-S,)b +ﬁexp<——”}) (3D)
Using EQs.(24), (19b), and(22) sh(x) can be written as oo \/; 4oy’
1-2 1 o d2r where erf denotes the classical error function. Introduction of
= — - —_— Eqgs. 1 A9) into Eq. (29) yiel
Sh(x) = P s, jjo(Zc Zo) =k gs.(30), (32), and(A9) into Eqg. (29) yields
dpP E sz s (32
— 1 db, 41— W (S)(1-S)° =
Z=— Jf Z. d2r, (25) m ( ve) ASe)( c)
DN

whereV _ is defined by Eq(A10).

_ The closed syster{80) and(32) is the basis of a nonlinear
where S;=Z, is the fractional contact area, since it repre- analysis of the fracture closure for sm&jl. A full descrip-
sents the fraction of the total aré; of the fracture corre-  tjon of the hydromechanical behavior of fractures requires a
sponding to the contact area. This expression can be used jg|ation betweerbs= (12Bs) and the geometrical param-
the expressiori20) of the closure; if¥(r) is a random sta-  etersb,, /oy, andl/ay,. The numerical results of Mourzenko
tionary isotropic field and if¥; is large enough that the et al. [16] can provide such a dependence. Moreover, the
ergodicity hypothesis can be used, the surface integrals cafystem(30), (32) and the formulag3), (28), (31) provide a

be expressed in terms of the correlation lengtbf the nor-  stress-closure relation and the dependence of the stifiness
malized covarianc®.(t) of the random field® .(r): uponP.

Figure 3 shows the results obtained by using the nonlinear
theory (28), (30), (32) for Gaussian and self-affine fractures.
The stress-closure curves are presented in Fa. ®ne can
see that the deformation history of the fractures is influenced

If £ is finite, which is generally true for random fractures PY the spatial correlations of surface profiles.

L= fo R.(t)dt. (26)

without long-range order, the closure is obtained as The normal loadP is a decreasing function of the aperture
b, /o, . However, with the Gaussian fracture surface height
4(1-1?) 1-S, distribution(15), P=0 is obtained only for infinite aperture,
V= —E S, PL. (27 since contact zones remain for any finite valuebgf. The

decay rate o in a real fracture depends on the tail of the
height distribution function, which may be inaccurately rep-
resented by a Gaussian distribution. This illustrates the dif-
ficulty to define a hypothetical rest state for a prestrained

The normal joint stiffnesk defined by Eq.(10) can be
subsequently expressed as

fracture.
K= E Se (28) Therefore, a stiffness-to-contact area or stiffness-to-
41— L1-S, normal load relationship might be preferred for comparison

purposes to the load-to-aperture one. Figui® 3hows the

In the case of fracture surfaces with normally distributeddimensionless stiffneskoy,/E as a function of the normal
random heights, the fractional contact akaand the corre- load P/E. Quasilinear relations are obtained f&/E
lation length£ can be determined whem,, /oy, and the co- >103, i.e., for moderate aperturds,,/o,<3.5—4. This
varianceC,(t) are known. The stiffnedsis evaluated in the character agrees with the results for uncorrelated fractures
Appendix for fractures with Gaussian and self-affine corre{14,20. Further comparisons with experimental data will be
lations [Egs. (A9) and (A10)]. Limiting expressions for commented on in Sec. V D.
b,,/on—0 or are also provided in the Appendix.

This analysis can be tentatively extended to the nonlinear V. GEOMETRIC PARAMETERS AND NUMERICAL
domain where new contact zones appear. Such a phenom- METHODOLOGY
enon occurs at the border of the initial contact; if the two
fractures are tangent, this phenomenon occurs immediately This section provides the major numerical ingredients
as in the classical Herz theory between two sphE¥8k The  necessary to calculate the deformations of a fracture submit-
relation(27) can be differentiated with respect Bowith the  ted to a normal load and the resulting permeability changes.
help of Eq.(3) to yield Computations will be performed on a finite volume, which is
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d)

b) ©)

0 0;5 ; 1?5 é 3 215 ’.x’, 315 4
P/E.10
FIG. 4. The simulated fracture profil¢sa), (c), and (e)] and
FIG. 3. (8 Variations of the normal loa®/E as a function of  aperture distribution§(b), (d) and (f)] for the three fracture geom-
bm/oy during a fracture closure as predicted by the mean fieldetry models. Six levels of shadings are distinguished from zero
theory. Data are for Gaussian fractureslid lines with I/o0,=1  (white) to the largest valuédark) of the aperture. The shading steps
and 2 and for a self-affine fractufdashed lingwith {=0.5,1/0}, are equal to 0.8;,. Data are fortH,=1.29, b,,/o,=3.46 for the
=6. (b) The dimensionless fracture stiffndssy, /E as a function of step fracture(a), (b), H=1.82, b,/c,=0.5, l/g,=2 for the
P/E. The dotted lines are Yoshioka and Scholg26] measure-  Gaussian fracturéc), (d), and H=0.94, b,/on=1, l/c,=6, ¢
ments for “rough” (*) and “smooth” (X) surfaces. The dash- =0.5(g),(f) for the self-affine fracture.
dotted line corresponds to the data of Durham and Bof2#r The
open circles are the data of Boitnott and Schi@] for ground ) .
optical glass and the solid circles are the measurements of Engelder 1h€ random fieldZ and w for the Gaussian and self-
and ScholZ30] in Cheshire quarzite. affine fractures are generated by the method of Fourier trans-
forms (see Ref[17] for detail9 on the N.X N, numerical
discretized intdN. X N. X N¢, elementary cubes of size[cf.  grid in thex-y plane with elementary surfaces of siae
Fig. Xa)], spatially periodic boundary conditions are gener-  As a matter of fact, only uncorrelated surfaces with
ally used in thex-y plane. The elementary cubes are either=0 were addressed in this work for the sake of simplicity.
solid or liquid. The mesh spacing inside these cubes is &owever, this is not a limitation inherent to our methodology
fraction 1h of a; it is the same in all three directions, but and correlated surfaces can be dealt with. Note that the

may be different in the liquid and the solid phases. lengthN.a is much larger than any correlation or character-
_ o istic length of the fracture surfaces.
A. Geometric parameters of the initial fractures Four Gaussian fractures were obtained with the same ran-

A first simple deterministic modéhereafter referred to as dom surfaces, but various separatidns. The correlation
M), which is called the step fracture mod@ligs. 4a) and  distancel/oy, was set equal to 2, and the sample size
4(b)] is used in order to study the elastic compression of twd-/| =4 in order to minimize statistical errofsee Fig. 4. The
regular surfaces that are initially in contact wigg=0.25. ~mean separatiob, /o, varies between 0.25 and 1; therefore,
The asperity is a parallelepipedon of heightwith a square the fractional contact are®, varies between 0.444 and 0.125
basis of sidd =5a; the size of the unit cell it =10a. This  (see Table)l Each fracture is denoted b9, /on. These
yields equivalent average ratids,,/oc,=2v3 and o,/a  values ofS; were found in various experiments of fracture
=v3/4. The ratio of horizontal and vertical asperity scalescompressiori3,14,23.

[cf. Fig. 4a)] |/ o,=20#/3~12. Three samples with various = Three self-affine fractures were generated with0.5 and
heightsH¢ were studiedsee Table)lin order to analyze the b,,/o,=0.5, 1, and 1.5cf. Fig. 4. Again they are denoted
influence of this parameter. by Sbm/oh. Because spatially periodic fractures are gener-
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TABLE I. Geometrical parameters of fracturéss equal to the horizontal size of the asperity for the step
fracture model and to half the size of the sample for the self-affine fractures. The indéxaliod S stands
for the value ofb, /o,

Sample h L b_m L @ Hs

name a o Oh Oh o S n
Step fracture model

Mg 0.433 11.6 3.46 22.6 3.46 0.25 0.45

Mo 0.433 11.6 3.46 22.6 3.46 0.25 0.85

M4 0.433 11.6 3.46 22.6 3.46 0.25 1.25
Gaussian fractures

Gy 3.03 2 0.25 7.92 0.472 0.444 1.86

G 3.03 2 0.5 7.92 0.649 0.311 1.82

Ga 3.03 2 0.75 7.92 0.858 0.196 1.77

G, 3.03 2 1.0 7.92 1.075 0.125 1.71
Self-affine fractures

Sin 2 6 0.5 12 0.951 0.315 0.96

S, 2 6 1.0 12 1.359 0.180 0.92

Sy 2 6 15 12 1.805 0.100 0.88

ated, the covarianc€l8) describes the surface height corre- Equation (34) provides the valuessh of the local normal
lations only for distances smaller tha? and the character- displacements which linearly depend upon the normal load
istic lengthl in Eq. (18) is chosen to be equal to/2. The  P. In order to obtain a discrete representation of the modified
corresponding geometric parameters are presented in Tablegeometry of the fracture space, the following algorithm is
Further details on the generation of random fractures caproposed. The solid fractioag in the neighboring elemen-
be found in Mourzenket al. [18]. tary liquid cubeC, because of the displacement®8 [Fig.
5(b)] is readily derived from Eq(34) as

B. Computations of deformations

1 n
Deformations are obtained by solving the system of equa- £~ 3 U shdo= a oh. (39
tions (6), (8), (9). However, it should be noticed that the As
overall conditiong8) cannot be perfectly achieved neither in a

real experiments nor in numerical models and should be re-
placed by approximate conditions on two planes located at
some distancél from the mean plane of the fracture sur-

faces(see Fig. 1 %

/ b 7

o,~—P on S;. (33

The system of equation&), (8), (9) is solved via a
second-order finite difference formulation. It is first dis- 4

cretized by means of the finite volume method in terms of
the unknown displacementks Details are given in Ref23]. //

It should be noticed that each elementary cabis subdi-
vided inton® elements where is at least equal to 3, so that
the order of the method is equal to two. The resulting linear 7

system is solved by using a conzjugate gradient method with c
a precisionA, of the order of 10°.

Once the fieldd is determined, the new position™ 29.0%% 7
+ 6h™= of the fracture surfaces can be derived. Consider an ]
elementary solid cub€, of sizea/n whose face\ S belongs |
to the fracture surfacgig. 5@)]. The normal displacement . U ) i |
oh of ASis equal to

D

DR

N

FIG. 5. (a) Position of the fracture surface in the mesh. The size
of the elementary cube ia, the fraction factom=3. The solid
phase is shadowe¢h) The solid fractiore g in the elementary cube
C, after the displacement of the fadeS of the fracture surfacdc)
wheren is the unit normal ofAS oriented fromC; to the  Position of the fracture surface in the deformed state. The new solid
neighboring void cubeC,, dg the displacement ofAS. cubes are denoted by the darkest shadowing.

a

d+ on

sh=n-dg=n- n-Vd), (34
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TABLE II. The standard deviatioory= of the displacements on -
Fracture generation

upper and lower boundaries of the samples. Ne =24

v i

MG MlO M14 Gl/Z C':'1
Calculation of the displacement d(E)
He/l 0.45 0.85 1.25 1.82 1.71 - at P =E 2100k
og-1{d;) 0.462 0.151 0.048 0.122 0.08
g+ 1{d}) 0.462 0.151 0.048 0.094 0.128
This procedure can be applied to all the solid face€ef b
When e is larger than a thresholds , which is generally
equal to 0.5, the liquid cube is changed into solid and the Calculation of the deformed geometry, ~1h
fracture geometry is modified accordingly. This procedure is characterization, discretization, closure
performed for all the cube§, that possess one face or more v
on the fracture surfacgFig. 5c)]. ];C -7z Calculation of permeability |
The first limitation of this approximation is the possible v B

appearance of new contact zones. Any change in the contac __Ii Test of the existence of new contact zones J——

area is not accounted for by the systédh (8), (9). Should No Yes

the two surfaces of the fracture touch each other for some Fig. 6. Scheme of the numerical modeling of the fracture clo-
value P, the system(6), (8), (9) has to be solved again for syre under the normal load.
this new geometry. Otherwise, the extension of the calcula-

tions for P> P, would implicitly assume that the two sur- D. Summary of the numerical modeling
faces may freely overlap. This point will be taken into ac- It might be useful to the reader to have a summary of the
count in Sec. V. numerical modeling as schematized in Fig. 6.

The second limitation is due to the boundary condition For each fracture, two random correlated surfaces are
(8). Displacements or$,, are not uniform, because of the generated on a two-dimensional mesh with a step aize

finite distance from the fracture. In order to estimate theThen, the fracture volume and enclosing solid matrices are
error, the standard deviatiosr; of the displacements on subdivided into elementary cubic blocks with the same size

a. Then, the displacement vectdris calculated for an arbi-
trary load; since a stress has the same dimension as the
Young modulus, P was chosen equal t6. Recall that the

= (dE)2—(gE)2)L2 36 order of the method is equal to 2 far=3. On an IBM 560
g ={(dz)"=(d;)") (36) workstation, this computation lasts for about 100 h, with a
memory size of 100 Mbytes for a X72X 72 grid.

The angular brackets denote here the average over the frac- 1hanks to linearity, the deformatiak(P) under any load
ture projection.H can be considered as sufficient when P ¢an be obtained by

Sy, is calculated as

O’i/(df) is small. d(P)ZP/E d(E) (37)
The influence ofHg on the results was checked as fol- .
lows. Table Il contains the standard deviationogf of the The new geometry of the fracture can be derived from Eq.

displacements 05‘: and S, calculated by using Eq(36). (34) and various parameters are estimated, such as the mean
The error induced by the finite sample height for the Stearacture aperture, the contact area and the permeability. This

fracture is a decreasing function Hf;/I. For modelM, the computation lasts for_ about 1 h. . .
residual fluctuationo=/(d>) is 0.15 and 0.05 forH./! The value ofP is increased and the calculation dfis

/ . repeated, if new contacts do not appear in the previous ste
=0.85 and 1.25, respectively. Random fractures reqwr&p PP P P

| heiahts. For G ian fract idue 0.10 | see Fig. 6. If new contact zones exist for some valBe,
t:ggé fgrlgH SI2I or Laussian fractures, a residue ©.101S Obre modified fracture geometry is used as a new initial state
s~<l.

for the calculation of a new displacement fielP.+ E).

In order to restart the numerical solution of @), the
modified fracture geometry ®. has to be rediscretized on
. the coarser initial mesh with elementary cube sizether-

The Stokes equatior(d1) are solved by the so-called ar- yise the fine mesh should be divided by 3 again to keep
tificial compressibility method with a multigrid algorithm he geformation accurate at the second order. The error in-
(cf. Ref.[16]). Convergence was reached when the flow ratgy,ceq by this coarsening will be discussed in Sec. V A.
was found the same within 1% across the various sections of
the medium. V. RESULTS ON FRACTURE CLOSURE

A 72X 72X 72 mesh was used for most realizations. The AND NORMAL STIFFNESS
size of the elementary culzewas usually equal to 0, for
Gaussian fractures and @:5for self-affine ones, and in the
refined mesh the steps were &,land 0.17,, respectively. In order to illustrate the evolution of the fracture aperture
This discretization is small enough for a good representatiob with increasing normal loadP/E, the Gaussian fracture
of the vertical variations of the surface profiles. G, is chosen.

C. Computations of the flow

A. Local evolution of the fracture
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P/E=0.012 P/E =0.0415

0951

= d1

P/E =0.0033 P/E =0.0187 P/E =0.0513 L;

)

06} N

0.55F i

0.5
0

n L L L L n L
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
P/E

FIG. 8. The fractional void are§, as a function ofP/E for all
fractures. Data are for Gaussian fractufsslid lineg, self-affine
fractures(dashed lines step fracturddashed-dotted linemodified
Gaussiar(dotted lines.

cal fracture aperture by the closure valuaAV. A detailed
analysis of the evolution of the aperture field showed that
was less uniform fob,,/o,<0.5. This means that for small
S. (or largeb,,/ o), the fracture surface heights remain nor-
mally distributed, which is important for the validity of the
nonlinear theory given by Eq30) and (32).
a4 (RN T b4 (8 (] cA[RgRY Large deformationfFigs. 1b) and 7c)], after the appear-
ance of new contact zones, were addressed using the scheme
FIG. 7. Aperture distributions. The three colum(@s, (b), (c) presented in Sect. IV B and IV C. For normal logeldarger
refer to fracture$s,, L,, andLs, respectively. The initial aperture than P., new fracture geometries, referred to lag and
bin is given in Eq.(1) with shading steps equal to @Q. The L,, are defined. The new geometty, is taken atP/E
differenceb;,—b for three successive loads is given(®)—(4) with  =0.012>P./E, at which several new contacts appeared. In
gray levels ranging from whitézero to black[maximal closure i order to restart the calculation procedure, the discretized
(4)]. The aperture distributions i6,, Ly, L, L3 at P/E=0.071  fracture geometry should be coarsened back to the former
are given in the last columrid), with shading steps equal to (24)® grid. The error induced by this coarsening can be il-
0357y . lustrated by the fact that the contact ai®aand the mean
aperture(b) calculated on the finer grid are equal to 0.157
Two factors contribute to the increase of the fractionaland 2.54a, while on the coarse one they are equal to 0.179
contact areaS, during the fracture closure, namely, the and 2.76a, respectively.
growth of the contact area near the contacting tips of surface The caselL; corresponds to the modified geometry of
asperities, and the appearance of new contacts. The first faG, at P=1.5P, with the initial aperturgb)=2.47a on the
tor provides an almost continuous increaseSpfwith P,  coarse grid andb)=2.44a on the fine one. The two con-
which was observed in experiments by Genfigl]. It is  figurationsL, andL, are compared here, because they rep-
obvious that this behavior cannot be reproduced with a disresent two possible choices BfE for the modified geom-
cretized representation of the fracture geometry, because altry; L, is constructed with minimal loss itb), regardless
surface features are rectangular with a minimal size equal tof the losses ir5. when the coarsening is performed, while
a/n. Hence, the growth of the initial contact area is numeri-L, is constructed so that bottb) and S, would not be
cally modeled here as a stepwise process with the suddethanged significantly during the coarsenird. Figs. 8 and
appearance of new contacts near old ones. 9(b)]. Note thatL, is taken at the beginning of a plateau,
Second, the critical valuB,, at which opposite surfaces which follows an abrupt increase of the contact df€g. 8).
of the fracture touch each other at some new contact zones, is Figure {b) shows the evolution of the apertukeas a
determined as explained in Sec. IV. Then, the aperture fielfunction of P/E for the fractureG; with a geometry, modi-
b is obtained for three successive values-P./3, 2P./3, fied at P/E=0.012 (,). Finally, a third geometry 5 is
and P, . Figure fal) shows the initial aperture fielt,, of  defined from the deformed state bf at P/E=0.0415. Its
the fractureG, and Fig. 1a2,3,4 shows the differencé, deformations under further loads are presented in Fig. 7
—b for these values oP. One can see from Fig. 7 that the The comparison of the aperture fields shows that new con-
deformation field is closely related to the initial aperture fieldtacts appear near former contact zones in regions of small
of the fracture; the largest deformations are in the zones with. For large P/E, the displacement fieldl becomes less
largestb;, and the smallest ones are near contact zoneaniform than forP/E=0 [Figs. 7a4) and 1b4)].
whereb;, is minimal. Figure 7d) presents the aperture distributions for all con-
It can be observed in Fig(&4) that the deformation field figurations,G;,L;,L,,L5, for the sameP/E=0.071, which
at P=P, is almost uniform. This means that the modified corresponds to the critical loa@. for L;. Comparison
fracture geometry may be approximated by reducing the loshows that the new contacts that appear during the fracture

P/E = 0.0099 P/E =0.032

s e
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by Eq.(35). The mean aperturgh) is calculated as the sum
of (1—eg)a® over the sample divided by the fracture area.

The curves forb) obtained by the discrete method ex-
hibit a stepwise behavior in contrast with the continuous
method. Figure 9 show&)/(b;,) versusP/E, obtained by
both methods; the difference between them illustrates the
error induced by the discretization of the initial fracture ge-
ometry.

(b) is always found to be a decreasing functionRIE,
as physically expected. The variations (&)/(b;,) become
more important when the mean separatigyi o}, of the frac-
ture increases, as can be seen for all random fractures in Fig.
9; this means thatb)/(bj,}| p;e—(b)/(bin)|p/e=0o is an in-
creasing function ob,,/oy. At large b,,/o,, i.e., for S,
<1, the deformation of surface asperities and of the solid
matrix near the fracture dominates and the decreases of
(b)/{b;,) is substantial. For smab,,/o}, and largeS,, the
deformation of the solid above and below the fracture domi-
nates andb)/(b;,) decreases slowly witR/E.

All curves in Fig. 9 show a nonlinear behavior when
P/E increases, though the decremests® of fracture sur-
faces, as well as the displacemehtare linear functions of
P. The nonlinearity results from upper and lower surface
overlaps, withb set to 0. Arrows in Fig. 9 show the critical
normal loadP./E at which new contacts appear. A very
small nonlinearity forP>P_ is visible on the numerical data
1 b for the step fracture model, which is caused by the self-
. . ‘ ‘ L T— overlap of vertical and horizontal parts of fracture surfaces.
0 % e 008 At P>P,, the calculation of fracture closui¢ is not valid

) and the use of the modified fracture geometryPat P, is
~ FIG. 9. The relative mean fracture apert{tg/(by,) as a func-  required in order to continue the numerical calculation of the
tion of P/E for all fractures(a) and for the samplé&s, (b). The fracture deformation.
T e e e o e s e, IQUE 8 preserts he plots )by o the sample
. . 19- present the da ., obtained by using the modified fracture geometries for
obtained by the continuous method. The vertical arrows indicate th?oads P>P It can be seen that the new contacts sianifi-
critical loadsP,.. . cr . 9
cantly influence the evolution ¢b). The error accumulates
closure substantially influence the deformation process. Theith P/E and only the initial parts of the curves in Figia
new contacts, which are accounted forip,L,,L, rigidify represent the fracture deformations accurately. The curves
the fracture, and give lesser closures. The most significarit; andL, are not very different from one another. Hence,
difference is observed between the configuratiGhsand the real evolution ofb) is best approximated by Fig(I9
L. In the case of5,, fracture surfaces overlap on an areawhere the maximum value @b) is taken for eactP/E.
larger than half of the cell size; the aperture is substantially
reduced. C. Normal stiffness
The evolution of the fractional void arégy=1—S; of the

fracture is presented in Fig. 8 for all the models and for the The normal joint stifinesk defined by Eq(10) of real
successive states 6, . The critical loadP, /E at which new rock fractures depends upon the normal load because of the

contacts appear is a decreasing function of the initial contadi%r!:F32;;?;\/&%;025:53;2gsﬁé?erzla;'oonnsto; r{?m:‘stillztg;the
surfaceS,; this can be explained by the larger rigidity of first overlap of Ithe fractu:e surfacesJ unt
fractures with smal§,. The initial plateaus in Fig. 8 become P :

: . I The closureV defined by the continuous methéd. Sec.
larger whenS, is decreased for fractures with modified ge- . X
ometries derived fronG, . V B) is used to calculatk as the ratiosP/ 8V where P and

6V are small increments of the normal load and the corre-
sponding closure of the fracture.

The normal stiffnesk is shown in Fig. 10 as a function of
The mean fracture apertufd) is calculated at various the initial contact are&5, for all types of fractures. It is
normal loadsP in two different ways. First, for each given important to recall here that for the same family of fractures,
load P, the modified fracture geometry is reconstructed on ahe two initial random surfaces are identical and the average
discrete grid and the mean apertyt® is calculated as the distance between them is changed, thereby modifying the

number of liquid cubes divided by the total fracture area.initial surface contack.. Since the initialS; is related to the
This method will be referred to as the discrete method. Seanitial load, this plot may illustrate the effect of the normal
ond, the continuous method employs the values pfliven  load onk. The stiffness increases wi , in agreement with
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B. Evolution of the mean aperture
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04 : ' ' ' Figure 10 shows the normal stiffnelss,/E for Gaussian
fractures with variou®,/ o}, and for the sampl&, obtained

by using modified fracture geometries. The numerical points
for the two configurationt; andL,, are almost on the same
curve as the data foG,, Gj,4, and G,. Since at small
P/E the displacement of fracture surfaces for the sample
G, is uniform, the modified geometry of the fracture at this
value of P/E can be obtained by diminishing the distance
b,, between the two initial surfaces. Whé& is increased,
the displacement becomes nonuniform and the modified frac-
ture L3 is stiffer than fractures reconstructed by a simple
reduction ofb,,/o,. This means that the dependence of
ko /E versusS; obtained by using samplé€s; — G4/, only
approximates the variation of the fracture stiffness with the
normal load for larges. .

0.3f

kop
E

01F

S¢
D. Comparison of the normal joint stiffness
FIG. 10. The dimensionless stiffnelss;,/E as a function of the with data and discussion

fractional contact are8; calculated numerically*) and by Eq(28) . .
(O). The solid lines correspond to Gaussian fractures, the dotted Laboratory studiefl3,14,9 of the deformation character-

lines to self-affine fracturedv denotes data for the step fracture. istics of _ro_ck 10|nt§ under_normal Ic_)ad showed that the clo-
N denotes the data obtained by the nonlinear théBgs.(30) and ~ SUre of joints varies nonlinearly with the normal strés
(32)] whatever the rock and joint types. Whénis increased, the
joints reach a maximum closui&,,.,. Upon unloading, the
i i joints exhibit hysteresis, which is attributed to friction on
some experimental dafd 1] and numerical results]. _parts of the surface where the contact is oblique to the load
The various types of fractures considered here show diffo1] This strong nonlinear behavior of rock joints was also
ferent valugs of the normal st_lffness for the same contact arégbtained by the mean field theofgec. Il)) as displayed in
Sc. According to the mean field theory, only two geometri- Fig. 3(a). The joint stiffness at various normal loads is a
cal parameters3; and £/oy,, determine the dimensionless function of the fractional contact are®,. If the fracture
stiffnesskoy, /E. At S;=0.25, the correlation length/oy, is  geometries used in the numerical simulations are assumed to
equal to 3.98, 1.3, and 0.7 for the step, the self-affine and theepresent various initial stress states with vari@Js the
Gaussian fracture, respectively; the differenc&€la, seems  corresponding curv&(S;) can be compared to the experi-
to be one of the major causes of the observed difference imental data.
the fracture stiffness. The parametéto, is related to the Bandiset al. [14] studied experimentally the joint defor-
contact numben, per unit fracture areay, is an increasing mation characteristics under normal and shear load. They
function of £/}, [18]. The fact that the fracture with smaller found that the experimental curve%V) for well interlocked
number of contacts is stiffer agrees with the data of Hopkindoints can be fitted by a hyperbolic relatiga3] and they
et al. [8]. proposed
k is compared to the theoretical formula8) in Fig. 10,
when the correlation lengtif is estimated directly for all k:ko(l
samples by using the definitioj26). The linear predictions
are close to the numerical values loffor the deterministic
fracture and at sma$; for the Gaussian and self-affine frac-
tures. The nonlinear theoffEgs. (28), (30), and (32)] was
used in order to find the stiffness of the fractudg when
S. varies from 0.12 to 0.45, which corresponds to the varia- k=BP. (39
tion of S; from the initial state ofG; to the configuration
Gy4. The results displayed in Fig. 10 show that the nonlin- Bandiset al. [14] estimated the contact area of fractures
ear theory is equivalent to the linear theory for small valuedy inserting a thin plastic sheet between the interlocked joint
of S., as it should; wher$; is larger than 0.3, the nonlinear walls; S, ranged between 0.4 and 0.7 for various samples at
stiffness becomes significantly larger than the linear stiffnesthe highest pressures, and £ are calculated here foP
and its evolution is parallel to the full numerical computa- =8 MPa by using images of the contact area distribution
tions. presented for joints compressed in interlocked and mis-
It should be noted that in the case of the step fracture thenatched positions. The stiffneksderived from the data of
initial fracture surfaces are planar and that the fracture iBandiset al.[14] for three types of rocks at the normal load
symmetric; thus, the two assumptions used in the mean fiel@=10 MPa and normalized bl/L is presented in Fig. 11.
approximation are exactly fulfilled. The good agreement be- Figure 11 displays also the experimental data of Gentier
tween the numerical and theoretical data evenSor0.25 [11] and Iwai[24]. Gentier studied hydromechanical behav-
for the step fracture shows that the exact distribution of theéor of well-interlocked fractures in granite and presented a
normal stresses on the contact surface has little influence. relation between the apparent Young’s moduiys, of frac-

-2

: (39

" koVpt+ P

wherek, is the initial normal stiffness. For dislocated joints
obtained by displacing jointed block halves, a linear relation
betweenk and P was found:
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0.4 . . , . numerical calculationésee Figs. 10 and )1The data for the
“smooth” joint are very close to the predictiof28), al-
though the latter are based on a different height distribution
function. The stiffnesses measured on the “rough” joint ex-
ceed the predictioi28) by a factor of about 2.

Durham and Bonnef1994 considered fractures in the
same type of Westerly granite, created in a cylindrical
sample by the so-called brezilian technique. Unmated and
mated fractures were obtained by reassembling the half
samples with or without a transversal offset. We have esti-
mated the surface roughnesg~ o,,/v2 from their aperture
probability distribution for the offset joint. Again, the contact
surface are&; and its correlation lengti are not known
accurately. Thus, the joint stiffnesses obtained from their
stress-closure plots for the unmated fracture are compared
with the mean field predictions in Fig(l3. The agreement
with the prediction(28) for a self-affine fracture is very

FIG. 11. The joint stiffnesk as a function ofS. normalized by  good. Of course, the mated joints are much stiffer, and the
E/L. The solid line corresponds to numerical data for the Gaussiastiffness coefficients are 2—5 times larger. The same authors
fractures, the dashed line to self-affine fractures, the dashed-dotteiso considered joints in different types of rocks: Creighton
line to Eq.(28). The experimental data of Gentigk1] correspond  Gabbro[28] and amphibolité29]. But again the surface pro-

for correlated and uncorrelated fracturés,) corresponds to the can be made with the present calculations, restricted to
data of Iwai[24]. The numerical data of Hopkinst al. [8] are -0 ’

denoted by,

0.3r

0.1F

Engelder and Schol30] measured permeability and ap-
erture changes within very smooth joints in Cheshire quartz-
tured samples and the normal loBd which is used to esti- ite; samples were saw cut and ground with controlled grits.
mate the normal stiffness. The fractional contact are8,  Their measurements of the normal stiffness coefficient are
was measured for the sank by inserting a plastic film given in Fig. 3b). Since the roughness, was not reported,
between fracture surfaces. it was taken equal to half the measured ultimate closure.

The data of Iwa[24] were obtained on samples of basalt, Boitnott and Schol231] defined precisely the concept of
granite, and marble containing well-matched tension fraceffective stress in an attempt to include pore and confining
tures. The values of the joint stiffness Bt=10 MPa are pressures in a single constitutive law for joint closure. Ex-
estimated from the slopes of stress-closure curgsnea- periments were performed on smooth lapped glass joints and
sured for the maximum normal load was equal to 0.1-0.2 foon lapped and fractured rocks; pore and confining pressures
granite and to 0.25-0.35 for marble, respectively. These dateould be varied independently. No permeability measure-
are presented in Fig. 11, assumiBgequal to 0.1 and 0.2 for ments were performed. Some of their data for ground optical
P=10 MPa, for granite and marble, respectively. The ex-glass witho,=13.3um are given in Fig. ®). They are
perimental data are seen to be smaller than the numericalmilar to the measurements of Yoshioka and Sch2¥;,26
ones in Fig. 11. on the “rough” Westerly granite joints, which have a rough-

Yoshioka and Schol£25,26 measured closures under ness in the same range.
normal load in a joint within Westerly granite. The joint was  For the sake of completeness, the numerical results of
obtained by cutting a rock sample with a fine saw. Two typedHopkinset al.[8] are also presented in Fig. 11. Typical val-
of cut surfaces were preparéaferred to as “smooth” and ues of the normal stiffneds(/E of two plates separated by
“rough”) with different grounding techniques. The surface disks of heighth and diameteD are calculated for the ratio
height distributions are best describedpglistribution func- D/h=8 (maximumk), 14, and 16minimumk). These val-
tions, from which we may estimatg,~2.4 and 10.5um for ~ ues are larger than ours and they depend upfm
the smooth and rough surfaces, respectively. These estimates This comparison shows that the results of the present nu-
correspond exactly to the geometrical overlap of the two surmerical study of the deformational properties of fractures
faces(d;=2.3 and 10.8um) for zero pressure obtained by agree qualitatively with other numerical and experimental
fitting the results of a theoretical model to the experimentakesults. The difference between the numerical and theoretical
data. data, on one hand, and the experimental results, on the other

It is very difficult to compare their results to the data in hand, may be partially attributed to uncertainties in the mea-
Fig. 11, because the correlation lengths not known, and surements of fracture parameters. First, the contact &rea
because the contact ar& is quite low. It is estimated as was measured by using plastic films and is possibly overes-
less than 1% for the “smooth” joint, under the maximal timated. In this case the experimental points in Fig. 11
normal load imposed in the experimef® MPa. However, should be shifted towards the left side of the plot. Second,
as already mentioned, the contact area is directly related tihe correlation lengtliC was never measured systematically
the confining pressure. Therefore a comparison is made irand its values are only roughly estimated here.
stead in Fig. &) with the predictions of the mean-field We now discuss the various sources of nonlinearities that
analysis of Sec. Ill, which are in fair agreement with theare present in the process of fracture loading. The first one is
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the variation of the contact area because of progressive clo- !
sure; the simplest example of this effect is the Herz contact NSRS
theory[10]. The second one is the fact that plastic deforma- I N S
tions certainly occur very rapidly at the top of the asperities. NN
The third one is caused by the identations, i.e., the irrevers- ) NRNRERNN
ible damages, induced by loading. . _

The present satisfactory comparisons with experiments bs | : [N
show that the first source is probably predominant in them bso S3n
and that the two other are of a smaller order of magnitude. It '
should also be noticed that only unmated surfaces were use: |
in the present simulations. This feature could be easily in- G,

cluded and it will probably improve the comparisons. 0al

VI. FRACTURE PERMEABILITY

P/E

A. Fracture permeability variation with normal stress 12

In order to analyze the influence of the normal ldadn S
the fracture hydraulic properties, the modified fracture geom- TN
etry was determined at several levelSR3E for each sample
and the permeability tens@&g was calculated. Since the dis- o8k
cretized fracture geometry does not vary continuously with
P/E, Bg was calculated for the values BfE, which corre- =5
spond to the intersections of the curvd® determined by
the continuous and the discretized methgskse Fig. %a)].
This condition is thought to minimize the influence of the
discretization error on the relation betwe@) andbs.

.

0.6\

The two component8g,, and Bsy, of the permeability R e
tensor{cf. Eq.(4)] are determined and the hydraulic aperture b)
bs is calculated: % 001 o002 003 ?).;o: 005 006 007 o008

bs=[6(Bgxxt BSyy)]lls- (40)

FIG. 12. The mean hydraulic aperturg/bg, (a) andbg/ay, (b)
as functions ofP/E. The vertical bars represent the variations of

When the sample percolates only in one directionch as bg with the direction of the mean pressure gradient.

Gy and S;), Eq. (40) is still applied with 0 along the di-
rection of no percolation.

The hydraulic fracture apertut®; normalized by its ini-
tial value bgy=bg(P=0) is shown in Fig. 1&) as a func-
tion of the normal loadP/E. The sampl&s4,, does not per-
colate even aP=0 and is not represented. As expected, th : . . .
hydraulic aperturéog decreases withP/E for all fractures. etFt] /eEfracture is predominant aritk/cy slowly varies with
The variations of the mean hydraulic and geometrical aper- "~
tures are similarbg and(b) decrease withP/E more rapidly - o )
whenb,,/o, is large[see Fig. a)]. B. Fracture permeability variation with the mean aperture

It is interesting to note that the curvds/bg, versus An alternative presentation of the same results is given in
P/E are less influenced Hy,,/ oy, for the self-affine fractures Fig. 13 wherebg/ay, is displayed as a function gb)/ay,.
than for the Gaussian ones; recall that the characteristiThe various data are efficiently gathered in this plot, which
lengthl/ oy, is equal to 6 and 2, for the former and the latter,can be approximated by the linear relation
respectively. Flow simulations in fracturgs6] showed that
the hydraulic properties are less influencedby o, when %_ @Jr 41
|/ay is large. on  on B “4D

The normalized hydraulic apertute;/ o, is displayed in
Fig. 12b). The dependence upon the flow direction is largerwhere « is close but not equal to {see Table lIl. If the
for self-affine fractures than for Gaussian ones. This reflectselation (41) is extrapolated towardss=0, the ratio— B/«
the fact that the ratid./I of the sample size and of the cor- may be considered as a critical apert(og. / oy, at which the
relation length is smaller for the self-affine fractureee fracture does not percolate. Table Il givesg/« for all
Table )); in this case the results are more influenced by finitefractures. This ratio decreases with decreasing initial separa-
size effects. tion b,/ oy, of fractures(G,;—Gyj,, Sz~ Sy0). The value of

The variations ofbg/oy, with P/E for the reconstructed — B/« substantially decreases when the fracture is submitted
modified fracture geometrids;, L,, andL; are gathered in to the large deformationsd;,L,,L3). This means that due
Fig. 12b). The absolute value of the slope decreases witho the increasing stiffness, the fracture remains open and the
P/E in agreement with experimenit82,11]. This behavioris  fluid can flow even for smal{b)/o},. The numerical results

analogous to the variations ¢b)/ o, with P/E [Fig. Ab)];
for small P/E, the deformation of the fracture itself is pre-
dominant and induces a rapid decreasebgfoy,; at large
enoughP/E, the deformation of the solid above and below



56 FRACTURE DEFORMATION AND INFLUENCE QX . . . 3181

1.2 T y T v T T T T 1.2 T T T T T T
B l l .
S
0.8f 0.8r S /
bs bsV 2 1 1 .
el o J {,2‘
041 B
0 12 <b>¥2 18 24 3.0
on ES
FIG. 13. The mean hydraulic apertubg/c}, as a function of FIG. 14. The hydraulic aperturieg as a_function of the mean
(b)/o,. Same conventions as in Fig. 8. The diagonal dotted lineaperturgb) normalized by2oy, . The solid line corresponds to the
corresponds tds=(b). numerical data for Gaussian fractures, the dashed line to the self-

affine fractures. The dotted line represebts=(b). The experi-
only approximately verify the standard “cubic lawf33] = mental data of Gentidil1] and Galg22] are denoted by andO,
which relates the hydraulic and the mean apertures of theespectively. The® refer to Durham and Bonner{27] measure-
fracture. This is also true for the large deformations of theMents in an unmated Westerly granite joint. Durhi2@] data for

fracture G, (cf. Fig. 13: the value a decreases from a0 amphibolite joint{+) are given for two reasonable guesses for
0.91(G,) to 0.81(,) and (’)_72(_3)_ the initial aperture. The smaller black dots are the data of Kranz

et al. [34] for Barre granite. The numerical data of Mourzenko
et al.[18] are denoted by. The vertical bars represent the standard
deviation ofbg due to the statistical scatter of the data.

Experimental studies of the hydromechanical behavior of

fractures under a normal load [11,22,24 showed that @ granite joint under 80 and 160 MPa normal load®E
nonlinear relation is obtained between the hydraulic fracture_ | g« 10-3 and 3.% 10°3) are much larger than in the

aperturebs andP, which can be associated with the nonlin- -, shonding mated joirthydraulic aperture close to zero,
earity of the dependence ¥ upon P/E. The experimental not represented The amphibolite joint investigated by

data of Gentief11,22 and Gale[22] are displayed in Fig - : -

' ; * Durham[29] is also highly correlated. The initial mean ap-
14'.BOth apertureshs and (b), are normalized by the ex erture is not known accurately. Two plots are proposed in
perimental valuar,v2. Fig. 14, by assumingb;,)=120um (the upper bound for

Fractures studied by Genti¢t1] had highly correlated g. 1, y_ 1~ K PP
; . ) . (b) at P=0 mentioned by the authgrsand (bj,)
surfaces with¥=0.99 and their hydraulic properties are seen' X
=100um. One can see that the numerical curbbgsrersus

to be very sensitive to the geometrical characteristics. Th ST o
experimental points are far from the curve for the pure Poi-?b> also presented in Fig. 14 exhibit the same trend as the

. _ . experimental results.
seuille flowbg=(b). The data of Gald22] are less influ- .
enced by the fracture roughness and they better agree Withraﬁri?enzvfr:igrl{ \E\?aﬂ énas\‘?sclgtegnghe rgsggevei?gltzaﬁ;uia&en-
the theoretical predictiobs=(b). The permeabilities mea- g ’ 9

sured by Durham and Bonn27] in an unmated Westerly trolled grits. Changes in permeability were found to vary
linearly with pore and confining pressures that could be var-

ied independently. Only a few data are given on aperture
variations with pressure. Some of their permeability mea-
surementgfrom their Table 1) are plotted in Fig. 14.

Figure 14 presents also the numerical data of Mourzenko

C. Hydraulic aperture as a function of mean aperture

TABLE lIl. The coefficientse and B of the relation(41) for
various fractures.

Sample name a -B —Bla : X .

et al. [16] obtained for self-affine fractures. Each data point
G, 0.91 0.35 0.38 is the average over 10 realizations of the fracture surfaces.
Ga 0.90 0.33 0.37 One can see that the hydraulic apertbeeof the fractures
Gip 0.79 0.25 0.32 submitted to normal load follows the similar linear depen-
Ly 0.92 0.35 0.38 dence as the valugs averaged over statistically independent
L, 0.81 0.24 0.30 realizations of fractures with corresponding mea). The
L, 0.72 0.14 0.19 results of the present numerical calculations are within the
S 0.74 0.23 0.31 interval of statistical scatter of the data.
S, 0.73 0.20 0.27 Comparison shows good agreement between numerical
Si 0.75 0.16 0.21 and experimental data. All curves represent a similar depen-
M 1.00 0.003 0.003 dence of hydraulic properties of fractures upon the geometri-

cal ones.
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VII. CONCLUSIONS sions of this work to macroscopic tangential stresses is in

The macroscopic mechanical and hydraulic properties oprogress.
fractures with rough surfaces were analyzed by solving nu-
merically the local three-dimensional equations. The solid
matrix is assumed to be an elastic solid described by the Most computations were performed at CNUS$€lbsi-

classical Lamesoefficients. The flow through the fracture is dized by the MESRwhose support is gratefu”y acknowl-
analyzed by solving the Stokes equations. The full deformaedged.

tion history of the fracture is represented as a series of steps
with the successive appearance of new Contaqt Zones. APPENDIX: DERIVATION OF THE JOINT STIEENESS

Three types of fractures were addressed in this paper, IN THE MEAN FIELD APPROXIMATION
namely, a step deterministic fracture and two fractures with
random normally distributed surface heights and with Gauss- The covariance functioR(t) of the random fieldZ.(r)
ian and self-affine spatial correlations. The dependences @fefined by Eq(24) can be derived from the covariance func-
the mean aperturgb) and of the hydraulic apertutes upon  tion Cp(t) of the fracture surface heighit(r). Because of
the applied normal loa® were analyzed. The variations of ergodicity,R¢(t) can be written as
(b)/{b;,) andbg/bg,were found to be more important when
the mean separatidn,/ o}, of the fracture increases; the hy-
draulic properties of the fractures follow the mechanical R(t)=
ones.

The normal joint stiffnes& of a fracture was analyzed as
a function of the initial contact ared.. The experimental
stiffness of the real rock joints is smaller then the numerical
one, but the relationk(S;) are qualitatively similar.

The relation between the numerical values of the hydrau- Z(r)=
lic aperturebg and the mean apertugd) is similar to the
ones derived from published laboratory experiments. The hywherew=h"—h" is a Gaussian field with mealn,, and
draulic properties of fractures are substantially influenced bytandard deviation2o,. Introduction of Eq(A2) into (A1)
the surface roughness. yields

A mean field analysis of the deformation of the fracture
surfaces provides a formula of the normal joint stiffness as a L L 0 0
function of the geometrllcal parameters of the fracture anq Of((ZC(O)—ZC)(ZC('[)—ZC)>=f dWlf dw, o(Wq,W,)
the mechanical properties of the solid matrix. The numerical — -
results are in good agreement with the mean field theory,
especially for smalls; .

No substantial influence of the type of the spatial correla-
t@ons on the macroscopic r_nechanicql and hydraulip proper- wi=w(0), w,=w(t), (A3)
ties was found. However, final quantitative conclusions will
be reached only when systematic calculations are performegthere ¢(w;,w,) is the joint distribution of the Gaussian
on a large series of fractures of the same type. The extervariables
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m((zc(o) Z)(Zo(t)~Zo)). (AL)

An equivalent form of the definitio24) is

1, w<O0
0 w=0;

(A2)

—Sg,

(Wy,W )—;EX%_ (Wy—by)2— 29(Wy— b ) Wy b ) & (Wa— biy)?
o(Wq,Wo _47Taﬁ\/1_—72 40-ﬁ(1_72)
Cp(t
- h(2). »
Oh

The first term in the right-hand side of the E43) can be fo dw JO
1

calculated by using the transformation dw, (Wi, W5)

—o

2 + o0 + o0
W1=bpn— 20X, =— f dxf dy e Xy,
m ax
Wo=bp— 20 (yx+ V1 97y)
=V(1-p/(1+y). (A5)



Use of the distributior(15) for w implies

S 1 + o0
= ——
\/—7T by/201,

The correlation functiolR.(t) can be written as

e <dx. (AB)

+ o

X 2_2
de dy e ¥ 7Y, (A7)

aX

2
Ro(1)S(1—-Sc) = ; f

bm/20h

The definition(26) of the correlation length yields

exd —b2/202(1+ )]
1— yz

1 r1
si1-s0e=5- [ T y

(A8)

whereT(7y) is the inverse of the correlation functiog(t).

When the covariance functio@,,(t) is described by the
Gaussian(17) or by the self-affine covariancd 8), the cor-
relation lengthl becomes

_PA(S) 3
ﬁ—m, T—G,S, (Ag)
1 exd —b2/202(1+ )]
\PG(SC)_E fo \/_ln‘y \/1_—72 Y
1 (1 exd —b2/203(1+ )]
= — 12
V(S =5 fo(l Y) =y dy,
(A10)

where indicesG and s correspond to Gaussian and self-

affine fractures.

The expression§A7) and (A10) can be simplified in the
two opposite limits,b,,/o,—0 andb,,/op—0o. For small
bn/oy (or S;=~0.5), the correlation functiorR.(t) becomes

2 R ) _ —y\ 12
R.(t)~ p arcsiny+ ﬂ-_o-ﬁ p arcsiny— 1+ 1Ty
(A11)

The coefficientsV'; and Vg are
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2
\PGNC]__ Z_:E Cz,

C;~0.170, C,~0.034,
2

Y ~Ci— - C}

s 17 5 2 %2

Cy~0.129, C}=0.019,
20'h ! 2

(A12)
whereW is found for{=0.5.
At large b,/ o, the leading term of the asymptotic rep-
resentation oR.(t) is
402 b2 (1—v)
Re(t)~ L exp[ -
\/;a(l-}— az)bm 4op(1+y)

This formula is valid forb,,/o,>1 andba/cy>1. For
largeb, /oy, but smallba/ay,, R.(t) is

. (A13)

1-y

1/2

- bm(
Ro()~1- "

The coefficient¥ 4 is represented fob,,/o,>1 as

v ND*<2ah>1’2€ b2, o — I'(1/¢)
P, | T a0k T Umr vz
(A15)

where D7 ~1 for {=0.5; T is the classical Euler gamma
function. For a Gaussian covarianckg is expressed a¥ ¢
for (=1

402 b2

i exp[ . —2} |

W\/Qbm 40'h

These formulas can be used together with the relation
between the mean ar& andb,,/ oy, for by, /o,>1;

b2
S~ — exp{ - —m)
¢ bm\/; 40'%

in order to analyze the variation of the normal fracture stiff-
nessk given by Eqs(28) and(A9) with the contact are§. .
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