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Dendritic crystal growth for weak undercooling
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Through an asymptotic expansion for small undercoolirey, Pelet numberP<1), different regions of a
two-dimensional evolving dendrite in a one-sided model are identified, when the dendrite shape is initially
parabolic in the far field. There is a(P~1) tip region(region ) where the temperature field is a Laplacian
with an appropriate matching condition to the far field. For deviations to an Ivantsov field that are initially
limited to this region, it is shown to be consistent to assume that the Ivantsov solution is asymptotically valid
in the far-field asymptotic regions whetre P~ 1. Within this interval of time, we consider the dynamics in
region | through an integro-differential equation derived from a conformal mapping formulation, where the
upper-half{ plane is mapped to the exterior of the dendrite. It is shown that a linear analysis of an initially
localized disturbance fails to remain localized later in time. Instead, it results in a partially wavy interface
where the waviness has a sharp leading edge. This feature is shown to be related to the Stokes phenomenon
associated with the inner equation around an initial complex singularity in the lowef-plalfie, as it advects
into the upper-half plane. The specific linear growth rate is shown to be consistent with prior results of
Barber, Barbieri, and LangéPhys. Rev. A36, 3340(1987], though not with Carolet al.[J. Phys(Parig 48,
1423(1987]. The results do not depend crucially on the nature of initial disturbance or the singularity in the
lower-half complex plane that is used to represent such a disturbance. However, nonlinear effects are shown
to cause important changes in the prediction for both qualitative and quantitative aspects. This understanding
is advanced by considering the dynamics of singularities in the lower-half corjgéane. We also present
many features of the zero-surface-energy dynamics including tip splitting, sidebranching, as well as cusp
formation. We also present a scenario for dendrite sidebranch coarsening in terms of the motion of complex
singularities [S1063-651X97)05405-9

PACS numbegps): 81.10.A]

[. INTRODUCTION well defined, one specifies two interfacial boundary condi-
tions: One is the Gibbs-Thomson boundary condition that
Dendritic crystal growth has been a subject of continuedaccounts for lowering of the melting temperature by curva-
interest to physicists, metallurgists, as well as mathematiture or kinetic effects, while the other follows from a balance
cians. The most common example of such a growth is thef heat or mass at the interface, where solidification releases
well-known ice crystal. From a physicist’'s perspective, dendatent heat. The Gibbs-Thomson relation assumes a local
drites constitute a relatively simple but important problem ofthermodynamic equilibrium, which is appropriate since the
pattern formation in nonequilibrium growfi—3]. In metal-  thermodynamic time scale of relaxation is usually much
lurgy, dendrites are common to crystal formation in theshorter than the time scale of diffusion. Further, except in
manufacture of alloy castings, metal ingots, and weldmentsases where the growth rate is very high, kinetic effects on
[4]. They form in the process of directional solidification of a the melting temperature are small and hence ignored. In any
binary alloy when the growth rate exceeds some criticakase, the additional boundary condition on the interfaze
value. Unlike the case of the crystallization of a pure mateinstead of ongdetermines the evolution of the free surface
rial, where growth is determined by diffusion of the tempera-boundary.
ture field, the dendrites in directional solidification are con- The relevance of the above model to experimental obser-
trolled by the mass diffusion of one binary componentvations is not definitely clear. Many effects that are believed
relative to another. The resulting solid is rich in microstruc-to be small have been ignored; yet anisotropy in the surface
tures that ultimately control many of the properties of theenergy relation, even though very small for some crystals, is
finished product. A fuller understanding of dendrite forma-crucial to theoretical predictions, at least for one theory
tion is considered vital to controlling this technologically based on the above modg&lee review article§1-3]). Ex-
important process. From a mathematician’s perspective, demerimental support for such a preeminent role of anisotropy,
drite formation is an extended version of the classical oneat least for tip characteristics, does not seem to ¢#istTo
dimensional Stefan problem: a free boundary problem wherenderstand if such a discrepancy arises from inherent limita-
the domain has to be determined as part of the solution. Thigons of the model or from the additional assumptions made
most common and simple mathematical model that is bein the theory, one must understand the full mathematical im-
lieved to be relevant to dendrite formation consists of a lin-plications of the model equations, but that understanding has
ear diffusion equation describing the diffusion of heat or sol-yet to emerge.
ute, as the case may be. A far-field condition on temperature A steadily moving planar front is unstable due to the well-
or concentration is specified as well in accordance with thé&cnown Mullins-Sekerka instability5]. Experimental obser-
experimental condition. Additionally, to make the problemvations of the dendrite’s parabolic tip motivated the search
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for steady solutions that are approximately parabolic. Nesions, the relevance of any theoretical steady-state solution to
glecting the Gibbs-Thomson lowering of melting tempera-the observed dendrite is far from evident. Dendrites are
ture, and for a specific choice of “undercooling” at infinity, hardly steady, except perhaps for a small region around the
Ivantsov[6] found an exact solution for a steadily growing tip. The microscopic solvability theory explains the dendritic
needle crystal in the form of a parabola, in two dimensionsfeatures as resulting from the convective instability of tip
and an axisymmetric paraboloid in three dimensions. Thelisturbanced15-18 advecting along the sides of the as-
solutions were later extended to elliptical paraboloids bysumed steady needle crystal, though the nonlinear stages of
Horvay and Cahn7]. Since capillary effects are ignored in the growing disturbance have not been addressed. It is un-
these results, there is no intrinsic length scale and so it is natlear if results based on linearization about a global steady
surprising that these solutions do not give a unique determistate are not too restrictive in ruling out other qualitatively
nation of the tip radius. For a given undercooling and fixeddifferent phenomena associated with the full, time-evolving
material constants, only the product of the tip radius andgroblem. As an example, a time-dependent dendritic state
velocity is determined from these solutions. Experimentally that is steady only near the tip might exist in the absence of
on the other hand, both the tip radius and tip speed are demnisotropy.
termined uniquely for given conditiori8]. Although the ob- The advent of powerful computers has led to a new and
served product of the tip radius and tip velocity is in roughimportant theoretical tool. Indeed numerical simulations are
agreement with theory, the agreement is not very g@d now possible that make it possible to include many nonlinear
presumably due to those factors not incorporated in théeatures of of a time-evolving two-dimensional dendrite. Nu-
model described above. merical calculations for the dendrite, either for a sharp inter-
Following Ivantsov’s seminal work, much attention was face with a Gibbs-Thomson interface conditid@®-23 or in
paid to the effect of surface energy in removing the degenthe context of a phase-field calculatif@4—30 suggest that
eracy in the steady solution. Much of the earlier work utilizesthe product of tip velocity and radius squared is consistent
ad hochypotheses. The marginal stability hypothdsi§]|,  with microscopic solvability, even when the dendrite or fin-
which requires that the selected tip radius must be such thaer is evolving in time(See the mathematically similar fea-
the tip is neutrally stable to disturbances, is an example antlire in the problem of viscous fingering with anisotropic sur-
it leads to a determination of the product of the square of théace energy31].) The results lend support to the premises of
tip radius and tip velocity. When combined with the Ivantsovmicroscopic solvability, though they do not explain the
relation, both the tip radius and velocity are then uniquelyphysical mechanisms whereby a localized steady-state tip
given. This theory does not necessitate the inclusion of cryssondition is possible even while the bulk of the dendrite is
talline anisotropy and predictions can be made in two as welévolving in time. Further, it remains unclear how the ampli-
as three dimensions. Despite the relative simplicity of thisfication of localized disturbances superposed on a steady
theory and reasonable agreement of some prediction witdendrite compare with that of localized disturbances on an
experiment, no tenable mathematical justification for thearbitrary, time-evolving state. In particular, phase field
marginal stability hypothesis exisf4]. model calculations are reliable indicators of the limiting
In the 1980s, following progress on model probld$], sharp interface features only when the width of the transition
the “microscopic solvability” criterion emerged, to describe zone is comparable to or smaller than the capillary length
the effects of capillarity on the Ivantsov steady-state soluscale. This limitation constrains the investigation of the small
tions[12]. Numerous numerical and analytical evidences forcapillary effect limit, which is the purpose of the current
two- and three-dimensional dendrites suggest that the solavestigation. In general, numerical calculations, by them-
inclusion of isotropic surface energy does not give a steadyselves, appear to be unsuitable in providing scaling depen-
state needle crystal that asymptotically approaches adences on parameters.
Ivantsov solution in the far field. This apparent lack of regu-  Although the theory of dendritic crystal growth has seen
larity in the perturbations of the Ivantsov solution for arbi- significant development, there is a lack of sound theoretical
trarily small isotropic surface energy is mathematically re-understanding of observed dynamical features of a dendrite
flected in exponentially small terms in the asymptoticand how apparently small effects of surface endthg cap-
expansion. When surface energy anisotropy is modeled by idary length is of the order of micrometers in many materi-
fourfold anisotropic term in two dimensions, a discrete set ofals) influence global features of a time-evolving dendritic
steady states exists, only one of which is linearly stab8. shape. As far as we know, all analytical investigations thus
Thus a unique steady-state tip radius and tip velocity ardar have been based on some kind of linearization about a
predicted. In addition, for small surface energy, the steadysteady base state. In this paper we introduce a systematic
state correction to the Ivantsov parabola due to surface erinvestigation of the fully nonlinear dendritic evolution,
ergy remains small everywhere. However, in three dimenwithin an analytical framework. In particular, we address the
sions, there has been recent wddd] that suggests that mathematical origin of the observed chaotic dependence of
surface energy causes large nonaxisymmetric deviationspecific dendrite shapes on initial conditions, the unexpected
from the Ivantsov paraboloid far from a tip that is approxi- observation that, in many situations, each dendrite grows
mately parabolic. It is unclear at this time if the large non-relatively independently of its neighbors, and the fact that the
axisymmetric deviations observed in experiment cannot bgrowth process is apparently self-similar in all scales up to
alternately explained by the existence of nonaxisymmetriche capillary cutoff scale. We also address, within an analyti-
zero surface energy solutions. cal framework, how arbitrarily small surface energy dynami-
While the evidence for steady-state selection in the coneally selects tip radius and speed relations, without assump-
text of the theoretical model equations is firm in two dimen-tions on a global steady state, in accordance with
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microscopic solvability, even as the rest of the dendrite imumber, the temperature obeys Laplace’s equation with
unsteady. Further, for a specific set of initial conditions, weboundary and far-field conditions very similar to those for
predict the time over which dynamic selection of the tip unstable viscous fingering in a Hele-Shaw ¢&l|3]. When
relation occurs. initial shape deviations from an Ivantsov parab@iat nec-

In a sequence of three papers, we plan to examine thessarily small or localizedare confined to region |, we find
time evolution of a two-dimensional dendrite in a weakly that it is consistent to assume that in other regions the tem-
undercooled melt, using a one-sided model; small undercooperature and interfacial shape remain that for the Ivantsov
ing means that the ket number is small. Our focus is al- solution, as long as the time<P~!. Fort satisfying this
most exclusively on the case for which the surface energgonstraint, we investigate in Sec. Ill the growth and advec-
effects are appropriately small. For a dendrite that is roughlyion of initially localized disturbances superposed on an ar-
parabolic, surface energy effects weaken with distance frombitrary time-evolving state. The results of the linearized
the tip, due to decreasing curvature. Therefore, the smallanalysis are in conformity with previous analytical results of
surface-energy limit has obvious relevance. Further, accurat®arber, Barbieri, and Lang¢i6], but in disagreement with
numerical simulation of a time-evolving dendrite in the Caroli, Caroli, and Roulef18]. In particular, we find that
small-surface-energy limit is difficult because of the need tdinear analysis predicts that an initially localized disturbance
resolve fine scales in both space and time. Our objective is tfails to remain localized—an observation overlooked in pre-
combine analytical and numerical methods to shed light ovious work. By considering analytic continuation into a com-
the dynamics in this limit of small surface energy. Although plex plane, we can understand more fully the meaning of the
a three-dimensional model is faithful to experimental reality,wave-packet analyses that have been previously done.
many theoretical issues related to the model, e.g., tip charac- The complex plane analysis is also suitable if we like to
teristics and sidebranching, also arise in the more mathematimderstand small surface energy effects in a perturbation pro-
cally tractable two-dimensional problem. The hope is thatcedure about the zero-surface-energy dynamics, which is
theoretical understandings gained will carry over to three diwell posed in the extended complex pldi32,34,31, but ill
mensions, at least in a qualitative sense. For the growth of posed in the real domain. This perturbation procedure seems
crystal in a melt, a two-sided symmetric model is more rel-to be the only practical option for the fully nonlinear prob-
evant since the temperature diffusion constant in the solid i',em, which is the main focus of this and the companion
not generally all that different from that in the melt. None- papers. The linear results on the connection of complex sin-
theless, a one-sided model can be relevant when growth tpularity motion and interfacial dynamics motivates the study
controlled by solute diffusion since the diffusion in the solid of the complex dynamics for the fully nonlinear problem.
is small in many instances. Further, numerical calculations As a first step, it is necessary to study the zero-surface-
suggest that the qualitative features for one-sided and tweenergy dynamics in the extended complex domain, though
sided symmetric models are about the same, at least in theot all such solutions can be the limit solutions as surface
context of a steadily growing dendrite. However, given theenergy shrinks to zero—as we know from earlier work in the
sensitivity of the evolving dendrite to small effects, it is con- analogous mathematical problem of viscous fingering in a
ceivable that the two-sided model can be quantitatively, ifHele-Shaw cel[34—-36. To understand and predict possible
not qualitatively, different. differences, we are naturally led in Sec. IV to investigating

The present paper is the first part of the sequence of pdully nonlinear dynamics in the extended complex plane,
pers noted and it concerns the determination of asymptotioshere the zero-surface-energy equations are in fact well
equations for small Riet number(weak undercooling the  posed37]. The complex plane specification of initial condi-
linear growth of small scale disturbances for small surfacdions, while apparently artificial from the viewpoint of an
energy, the nonlinear zero-surface-energy dynamics of iniexperimentalist who is in a position to determine only the
tially specified complex singularities in the lower-half plane, initial interfacial shape to a finite precision, has the theoret-
and their connection to interfacial evolution. It is important ical advantage of removing all sensitivity of the dynamics to
to make clear this connection to the detailed nonlinear analyiitial conditions. In this formulation, the actual results of an
sis of the zero-surface-energy dynamics presented in Sec. I¥xperiment are to be understood by studying a random en-
onward. Therefore, in Sec. Ill, we present an illustrative ex-semble of initial conditions in the complex plane, subject to
ample of the singularity motion for the much simpler linear-the constraint that the corresponding initial shapes for all
ized dynamics, together with its relation to the growth andthese initial conditions differ only by errors of measurement.
dispersion of small disturbances superposed on an lvantsdm terms of complex zero-surface-energy dynamics involving
solution. We plan to follow with two papers that further ex- certain singularities, we also present a possible mechanism
plore the understanding of this process in the complex plandor nonlinear coarsening of the side-branches.

The outline of the present paper is as follows. In Sec. Il Our approach is restricted to analytic initial interfacial
we construct a formal asymptotic expansion for weak undershapes, for which the analytic continuation of the conformal
cooling (small Pelet numberP) and determine where an mapz({,t) to the lower halfZ plane includes only isolated
assumed regular expansion ceases to be consistent. Forsiagularities of certain types. While this is not generic, we
dendrite that is initially Ivantsov-like in the far field, we proceed with the expectation that the aggregate features of
show that there are three asymptotic regions with differenthe observed dynamics are not sensitive to the precise nature
governing equations and scales—where time is measured of singularities.
units ofa/U, wherea,U denote the tip radius and velocity In this paper we restrict discussion to the various features
of the corresponding Ivantsov solution. For @(1) region  of the zero-surface-energgynamics in the complex plane
around the tip, “region I,” to the leading order in"Blet  and the corresponding features observed at the interface, and
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FIG. 1. Problem domainx,y, crystal-frame coordinatess, 1
angle between interface normal apdxis.

as such this paper is the precursor to the two future papers,
which address the differences between the zero-surface-
energy dynamics worked out here and actual dendritic dy-
namics in the limit as surface energy tends to zero.

A

II. ONE-SIDED MODEL EQUATIONS

For purposes of the analysis to follow, we introduce the
following nondimensionalization. Temperature is measured
in units of L/c,, whereL is the the latent heat angj, the
specific heat capacity. Lengths are measured in units of the
tip radius a for the Ivantsov parabola that describes the
asymptotic shape of the dendrite far from the ¢lgotice that FIG. 2. Conformal map from the computatioria ¢ +i 7 plane
a need not be the actual tip radiuselocities are measured © the physicaz=x+iy plane.
in units of U, whereU is such that the Réet numberP ) N .
=Ua/2D satisfies the Ivantsov relation betweBnand di- ~ Gibbs-Thomson boundary condition at the interfésee Ref.
mensionless undercooling = (c,/L)(T,—T.). [See Eq. [38] for a derivation using microscopic physjcsvhich is
(2.14 below. HereD is the diffusivity in the melt and’,,

and T., are the dimensional melting temperatures for a flat T=—do[1+af(0)]x on y=y;(xt). (2.4

interface and the specified temperature at infinity, respec-

tively. Hered, is a nondimensional capillary parameter defined by
With this nondimensionalization, in the frame where an

Ivantsov parabolic interface would have been stationary, the aon

dimensionless temperature variablewith the melting tem- dO:I m»

perature of a flat interface subtracted before nondimension-

alization, satisfies -~ .
where dy is the standard capillary length. In EQ.4), «

oT oT ) refers to curvature, while the term+laf(6) is included to
2P i 2P By +V-T, (2.1 model the anisotropy in the surface energy, where we assume
a standard fourfold anisotropy model

exterior to the interface shown in Fig. 1. The condition at
infinity that determined for a specified the undercooling is f(0)=1—cos4 60— 6,),

T——A asy—om, (2.2 whered, is the direction of minimal surface energy.
For our purposes, it is convenient to rewrite E¢a1)—
while the conservation of heat through the interface requireg2.4) in a transformed coordinate system where the interfa-
T cial location is known for all times. Consider the conformal
Jar _ transformatiorg(Z,t) that maps the upper-hafplane, with
on = ~2Ploatcogf)] on y=yi(xt), 23 [=¢+i7 (see Fig. 2into the exterior of the crystal in the
z plane, wherg=x+iy. It is clear that determination of the
whereuv, is the normal component of the interface motion function z({,t) yields the unknown interfacg=y;(x,t),
and @ is the angle between the interface and yhaxis. The  which is always aty= 0. Under this transformation, the gov-
assumption of local thermodynamic equilibrium implies theerning equatior{2.1) becomes
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2P|z,|?

JT z\ T z\ T determines only the product of the tip radimsand velocity
T RE | —z—Im - U in terms of given undercooling and material parameters.
at 3 an o :

This is a well-known degeneracy when surface energy is not
taken into account.

Z; Z;

+V2T (2.5

JaT JT
=2P< Im(z;) a—§+Re(z§) o

and the far-field conditioi2.2) becomes

A. Asymptotic series inP: Region | equations

In spite of the unwieldy appearance of the governing
T——A as p—o. (2.6  €quations(2.5), simplifications are possible @&—0 (hence
P—0). First, we note from Eq(2.14 that for small under-

The boundary conditions at the interface correspond to concooling A=0O(P*?). Also, we assume that variations occur

ditions onn=0, i.e., the reak axis at most on a dimensional time scale far larger thdiU,
i.e., if u(¢, »,t) is any O(1) quantity of interest, then we
T=—=do[1+af(&1)]x(& L), (2.7 assume that
aT Z+i du
—=-2P|z 2Im< ) 2.8 —<1.
i | g| z, (2.9 P p <1
where This restriction means that the time derivative term in Eq.
1 (2.5 can be neglected to leading order, at least wieh
f=1— — Re(Z'e 14%) (2.9 =0(1). We also assume that the interfacial shape ap-
|z, ¢ ’ proaches the steady Ivantsov shape at sufficiently large dis-
L tances from the tip. More precisely, if the conformal map-
7 . L .
= Im(ﬁ» (2.10 ping function is decomposed into
|Z§| Z; i
Before considering the asymptotic solution for snilit is 2({H)=- 2 PHIFZLY, (2.1

convenient to recover lvantsov’s steady solution with para-

bolic interface fordy=0 in this notation. Even whemy then we will assume for large but realthat

#0 and the dendrite is unsteady, the Ivantsov solution is

relevant in matching solutions in the far field, as we shall see 12|, |zd<lgl,  1Z]<1. (2.17
momentarily.

The Ivantsov steady solutidi] corresponds to A posteriori checks on general, time-varying solutions are

shown to be consistent with the above hypothesis.
2L, 0)=—i%12+ {=7/(0). (2.11 The far-field behavior of the Ivantsov temperature field
suggests that matching with specified undercooling at infinity
In this case T is independent of and is determined from  will be possible only if we assum&=O(P). Further, con-

42 q sistent with most experimental conditions, we assuige
_T2._|_2p(1_|_ 7) _T:0 =0O(P) and note this includedy=0(P) as well. Therefore,
d dpg we define paramete$ through the relation
T——A as p—x, do=2BP, B=0(1). (2.18
T=0 on 5=0. (2.12  We then form a regular perturbation expansion of the tem-

perature and the conformal mapping function in the form
It follows that

T=PTy+P?T,+0O(P?), (2.193
T=T,(n)=—A+JmPe’erfd VP(1+ )], (2.13

z=27,+Pz,+0O(P?). 2.19
where 0 1+0O(P9) (2.19b

Then, toO(P), equations and interfacial boundary condi-

_ P
A= mPePerfo(\/P). (219 tions are

We notice that with the choice({,t)=z({) the condition
(2.7) on the conservation of heat at the interface reduces to
dTldn=—2P, which is satisfied byf =T,(#) at =0. We
also notice from Eq(2.13 that for =0(1), theleading-
order behavior of the temperature field corresponding to the T, Zoiti

Ivantsov solution a®—0 is given by W: _2|ZO§|2|m(Zt_) on 7=0, (2.20
0¢

V2T0: 0,

T0:_28(1+a’f0)K0 on 7720,

T~—-2Py. (2.15
where kg and f refer to the expression®.9) and (2.10,
Returning to dimensional variables, the Ivantsov resulwith z replaced byz,.
(2.14 implies that fordy=0, the steady Ivantsov solution To next ordefi.e., O(P?)] the equations become
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n=0@1 | £=0(1)
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FIG. 3. Asymptotic regions in thé plane.

) dTy ) &TO
V T1:_2 Im(Zog) ﬁg +Rq20£) +2 |ZO§|
dTy aTo
—Re751(20)* ] = P —Im[z5(29)* ] —
an
where
T1:_ZB[(1+af0)Kl+af1K0] on 7720,
&Tl Zlg ZOt'H
(977——2|z0{|2 Im( O)+| - ) ( S
¢ 0¢ 0L
on =0, (2.2)
and
1 d [Z4 1 Z Z
K= — — Im — | — Re —|Im ==,
|Zo§| d¢ Zo, |Zo| 2o, 2o,
— 3 —i46,
f1 _|Zog|4 Re(zg,z, 7'"7)
+ 4 Rz} e*i‘”’O]ReE (2.22
|20 |* 0 z '

0, 0,
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hence defines the limits of region I. This question will be
investigated later in Secs. Il E and Il F.

The region | temperature field is obviously harmonic, so a
conformal mapping approach is suitable. We notice that the
leading-order equation for small &let number retains the
time derivative in the boundary conditions only. It is signifi-
cant that this result comes as a consequence of the
asymptotic approach rather than from ad/hochypothesis
of a quasisteady approximation.

B. Integro-differential equations for region |

It is convenient to convert the temperature equations in
the interior of the domaim>0 and the boundary conditions
into an equivalent integro-differential equation on a line cor-
responding to the boundary of the domain, ie=0. This
further helps analysis of the equations in region | and allows
determination of where the assumed asymptotic series ex-
pansion inP becomes inconsistent. The resulting integro-
differential equation is nearly identical to the equation for the
description of interfacial evolution in the displacement of a
viscous fluid in a Hele-Shaw celbee, for instancd,36]),
when three-dimensional complications due to thin-film ef-
fects are ignorefi39]. The only difference here arises in the
far field. For the Hele-Shaw flow in the channel geometry,
the sidewalls are equivalent to a periodic dependence of
shape in a direction perpendicular to the walls. In a radial
Hele-Shaw cell, the shape is a closed curve. In both the ra-
dial and the channel geometry, the interior of a circle or
semicircle is a convenient work plane in thigariable. Since
we assumed a shape for the dendrite that is asymptotic to an
Ivantsov parabola in the far field, it is convenient to use the
upper-half{ plane as the work plane. Further, our previous
work on the Hele-Shaw cell has ignored anisotropy in sur-
face energy; here the anisotropy has very important bearing
on the dendritic evolution.

The transformation of the mathematical problem involved
in the study of the dendrite to one similar to the problem for
Hele-Shaw interfacial displacement is a great help since it
allows extension of our previous work on the Hele Shaw
flows with isotropic surface energy to the dendrite problem
in an efficient manner.

Clearly, sinceT, is a harmonic function in two dimen-
sions, we can define the temperature fi€}das the real part

The set of equations above is not complete since the far-fiel@f an analytic function, sayW,, and decompose it into an

matching condition asp—o is missing. In general,

Ivantsov contribution and a remaining part. In the same way,

course, there might be time dependence in the far-field temwve decompose the conformal mapping into the sum of the
perature. However, as we shall see later, for certain classdgantsov contribution(which is singular at infinity and an

of initial conditions, it is self-consistent to assume that thatO(1) perturbation that is analytic in the upper-half plane.
the far-field temperature is asymptotic to the Ivantsov solu-Therefore,

tion, with its time variation occurring only over @(P %)

To=Re(Wp),

scale. For much smaller times, it is appropriate to invoke the
Ivantsov solution behavior2.15 and use that for the

leading-order matching to the far field, Wo=2i{—2Bwo({.1),

To——275+0(1) (2.23

The assumed asymptotic expansi@il9 is valid for an

O(1) region around the tip that is denoted as region | in Figwherez, is taken to be analytic everywhere in §»0. The
3. Examination of solutiond; andz;, in addition to the  Gjbbs-Thomson boundary conditid8.20b becomes
leading ordefT, andz,, will be necessary to define where

the assumed expansiof2.19 becomes inconsistent and Re wg) =Kg(&,1)

as 7—».

i
Zo(é/!t):_z §2+g+20(§1t)1 (224)

on =0,
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where

Ko=[1+afo(£,1)]xo(&:1). (2.29

Further, the conservation of heat at the interfg2e209
takes the form

+i

Z
Re(iW0§)=2|ZO§|2Re(i on 5=0.

With the assumed decomposition\d, in Eq. (2.24), it fol-
lows that the far-field conditio2.23 is equivalent to

Rewg)—0 as {—o in Im{>0.

The boundary conditions then become a specification of real

parts of the complex functiond/, and wy on the real axis
and at infinity. It is well known[40,41] that for a function
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C. Far-field behavior of z; and T,

We need now to ensure that the dynamical equations
(2.28 and (2.309 have solutions that do not violate tlze
priori hypotheseg2.17) and(2.23. The far-field asymptot-
ics of zy and T, along with those forz; and T4, that are
determined here, also help to determine where the assumed
asymptotic expansiof2.19 fails.

Clearly Eq.(2.28 can be written as

Zot=01({, 1)z~ 1. (2.3)
Since we assume an initial condition that satisfies the
asymptotic requirement

i
200~ —5 e ¢

F(¢) that is analytic everywhere in the upper-half plane,for t=0, we seek a more general time-dependent behavior as

including |{| =o»,

1 (= dg .
F(O)=— f g RAF(ENI+1 Im[F ()],

Im >0. (2.2
Note that Imwg(ee,t)=0 without any loss of generality, since
this choice does not affect,, the quantity of physical
interest. Further, from hypothesi®.17) it follows that
Im([zol+i]/zog)=0 at{=o. Thus, from Eq(2.25, it follows

that for ImZ>0,

1 [+= d¢

wo(gvt):; f—o@ HKO(glat)Ell(gvt)v (227)
Zot“‘i B 1 (+= d¢’ o
Zo; (LH=— f_w QRo(g H=0qi({1), (2.28
where
1_8 Im(l)og
Ro(g,t): |Zo |2 . (229
¢

Notice thatl, andq; as defined above are analytic in Jm
>0. On approaching the boundary of the domé&iné&+i0,
the equations reduce to the integro-differential equations

Zot+ i :[H0+ iRo]Zog, (2303

1 (= d¢&
HoEn= 24 ap R, (2:30n

1 (= d& o
|mw0§:—;£x g,—i&—f[Ko(g’,t)]. (2.300

We have thus reduced the governing partial differential equa-

|{|— 0, in the form

Zo(£,1)~by(t) 2+ by (1) {+[bo() —it]. (232

Substitution of this expression into E@.31) and then con-
sidering the large-behavior determines the equations for the
evolution forb;(t). That large analysis requires asymptotic
evaluation ofg, for large|Z|. To that end, we writg; as a
sum of three integrals,

_i -L +L +e\  d&’ ,
ql(g,t)_ﬂ(fw+fL+f+L ) g/_gRO(é: 1t)1
(2.33

where L is, for convenience, chosen in the ranggsL
>1. We will then take the limitL—«, under the stated
ordering relation tdZ|.

The first and third integrals in Eq2.33), referred to as
the “outer contribution,” combine by introducing the res-

caled variableg,fz|§|%. From Egs.(2.29 and(2.32,

. 1
~2b Rol& )~ 5
2ol ED-20,(0]El Ro(&:)~ =

So the outer contribution from the integrals in Eg.33 is

1 —L/¢ +oo
Q1,0u™ — f +f
m\J - +LI1g]

=0(¢I™ 'L,

|¢|dé 1
|£1E—¢ 4lb,(1)]?]£]282

(2.39

which vanishes at —oo. ThefEL integral appearing in Eq.
(2.33, henceforth the “inner contribution” tg;, simplifies
in the limit L—oo to

l +L ! ! 1 ree ! !
Q1,in~_ﬂ__§ fﬁL d&'Ro(é ’t)_>_77_§ le dé'Ro(&,1),
(2.395

tion and boundary conditions to a set of integro-differential
equations on the real line, whose solution then describes thehich isO(¢~1). Since the inner contribution dominates the
evolution ofz and hence the interfacial motion. outer contribution, it follows that to the leading order
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M
"2 asigoe

(2.39

Substituting Eqs(2.32 and(2.36) into Eq.(2.31), it follows
that b,(t)=0, therefore from the initial conditiom,(t)=
—i/2; b1(t) =0, thereforeb,(t)=1;

1 [+
e~ = [ deRoe n=-

i [+
—[Taeroen

bo(t) = —2b,(t)M(t) =

with by(0)=0. (2.37
Note thatby(t) is purely imaginary.
Therefore, a$¢|— o,
i
2({)==5 P+ {+[bo(t)—it]+o(1), (238

whereby(t) is determined from Eq2.37). This result estab-
lishes one hypothesis in ER.17) that|Z|<|¢|. Further, by
differentiating Eq(2.31) with respect ta/ andt and carrying
out a similar analysis fozog and Zo,» the remainder of the

hypotheses in Eq2.17) can be established. In the special
case where the initial condition is identically the Ivantsov

parabola with zero surface ener@y= 0, bo(t)=it andz, is
the Ivantsov solution in the crystal frame, as expected.

Now we examine the far-field behavior afy. First we
note that from the above result, 4s-,

2o~ —1¢,
while for real ¢ tending to+ «,

fo(€,t)~1—cog46,y) (a constant

Ko(&, )~ 773

Ko(£,t)~ (2.39

In a similar way to what we did fogq,, we write w, as the
sum of three integrals

EI AT

Using the asymptotic behavidR.39, it is easily seen that
the contribution from the outer integrals@(¢ L ~?). The
inner contribution gives us

| e

-1 A ' '
T fﬁx d&'Ko(€',1),

Ko(€',1).

o, (0=

so that

3075

ooe~— = [ deKoe ) as e (240

Note that we neglected the term involvilg, in Ry in Eq.
(2.29, and this result shows that neglect to be consistent.
From relation(2.24) it follows that as¢?+ 7?—,

2B7n +eo
To(fyﬂ,t)w—Zn—Wj_mdf’Ko(?.t)- (2.41)

D. Far-field behavior of z; and T,

We now turn to the far-field solutions for tti and T, .
From Egs.(2.38 and(2.39), it follows that as{— o,

V2T~ — 4iby(t) (1+ 7) 4?777 (1+ 622:7
f d¢’ —(§ ,H+o(1). (2.42
We decomposé ; into
Ti=Tiu+T1p, (2.43

whereTp is a particular solution to the inhomogeneous dif-
ferential equation in Eq(2.42 and T,y is harmonic. It is
convenient to choose the particular solution so that, as
o,

T1p(€,7,t)~ —2iby(t)

H;n)nz
2 e %
o ¢ )J oe 7

Notice that while the above expression is only asymptotic,
T.p(£,0,t) cannot grow with|g since in that case such a
term would have been present in this expression. From the
boundary condition foil, we require ofT,y that

(£

(§ 1.

TlH(gaovt): _2BK1(§!t)_T1P(§!Ovt):
Ki=(1+ afg)ki+ afikg.
SinceK(&,t), the curvature correction, vanishes for lage

while T1p(£,0,t) tends to zero, it follows from Poisson’s
integral formula that

Tin(€ )= f dég’ W

Therefore, ag?+ 7°—,
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T,~ —2ibg(t)

B +oo dK
- 7J3J7wd§’ — (€0
(2.45

1+ !
37
+0(B7?).

Next we implement the boundary condition &, /d7 in
order to determine the lardé- evolution of z;. We find
from Eq.(2.22) the condition

oT z z
_1:2|20§|2 Re{i i—i(ﬁ)
an Zo;  \Zo;

For Im >0, (zo+i)/zog=q1(§,t), as defined in Eq(2.28.

Its analytic continuation to the real axishiy+iRg, as given
in Eq. (2.30), and since the asymptotic relatié®.36) holds
on the real axis as well, it follows that

(zm+i *
Zo;

ZoeHi\*

(2.49

Zog

~M(t)/{ as |{|—> on Im{=0. (2.47

Further simplification of Eq(2.46) is possible by making an
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z;~A(t),
. 1 +o
A5 | derye on,

A(0)=0. (2.5)
The a priori hypothesis on the magnitude of that we used
above can now be relaxed by seeking higher-order correc-
tions the asymptotic behavior gf, and subtracting appropri-
ate analytic termginstead of justM/({+i)] in the form
M)/ ({+i1)+M(t)/({+1)?+-- up to terms of suffi-
ciently high order, from both the left- and right-hand sides of
Eq. (2.48. This procedure ensures thRj still goes to zero

at +o any timez; does not grow any faster than some
polynomial. In a more general case we conclude that Eq.
(2.5)) represents the asymptotic behaviorzgffor large |Z].
Therefore, the two-term asymptotic expansion forin
(smal) Peclet number (2.19H is uniformly valid as

|| —ee.

E. Far-field breakdown of region | equations: Region Il

The asymptotic solutions derived above indicate that the

a priori hypothesis, which may be relaxed subsequently, thategular perturbation breaks down once we are sufficiently far

z, does not grow any faster thdfj as {— *=«. Then Eq.
(2.46 becomes

C i Zy; )
Re{'zog 'M“)(@ﬂ)zog

=Ry({,1), (248

where

Rl(é‘:lt)

Zlg(f,t))

i 0t +R%
Ty (00 2o/ &)

2|20 (£1]% 9

X[a7 (&) =M/ (E+D)]]. (2.49

From the asymptotic behaviap ~—i¢, T1~ £+ 7%, and
the assumed restriction on the growth ratezpf it follows

thatR,(&,t) —0 asé— =, Since the quantity enclosed in

square brackets on the left-hand side of E48 is obvi-
ously analytic in the upper-half plane, application of the
Cauchy half-plane formula once again gives

Zo, (+= dg’

M (t) [__
e &

21— ——12, =
oo+

Ri(¢’ Ot)}

Z =
1

in Im £>0.

(2.50

Since the right-hand side of Eq2.50 can at most be
asymptotic to a constant for largé], it follows that 2y,

~ (spatial constant) ag|— . [Notice that the second term

in Eq. (2.50 is higher ordel|. Therefore, becausg, is ini-
tially zero, its solution at largg| must take the form

from the crystal tip, in a fashion to be discovered in this
section. While the conformal mapping has the far-field be-
havior (in the crystal framg

2~ 5 (4 (b)) +PAT) (252

and remains a regular perturbation expansion as+m, the
two-term asymptotic expansion of the temperature field
worked out previously,

3
T~—-2Py+P? = [2|b0(t) 2Bf dg (g t)}

as |{|—=, (2.53

clearly suggests that the asymptotic sef@249 fails when
n=0(P~ 9. Therefore, we are forced to define a new
asymptotic region, say region (kee Fig. 3 where the ap-
propriate scaling of dependent and independent variables
takes the form
T~PYTo+0(P¥?), (+i=P Y, t=P 'r. (259
The equations for the evolution &f in region Il are then
determined by takind®— 0 with ¢’ fixed in Eq.(2.5). The
first term in the asymptotic series in region |l satisfies the
equation

dTy 07T0 dTy
"2 "2 — 1\2 _
2L(&) + ()] - —=(V')T+2 Fra + 7' o)
To——+m as 5’ —w, (2.59

and in order to match to region |, we require that

To~—27%" as n'—0,
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i.e., Tg matches the solution in region I. In deriving Eg. boundary condition then determines the dynamics of the free
(2.55 we used the fact that the conformal mapping func-surface, as well as the temperature distribution.
tion z in region Il is still given by the Ivantsov solution We conclude by noting that regions Il and Ill play no
—iZ%12+¢, at least to the leading order. Thus there is noactive role in the dynamics of region I, which is fortuitous
need to write an equation for the mapping function. since it allows us to conclude a great deal about dendritic
The evolution in region 1l occurs on a slo@(P 1) in-  behavior based solely on region | dynamics, for rather long
trinsic time scale. In general, time dependence can come itimes. From now on, in this paper we concentrate solely on
through the matching to other regioffer instance, to region dynamics implied by the region | equations.
I). However, fort=0(1), with the matching condition and We begin the process of studying the region | dynamics in
condition at infinity being independent of it follows that  the next section by investigating the linear theory for growth
the initial lvantsov solution is the appropriate leading-orderof localized disturbances, a problem directly related to earlier

solution in region Il and therefore work by Caroli, Caroli, and Roul¢fL8] and Barber, Barbieri,
and Langeff16]. Since all of what follows involves investi-
To=— \/; erf(n’). (2.56 gation of solutions for the first term in the &et number

series(2.19, we now drop, for simplicity, the (o) notation
in reference to that first term, i.e., from this point forward,

) ) o z(¢,t) refers to the conformal mapping in region |, to leading
The existence of region Il is inferred from the breakdowngrder inP.

of the asymptotic expansion for largg however, differing

scalings can be expected whep=0(1), but | is large.

Clearly the governing equation in region | cannot be valid 'l LINEAR THEORY FOR GROWTH OF LOCALIZED
When|20§|2=O(P*1), as seen directly from Ed2.5). DISTURBANCES IN REGION |

Standard arguments give the appropriate scaling in this We consider here the fate of small localized shape distur-
(new region Il as¢=P~ Y2’ and the asymptotic expansion bances initially located near the tijn region | in the form

F. Equations in region Il

for the temperature field is here given by of one or more narrow perturbations superposed on a steady
) or unsteady dendrite solution, using a linearized analysis.
T=PTo+O(P), (257 with a Green’s-function approach, a similar analysis relying

on wave-packet hypotheses has been carried out by Caroli,
Caroli, and Roulef18] and Barber, Barbieri, and Langer
[16] the results from each indicating a different rate of
(2.58 growth for the disturbances; the results of Barber, Barbieri,
and Langeff16] are consistent with the numerical results of
Kessler and Levind17]. Our study differs from previous
approaches in that we derive very general results for the
evolution of a short-wavelength disturbance superposed on
an arbitrary time-evolving base state. Since we do not as-
sume the background state to be steady, the growth rate may
=—2 on 5=0. (2.59 be calculated for any given unsteady solution, provided that
an the background state does not have spatial scales of the same
order as or smaller than that of the superposed localized dis-
turbance. Further, our approach, using a Fourier transform,
does not make ang priori wave-packet ansatz. For the case
of a steady background state, concrete results can be ob-
tained for the growth rate as a function @érge distance
from the tip(though still within region ). We obtain below a
solution that is consistent with that of Barber, Barbieri, and
Langer[16].

The linearized problem is approached below in two
complementary ways. In Sec. lll A we study the equations in
the real { domain and obtain results through a Fourier-
transform method. In Sec. Il B we study the dynamics of the

To=—27 (2.61) analytically continued equations in the lower-half compdex

plane. Aside from confirming the results in Sec. Il A, we

satisfies Eq(2.59 and all the boundary and matching con- demonstrate how noise amplification and wave-packet evo-
ditions (2.59 and(2.60. This steady solution is indeed cor- lution are in f_act con_n_ected to the mptlon toward the real axis
rect for region Il until disturbances originating in region | of complex singularities of the idealized zero-surface energy
have had time to advect into this region. As we shall see iProblem. _ _ .
the further analysis of the region | equations, this time is at We begin the linear analysis by decomposing the confor-
leastO(P~1). When disturbances from region | do finally Mal mapping functiorz in region | into
arrive, the equations must be modified to reflect the fact that
z is no longer given by the lvantsov solution; the additional z=2+7%, (3.9

whereT, satisfies
012 dTy Ty
(&) Tl
with boundary conditions

To=0 on =0,

dTy

Matching to region Il requires that
To~—27n for p—oo. (2.60

Notice that this problem, with conditions on boih and
dToldm on =0 as well as the matching condition gt
=, is overspecified. However, from our previous work, we
know that in this region the asymptotic behavior ofis
z~—i{%12+ ¢, so that the free boundary is knovanpriori.
Indeed, the steady solutiqmorresponding to lvantsov solu-
tion)
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where z° corresponds to the given solution, steady or un-Egs.(3.10 and(3.11) that for e<1, the third-derivative term
steady, andz! corresponds to the disturbance with small-provides the dominant contribution to the integrand in Eq.
scale spatial variations. We will also assume here fhat  (3.10. Further, it is well known that for smooth functions
<|z¢| and|zg,|<|zZ,|. Thenz', to the leading order, satisfies S(¢) andT(é/e), for which the Hilbert transforms exist,

the linear equation

1 (= d& (¢ ,
2 =[HO+iR%Jz+ [H1+iRYZ, 32 =7T. HT(?)S@)
where S = dée /
N(—g) %T f_ for e—0. (313)
O Ime? 53 ™ Jow £7E €
' z2? ' Further, since;,,/z{ is an analytic function in the upper-half
1 4’ { plane and goes to zero atsufficiently rapidly, it follows
wen-2F g REn. @y M
1 (= d& [Zg€D) Zge(£1)
mate— L7 9 7 @y e 'm( 260 Ry O
I B X/ '
Therefore, from Eqs(3.10—(3.12,
1 z2,
Ko<g,t>=—[1+afo<§,t>]{@ 'm(z—g”’ (3.6 ot LEaTolED Zg 315
|Z§| Z; . '
0% —i4,
—-1— LIO Further, we note thaR! in Eq. (3.8) contains two terms: The
fo(&,0)=1-Rel “—57—|. @7 F e note thaR " in :
|zl first term isO(e 1), while the second term, on using Eq.
L ) (3.15, is O(Be %). We retain both terms sinc8 may be
. S1-B Imo? [z;] BImw; small. In evaluatingd* through the Hilbert transform inte-
RY(&D=-2 |zU|2 R 2 |Zf5|2 , (38 gral, we invoke the propert{8.13 above and obtain an ex-
¢ ¢ ¢ pression foH? that is asymptotically correct far— 0. Com-
1 (= d& bining this expression far* with the leading-order behavior
H(& )= p £ ¢ RY(¢&'1), (3.9 of R'in Eq. (3.8, we obtain
1-B Imw?
mol(en=- 14 S K0, (310 [Hl“Rl]ZgN_Zi[ 2P ﬂz?
w y = - ,— _, y y .
¢ L N T ¢
iB[1+ afy(&,1)]
1 23\ [z - B Zye (310
Ki(§,t)=—[1+afo(&1)] —m”n 0 |R¢ 0 ¢
1 ¢ ¢ og Notice that the coefficient cﬁé in the above is just
. 1 i a (z§ _afy (1) m Z;; (3.11 —2iR°. So combining with (—|°+iR°)zog appearing in Eq.
|?§)_| Z3 Eg |z§| ;g ’ ' (3.2, we obtain the following simplification of Eq(3.1),

4 )
fi(&t)= ER Re (z9)%e'4%]

Re 4(22)%e14%] !
- |i°|4 Re[z—g}. (3.12
3 3

valid in the asymptotic limite—0:

iB[1+afo(£,1)]

1_ 0_ip07,1

(3.19

Equation(3.17) forms the basis for further analysis presented
in Secs. Il A and Il B.

The integrals in the above expressions must be interpreted as
Cauchy principal value integrals and therefore each is dis- A. Growth of a disturbance—Fourier-transform approach

played as an integral with a horizontal dash.
In what follows we will suppose that the disturbaretds

characterized by very short scales, which may arise from, b
are not limited to, isolated narrow structures. Formally, then

We now specialize Eq.3.17) to the case for which there
is a confined, small-scale initial disturbance. Since that dis-

Yurbance will be advected along the crystal surface, it is con-

venient to introduce a variable

we take the functional dependencezdfon ¢ to be through

éle, e<1, wheree is then a measure of the spatial scale of X=[&E—&4() /e, (3.18
the disturbance. Hence we writd(&,t) =Z(&/ e,t) for some

functionZ. The base staté’ and its derivatives are assumed where&,(t) is evolved according to

to be independent of. Such a hypothesis fa'* allows great i

simplification of the equations given above. It is clear from Eq(1)=—HO(&4(1),1). (3.19
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We defineZ(y,t) through the relation
Z (&) +ex,)=Z(x.1).
Then, to the leading order, E¢3.17) becomes

iBe 31+ afy(£4(t),0)] 1

|Z2(¢4(1) DI o
(3.2)

This equation is adequate for studying the evolutiorzbf
over anO(e) time scale: however, it is not accurate over an
O(1) time scale since we ignore@(1) terms in approxi-
mating Eq.(3.17) by Eq.(3.21). Including these corrections,
Eq. (3.2)) is replaced by

[—ie "RO(&4(1),)+HA(E(D), X —iRY(£q(1),)X]Z}
iBe 3

(3.20

Zi~—ie TRYU(&(1),DZ

Zl=

1

IR D Do (3.22
We now introduce the Fourier transform o,
zl(X,t)zf dk d<xZ1(k,t), (3.23
0

where the integration range reflects the fact thity,t) is
analytic in the upper-half plane. It follows that

ZY(k,t)

* f Tdye Mzl xt). (324
27 ) _o T ’

If we now introduce for convenieno@zkil(k,t), then it
follows from Eq.(3.22 that

Qi+ K(HY(&4,1) —iRY(£4,1)Qx

1 B[1+afy(&g,)]K°
T € |23

KRO(&q,t)— (3.25

}Q.
Using the characteristic direction lat space,

t
A=K exr{—fodt’[Hg’(fd(t’),t’)=—iR‘g(éd(t’),t’)J},
(3.26

it is possible to integrate Eq3.25 along the\ characteris-
tic, in terms of an initial valu&*(k,0). The result may then
be put in the final form

3

. . k Bk
Zl(k,t)=Zl(k,0)exr{ El(t)—?zz(t)}, (3.27

€
where
t 4 —~ o~ —~ o~ —~
3a(t)= fo eXp[ fot [H‘g(éd(t),t)—iR‘g(fd(tLt)]dt}
t
XRU(&4(t"),t)dt’ eXP[—fO[Hg(éd(t’).t’)

—iR?(gd(t’),t’)]dt’), (3.28

FOR WEAK UNDERCOOLING

2,(1)= fot }

t t! —_——
XL exp[sfo [HR(E(D) DRy
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1+ afg(éq4(t'),t")
|22(&4(t),1)]°

(t),D1dt

|

t
Xexp[ —3f0[Hg(gd(t'),t')—iRg(gd(t'),t')]dt'}.

(3.29
Thus
- L , k Bk3
Zl()(,t):fo dk Zl(k,O)eX |kX+;21(t)_?22(t) .
(3.30

If either t is sufficiently large orB3 sufficiently small, then

>,<1 and thereforeifye+3,)¥> JBX,. Then this inte-

gral may be asymptotically evaluated by steepest descent; we
2

obtain
T 1/4
]

1 At
Z(x)~ez (6k°’o)(3622(isx+21
2

X
exp[ 3\363,

where the saddle point is locatedlaf— ek, for

(iex+3)%? (3.3)

3B,

0=

(3.32

The result(3.31) is valid for any background stat#,
steady or unsteady, whe®,;, 2,, andk, are computed
from Egs.(3.29, (3.29, and(3.32 onceR’ H°, and their
derivatives with respect t§ are computed using the given
Z°(&,1) in Egs. (3.3 —(3.7), while &4(t) is found by solving
Eq. (3.19.

More concrete expressions for the growth rate can be ob-
tained with more specific knowledge af(¢,t). For in-
stance, the trajectory equati¢®.19 for &4(t) can be solved
explicitly when z°(&,t)=¢—(i/2)&?, corresponding to the
Ivantsov solution. The corresponding®(¢,t) is simply
—&/(£%+1). On integrating Eq(3.19 we obtain

£3+ 2 In| &4 = constt 2t. (3.33
It follows from the above that i£4(0)>0, then &y(t) in-
creases monotonically and asymptotically behaveg2agor
t>1. For steady base states close to the Ivantsov solution,
which is appropriate for smallv [12], Eqg. (3.33 gives a
good approximation to the actual trajectory &ft), which
will be discussed in Sec. Il B.

More generally, if the base state is not close to the
Ivantsov except in the far field or if the interface is not
steady, we can still simplify the expressi@®31) for t>1,
provided we assume thig,(t)|, which is initially O(1), is
at some point sufficiently large. In that case, from E@s4)
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and (3.19, it follows that if |22? is O(¢?) and B Ime? - m2E 1/a
- o o ¢ ZY(x,t) ~ eZY(eko,0) |z ——
t—O(l) for |¢|>1, thenHP(&t)~—M/& and therefore as 3Bt(iex+3)
— 0,
2\/&
- 1 e X e ;{3@(@#2 )3’2] (3.41)
Eq(t)~ f2M dt where M=;j dé RO(¢,t)
° o (3.34 An additional assumption on the base st#teéhat makes
M approach a constant value fbr implies
for positive &y. If it turns out thatéy(0)<<0, then repeating 1
the above arguments gives, for o, E(D)~V2Mt, 3,5~ m
d
[ 1

Eq(H)~— fOZM dt. (3.39 21~M’
From this point onward we examine only positiég(t), Ko \/ZM Eq()(1+ieMy)
from obvious symmetry considerations. The expressions 0 3B
(3.28 and(3.29 for % ; and, simplify as well fort>1 and
&4(t)>1 and take the much simpler form and therefore

R 2772M2§d 1/4
1 t ZY(x,t)~ezt k,O(.—
S e | R e, 330 L0 =2 o0 3RiM ex+ 1)
d

2312 (1/2
X exr{W (1+IM EX)3/2} (342
g [ —h Gty L afo(Et) )

£\sd Though the result3.42 holds for M— const fort—oe, z°
(3.37 need not necessarily be steady for this to be so.

Specializing still further to the situation for whick’
If we now suppose that the disturbance has traveled Suﬁs a steady state that is close to the Ivantsov solution

ficiently far from its initial location so thaty(t) is large —(i/2)%+ ¢, which is valid for small, nonzere, it is
enough to make the base state well approximated by thﬁppropnate to substitutd =1 in Eq.(3.42. In that case, the
Ivantsov formzg(¢4,t)~ —i&y, then result is consistent with that of Barber, Barbieri, and

Langer [16], though without the algebraic prefactor
o (1+iM ye) Y4 We also note from Eq(3.42 that the de-
R (fd(t),t)~%v pendence on the precise form of initial condition is weak.
d For instance, if

fo(€4(t),1)~1—cog46,)=f3 (a constant for t—oo,

1)
ZY£,0)= . : 3.4
(338 (0= 0170 343
(This result is not valid if the base state has time dependend&en
that has propagated t&, or further) If 8,=0, so that the ~1 o kom0
minimal surface energy direction coincides with theaxis, €Z'(eko,0) = —i e 07?), (349
i.e., they axis, then ¥ afy~1 even whenu is not small; So, in that case
the anisotropy therefore plays no role in the asymptotic
growth rate of the disturbance according to linear theory. . _ 2M&4(iM ex+1)| 12
While it is straightforward to include the ca#g+0 in the ZX(x,t)~—ié expg ns(0) 38
calculations, we will henceforth limit our discussions to
6,=0. Under the simplifications of E43.39, thenZ; and 2mM2gy |\
3,, given in Eqs(3.36 and(3.37), further simplify to X 3B(iMex+1)
1 (v 1 2N2&q
S~ — dt’ 3.3 Xe (iMex+1)%2|. (3.45
D ] ) (3:39 ’{wr
¢ Since|74(0)|=0(e), which is essential for an initially lo-
So(t)~— (3.40 calized disturbance of the scale assumed and sincectisat

&4 small, the exponent of the first term of E(R.45 is uni-
formly smaller than the argument of the final exponential for
and the largd-asymptotic form(3.31) becomes ex, t=0(1). If the nature of the initial singularity in Eq.
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(3.43 were different, it would make little difference since well known in complex variables that this process of analytic
the first exponential term would be one again, though a difcontinuation is not well posed. In other words, if the interfa-
ferent choice would modify thealgebraic factor in Egq. cial shape is provided to a finite nonzero error in an experi-
(3.45. [For example, a second-order pole instead of Eqment or simulation, then the extension Zf(£,0) into the
(3.43 produces a result essentially like E@®.45, except lower half plane cannot be uniquely determined in any mean-
that the£X'* multiplier becomes>#; the final exponential is  ingful manner.
of course unchangeldThus, to a large degree, the result for ~ The evolution of the dendrite corresponding to very dif-
growth rate according to linear theory is independent of thderent initial conditions in the complex plane may corre-
detailed nature of initial disturbander, more precisely, the spond to nearly identical initial conditions in the laboratory.
nature of the complex singularjtySuch a conclusion is, as For example, IeIz}(g,O) be one particular initial condition
we shall see later, qualitatively different from what is to beand let z3(£,0)=z3(£,0)+ 8,/({+i168,) with 5,>0 be an-
found for the nonlinear equations. other initial condition. These two differ on the reahxis by

A few other comments are in order before proceeding taa small amount fot 8,|/ 8, sufficiently small, meaning that
the next subsection in which we develop a deeper undethe interfacial shapes in the two cases are nearly identical.
standing of the solution behavidB.45. Notice that even Yyet z! andz} differ by a large, singular amount in the lower-
though the disturbance starts being confined toGi®)  half complex plane. This latter difference leads to signifi-
neighborhood irg close to the tip, by the time the long-time cantly different interfacial distortions dater times as the
behavior given in Eq(3.45) is appropriate, the disturbance is complex singularities continually approach the real axis from
of width O(1) at least, sincey always appears in E43.49  pelow: as we shall soon see that they do. Therefore, by be-
in the combinationey. The boundary layer analysis is still ginning with a known singularity distribution in the complex
valid formally because it requires onéy <&y, and sinc&y  plane rather than with a known interface position, this sensi-
is large, this condition is satisfied. However, the result alsqivity to initial condition is removed. Experimental observa-
shows that the disturbance can have a large spatial extefibns are then understood in terms of an ensemble of com-
compared to the tip radius, while not failing to be small plex singularity distributions subject to the requirement that
compared to the distance from the tip. Also, we note that aghe interfacial shape corresponding to any one of a number
t—o, the local wavelength of the oscillations present in theof complex initial conditions are indistinguishable to within
solution (3.45 scales as §/£4)Y%, which becomes shorter experimental error.
with time. This is not consistent with sidebranch coarsening We now focus on a single isolated complex singularity

observed in experiment. _ £(0) of Z1(¢£,0) in the lower-half plane. We ignore anisot-
For purposes of comparison of our results WlthIOtherropy effects in this analysis since the results from Sec. Il A
works, for £;>1, we replacety everywhere by ¢ 2y4)"%  indicate that anisotropy has no effect on the results for

whereyy is they location of the disturbance in the tip frame asymptotic growth rate far from the tip. The analytic con-
of the dendrite. We also repladé by 1. Then the shape of tinuation of the dynamical equatio8.17 for =0 to the

the distorted interface is given approximately by lower-half plane is given by
x? 1 zr=q%2} - | z: (3.47
y=— 5 +Im(Z - =27,), (3.46 v AT PR fue :

which is essentially the same result as given in &) of 7Y is a locally analytic function that is equal to the complex
Barber, Barbieri, and Langét6], except, as noted, the alge- conjugatez®* on the real axis, and3 () is an analytic
braic attenuation factor (tiey) Y*is missing in their re- function in the lower-half comple¥ plane, defined by
sults.
RO(&1)
§&~¢ 7

l o0
aev-— | de (343

B. Linear dynamics in the complex plane
An alternate approach to understanding wave-packet dX/'vhere RO
namics involves studying the dynamical equations in th
complex lower-half plane. For the linear problem itself, the ow
advantages of such an approach are limited; nonetheless, the '
ensuing discussion of the linear complex plane dynamics is
useful in understanding how approaching complex singulari-

ties can correspond to the intensification and lateral spreaq:—urther it is clear that on the real a*i%z—zoio Thus Eq
L) - é’ é‘- .

ing of an initially confined disturbance: a connection that(3 47) is easily seen to be the analytic continuation of E
transcends linearity, as we will show in later sections. In fact, " ; sy s yu inuatl a-

it is only in the light of this analysis of singularity motion in (3.17 (with «=0) o the lower-half complex plane. It is to

the lower-half¢ plane that results like Eq3.3) can be P€ noted thatif we SUbSt'tU‘#l—'é_’ as appropriate for

properly understood. the Ivantsov solution, the correspondm% can be evaluated
In this section, we consider the linearized dynamical®xactly to be

equation(3.17), which is valid only under rather restricted

conditions. We consider the analytic continuation of the ini- 0 1 (3.50

tial conditionZ*(¢£,0) to the lower-half compleX plane. It is i '

is as defined in Eq(3.3. It is clear from the
ePlemelj formula that ag approaches the real axis from be-

q‘1)—>H0—iRo. (3.49
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In general, ifz?zO(g) for |£|>1, where
M " 1 (= d§
qg(§,t)~—?+0(§’2), (3.5 qo(§,t)=; j_m Q Ro(g,t). (3.56

where M is once again determined as in H&.34. Note  Note that even though the expressions édrand qg are
from Egs. (3.49 and (3.50 that for the Ivantsov solution identical, they are not the same analytic functioup%js de-
M=1 and that this value is approached for a steady basBned with the integral expressio(8.48 only when Iny
state for3#0 for small anisotropya. First, if we neglect <0, whereas the above definition qf({s,t) is valid only

surface energy in Eq. (3.47), it is clear that when Im.>0. Indeed, on the redlaxis, the Plemelj formula
. . implies thatqy—q5=2iR°.
Z(L1)=2°(v,0), (3.52 Now, we consider separately the equations £gt) and

7s(t), the real and imaginary parts ¢f(t), in the case the
t>1. Since we have noted in Sec. Ill A that fo¢|>1,
z,~—ig, then"z'§~+i§. Further, for largg¢|, Eq.(3.27) is
approximated by

where the relatiorv as a function of {,t) is determined by
solving the characteristic equation

(=-a3(t),t) where {(0)=v.  (3.53

Therefore, according to E@3.52, whatever structure char- wgfv.iz f Ko(&,1)dé. (3.57
acterizesz? initially, that structure “advects” along a path me ) e
given by the solution to Eq3.53. We note that Igi(¢ 1) is

a harmonic function in the lower-half plane in ti§ey vari-
able, taking on the value-Ry(Z,t)<0 on the boundary¢ —0 %
axis, i.e., real axis). From a maximum principle, lnf<0 DY j_xKo(&t)d? (3.58
everywhere in the lower-half plane. Thus dm#z>0, which

implies that fort>0, for any ¢ on the real axis, the corre- From Eqgs(3.55, (3.58, and(3.59, gi~q2+o(£; 2). Thus,

spondingv satisfies the relation 1m<0. Therefore, the iso- taking the real part of Eq(3.55 leads to the long-time dif-
latedZ(¢£,0) structure that begins in the lower-half complex ferential equation fok,,

{ plane propagates to the real axis in a finite time and per-

haps crosses the axis. In particular, if the initial data . M s

Z(£,0) happen to have a singularity &t ((0), where fs(t)”@Jro(fs ), (3.59
Im{{(0)<0, then the singularity((t) will propagate toward

and hit the real axis at a finite time. In the special case wher&om which we trivially obtain

the background state is the Ivantsov solutifer 5=0) 22

Therefore, in the absence of an essential singularity, at

=1-i¢, the trajectory of the singularitin this caseis ()~ /fIZM dt. (3.60
L) =i+\[L(0)—i]2+2t. (3.54
When M approaches a constant ds—o then &g (t)
Note, in this case, that this singularity in the lower-half plane~ y2Mt.
hits the real{ axis before eventually approaching Jgs1. On taking the imaginary part of E43.55, we obtain
When R&0)>0, it is clear that R&=&— +o ast— and
that for Re(0)<0, Rey(t)=&(t)——c. -1 j M pogende
While the solution ceases to make physical sense beyond s ) (E— &%+ 77§ '

the time when Ingt)=0 for B=0, the same is not true for
any nonzeraB, however small. As we shall soon discover, +2 RgR(44(1),1)], (3.61)
the zero-surface-energy singularity located Zaft) is re-
placed by a smoothed out inner structure centergd(&. In
such cases, it is necessary to compute the trajedigity

whereR(¢,t) is now the analytic continuation of the expres-
sion for RO(¢,t) off the real axis and is given by

even as it enters the upper-half plane. This inner structure 1
affects the solution on the reélaxis and hence the interface RO )~ — |1— — (wg—'a")g) _ (3.62
shape, even when it is well into the upper-half plane. To 2079 2i

study the trajectory off (t), we need to write down the

analytic continuation ofq2(¢,t), as it is defined in Eq. Consider the largé-behavior of the integral in Eq3.61) by
(3.48, from the lower-half plane to the upper-half plane. breaking it into

Recall that the analytic continuation kzI2|2 off the real axis L oL f-L (el [

is 27z}, while that of Imw; is given by @{—@ 9)/2i. Thus, f +f L+fL +f +L+L, (3.63

for Z4(t) in the upper-half plane, Eq3.48 implies that &L
. 1= (BI2iV (0’5 where n,<L<¢g and L>1. By substitutingé=&.v in the
L= —qU((t) )+ 2i [1-(5 ';(“:g wg)], (3.55 first-integral and usingR°(vé;,t)=0(¢&; *v™?), it follows

z;z; that the contribution from each ¢f-%, /& ", andf7 . is
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FIG. 4. {-plane trajectory of a singularity across the real axis and int9>fy) according to linearized analysis. Shown schematically is
the singularity at=0 and for large times when the singularity is in the upper-tigfane. The dashed lines are the Stokes lines that bound
the downward-facing wedge in which the solution is temporally growing and spatially oscillatory.

O(7s& 2L~1). Of the remaining integralf"  clearly con- It is clear thatQ®(0)=1. Further, the asymptotics afj

tributes —M 75/¢2 as L—, while on substitutingé—¢;  ~— M/ and the trajectory equatiai= — q3(Z«(t),t) show

=pev, it is clear that fgsft contributes an additional that fort>1 (and hencé{,>1)

—RO(&,1). If the far-field behavior of 22~ —i¢ and I

'z”?~—i§ is valid, it follows that the last term in Ed3.61) Qot)~ 2Ok (3.69
S

contributes R%(£4(t),t). Adding all together, we obtain
whereC is some constant. Using definition, E®.67) can

: M7 be rewritten as
ns~ =~z TRUEDD. (3.64
° (=L +Q%1BY%. (3.70
Integrating, Notice that the quantity used here differs from thg of
Sec. Il A; in fact, y=%Q°t). We define a rescaled time
1 variable

t
— =14 ’ ’ ’
7S D fdt RE(E(1'),1)E4(L"). (3.69

e [ 1 ) A )
If M(t) approaches a constant &s>o and &4(t) is large 0

enough so that the approximatiﬁ&‘?(gs(t),t)~§s’2 holds, it

follows that X ! dt’ (3.7)
[Q°(tHT> '
If & is sufficiently far along the real axis so that
— ast . 3.6 S
77 M - (360 z?(gs(t),t)~ —i{s (i.e., is close to the Ivantsov solutiprit

follows that in the special case whdeg(t)|>1 for allt, we
Now we move on to extend the analysis to include noncan write Eq.(3.71) as
zero surface energ§ in Eq. (3.47). For now on we concen-

trate on an inner neighborhood of the singuladtyt) that —— i (3.72
moves according to Eq3.53. We introduce the local vari- c* '
able

Note from Eq.(3.71) that ard7) is initially close to— /2,
¢ since [Im740)/<1, and so arg;z] is close to zero and
§=§S(t)+exp{—J’ q?g({s(t),t)}BWX. (3.67  Q(0)=1. If we define
0

ZH D)) =G(X\7), 3.73
It is convenient to defin€°(t) so that . . . .
the leading-order equation f@ derived from Eq.(3.17) is
¢ simply
| °t=—J° t),t)dt. 3.6
nQ°()=~ | af (Zs(H).D) (3.69 6 =G 3.7
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The solution to Eq(3.74 that matche&(y,0) whent—0*
for arg(é) in the interval - 7/6, 7/6) (a range of argument
that includes the solution on the reglaxis) is

R
Glx.m=5_ J_ dY'G(¥,0)(F—%')Y2r Y2F

X (=i(x=x"¥ ), (3.79

where the integral is to be interpreted along the jgabxis
though it skirts just above the initial singularity’gt=0, and

F(B)= fcdx g Ax1—x®), (3.79

whereC is a straight-line contour from=0 to along a ray
determined by argf=—n/3— 1 arg(B). It is easily seen that
F(B) defines an analytic function for all finite comples
exceptB=0, where it has the asymptotic behavior

e—iﬁlsr(%)
F(B)~ T3 (3.77

The asymptotic behavior of the solutid3.76 for g—oo
involves contributions from a saddle point in thglane and
also the contribution from the vicinity of the end point>at
=0. Which is dominant depends on the argumenBpand
the entire process must be done with great care. Fogaig(
the interval[ — w/2, 3(w/2)], the end point dominates and
S0

1
F(B)~—. 3.7
(B) B (3.78
In other regimes in af@), however, a saddle-point contribu-
tion is dominant. Thus, for aft@) in the interval 2,
—l2),

F(B)~ i\ guz5 € #*[1+0(57)], (379

while for arg8) in the interval (37/2, 2m),

F(B)~ \/?1% o213, (3.80

With the known asymptotic behavior stated in E8.78 in
the given sector and the relation a8yt —m/4+ 3 argly
—X'), which is valid at least fot<1, it follows that as
t—07", with arg¢—¢y) in the (— w/6, 7m/6) the integral in
Eq. (3.795 simplifies to
L [r WX G(x',00=G(x,0
20 ) =% (x",00=G(x,0)

sinceZ(¢,0) and henc&(x,0) is analytic in the upper-half
plane (including at infinity). Thus the solution3.75 does
indeed satisfy the initial condition on the reghbxis. In the
special case wher(£,0)=6/[{— ¢4(0)],

- A _
G(X,O):S(—. with A= 6B~ (3.813

However, this evaluation of5(x,0) must also, for short
times, contain within it the largg behavior of G, and in
order for this solution to match to the required far-field form
G~Aly, x— (see argument belgwwe must write, in-
stead of Eq(3.813,

A A
=, A'=A/Q1). (3.81h

GRO=—==

Equation(3.75), at least fort sufficiently small, simplifies to
G(x,7)=—iA X" YR (—ix¥472).  (3.82

To see this result, we have to note that we can close the
contour in they’ plane with a large semicircle in the lower-
half plane so that on the large lower-half semicircular arc
argly—x’) is in the interval(0,7) for which the correspond-
ing argB) is within the interval where the behavi@.78 is
valid. This means that there is no contribution from this large
semicircular arc and the only contribution to a contour-
integral evaluation of Eq(3.75 comes from the residue at
%' =0, which results in Eq(3.82. Actually, it is directly
possible to verify that Eq(3.82 is a solution to Eq(3.74),
satisfying the condition that a@s-0, G(y,7)—A'/y for any
fixed y#0, provided arg{) (and therefore afg—(0)]) is

in the interval (— /6, 77/6), which includes the real axis

that corresponds to the physical interface. However, because
of the sectorial nature of the asymptof&.78—(3.80), it is
evident that as—0+, G(,7) does not tend to the initial
condition (3.81) as ~— 0+ in certain sectors in the lower-
half complex¢ plane. Because of the equivalence of lajge
and smallr in the similarity variable

3R
X

B=—i Tz (3.83

it follows that for anyt>0, as y—, the zero-surface-
energy behavioG(,7)~ 1fy is not recovered, except in
certain sectors of the complex plane. Instead using Eg.
(3.79, we obtain

- A’
G(xX, 1)~ —i = \/;T—fé g™ 2B133 (3.84

when ar@p) is in the interval 27, —«/2) and

_ A’ T
G(X,T)~7 \/3—1/262/3’3‘@, (3.89

when ard@p) is in the interval (3r/2, 27), corresponding to
an exponential-oscillatory behavior. For sufficiently latge
when £((t) is large enough so that Eq63.69 and (3.71)
hold, we obtain from Eq¥3.70 and(3.83 that

—inl4

B~ gz {3 14— L0172 (3.80

The asymptotic behavior @ then depends upon the sec-
tor, as noted. 18 lies in the interval & #/2, 37/2) [which
corresponds to arg] in the interval (—#/6, 77/6),] then
we recover Eq(3.819 as the solution for long times. How-
ever, as the singularity moves into {m0, a large segment



56 DENDRITIC CRYSTAL GROWTH FOR WEAK UNDERCOOLING 3085

of the real axis is not in that sect(ee Fig. 4 In fact, for  structure is a direct consequence of a zero-surface-energy
that part of the real axis for which agf ZJ) is in the interval ~ singularity crossing over into >0, thus exposing the

(—7wl6, —l6), Eq.(3.85 gives thez! behavior Stokes phenomenon behind the regularized structure of the
singularity.
w2 el 1/a (it) The form of the long-time behavior for a singularity is
ZY&~—is - only weakly dependent on the nature of the complex singu-
3Bt pst+i(£~ &) ]

larity in Im {<0, associated with the initially confined dis-

2 & turbance.
Xexp{— = [7;S+i(§—§s)]3/2} (iii ) The spatial growth rate is like exp(comat).

3 V3Bt It is incumbent on us to pursue the fully nonlinear prob-

(3.87)  lemin the complex plane to explore how, in fact, such initial
singularities behave as they near the real axis from below.
The reader is reminded that this asymptotic solution is validThe linearized-analysis crossover may be atypical and mis-
for short times and/or large values gf- s and so the ap- leading. To anticipate our nonlinear results as they relate to
there since Eq(3.77 shows that, ag — y<— 0, the behavior action of the singularity with the real axis, whether it crosses
is, in fact, 1/x— xo). WhenM asymptotically approaches a °Ver: hits, or asymptotically approaches the axis, is depen-

BNz _ dent on the singularity character: there is no generic behav-
constant for Ia}rget, tlhe.n fs. . 2Mt, 7s~1M, and the ior for all singularities(and zero} (ii) for a class of distur-
above expression faf* simplifies to

bances associated with specific types of initial singularities

2 m2M2¢ 1/4 in Im¢<<0, the spatial growth rate of the local conformal map
ZYE D)~ — 5( . s ) is like exp(conskt?).
3B[1+iIM(§—¢&s)] Now we turn to the fully nonlinear problem in the com-
plex ¢ plane.
xexn{— 26 [1vim(e- )]3’2}
3M 3B s : IV. NONLINEAR COMPLEX PLANE EQUATIONS
(3.88 W . . :

e noted in Sec. lll, at least in the context of linear

It should be noted that Eq3.88 recovers precisely the lin- €duations, how complex singularities approaching the real
earizeLtlj real-domain anaclqysis&of Sec\:/ IIIX inlpa%icular Eq axis affect the evolution of the dendrite interface. The mo-

. tion of singularities in the complex plane according to the

ggg mogéifﬁshgzvi?:eo:érma V;? ::}%i?yndﬁ(;\i}atgdpfr?g”iq'zero-surfac_e-energy_ equation_ was shoyvn to be relevant to

T N . understanding the time-evolving behavior of a superposed
regard the results of Sec. lIlA. Since BgIM(§-4J]  gisturbance, even when nonzero-surface-energy effects are
=ml3 corresponds to argf=—m/2, when{=&+V3/IM,  jnojuded. Indeed, the zero-surface-energy advection of sin-
the oscillatory behavior given by E¢3.88 is confined to g jarities was found to be crucial in both the qualitative and
E<&s+V3IM. (Note the right-hand dashed line in Fig)) 4. guantitative aspects of amplification of noise and sensitivity
Ahead of it, there is no effect of the singularity. Behind it, of dynamics to initial conditions.
there is a trail of a wave train. From the above results, it |t can be expected that with inclusion of nonlinear effects,
might appear that the wave train extends all the way to pointhe linear dynamics described in Sec. lll will be modified. A
&= &impacy Near =0, where the singularity/4(t) first  very important part of this modification occurs due to the
crossed over to the upper-half plane. However, this concludifferences between linear and nonlinear motion of zero-
sion cannot be verified by the analysis presented here sincestirface-energy singularities, and this will be investigated in
requires|£— &5/ <&, which would not be satisfied if we detail in this and later sections. In addition, the class of zero-
move far from¢= & towards the tip region. In fact, what surface-energy solutions is very broad and shows a whole
happens is this: While the singularity center is ifki0, the  range of interfacial phenomena, including tip splitting, side-
angles from that center to locations on the real axis lie irbranching, coarsening, and cusp formation. However, as we
(0,7). However, as the singularity crosses the real axis, thosalready know in the context of Hele-Shaw motion for isotro-
angles, for some values ¢&f fall below — /6 on the right pic surface energy and from what will be described in the
and approach- 7 at the left, so that the asymptotic approxi- companion papers for the dendrite and Hele-Shaw flow with
mation (3.84) becomes appropriate for all of the real axis in anisotropy, not all the zero-surface-energy solutions are pos-
the neighborhood of the singularity. Obviously, as noted, faisible limits of solutions as surface energy tends to zero. The
to the left, where the value of aig(is near— 7, the singu- understanding of the singular perturbation effects of surface
larity trajectory track is so far from the singularity as to makeenergy is effected through the complex plane dynamics,
the asymptotics incorrect, so that we can say nothing abouwthere the zero-surface-energy dynamics is well posed. The
the character of the singularity “wake” in this region. So the starting point of the complex plane dynamics is once again
conclusions from the linearized analysis, when properly unthe zero-surface-energy equation, analytically continued to
derstood in the complex domain, are as follows. the lower-half plane.

(i) An initially confined disturbance near the fiptarting In this section we take the region | equations withk 0
near the imaginary axis in Fig) 4reates a very large, grow- and modify them through analytic continuation to the lower-
ing wavelike structure, which may be small compared to théhalf plane in order to define a well-posed evolution problem
distance from its starting location §— & <¢&,), but is in  similar to that for the Hele-Shaw problefsee Ref[37)).
fact very large compared to, say, the tip radius. The wavelik&Ve then examine some of the general properties of the gov-
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erning equations. Many of these properties follow from ear-and so every singularity initially present in the lower-half
lier studies on the mathematically related Hele-Shaw flowplane advects towards the real axis, a property first shown in
[34] and will be quoted without details. We note that thethe context of the Hele-Shaw floj@4].

zero-surface-energy problem is valid for both the one-sided We now consider special initial conditions of the form
diffusion model explicitly being investigated and the two-
sided diffusion model with nonzero thermal diffusion in the [{—si(0)] A

N
solid. z<5.0>=cs<§,0>+j§1 E,(£,0)

1-5 , (4.9
Unlike Sec. Il, it is now more convenient to work in the .
laboratory frame of reference, so from Eg.28 we find that i
the B=0 governing equation in the upper-half plane is G(Z,0)=— > ’+¢, (4.10
2=0(50z;, @D here Eq.(4.10 is the underlying lvantsov parabola at ini-
where tial time. The initial conditions foE; and {;; and the expo-
nentsg; are specified. Wheg; =1, we replace the expres-
1 (+= d¢ 1 sion [5 £s{(0)1 7 Ail(1-B)) by In[{—5i(0)]. Following
qu(¢,t)=— J ¢ 2,(&" 1] arguments presented jB84] and[37] it follows that
N _ 1-B;
1 (+= d¢' 1 [{—Lsi(H] 7
== o 4.2 2LD=G(LD)+ 2 Ej(L) ———7——, (41D
v @2 = -5
and as in Sec. Ill B, we usef. Ref.[34]) whereG and E; are analytic in the lower-half plane and
satisfy
ZL, )= (2L D))", 4.3
‘ ‘ Ge=1(£1)G,+Ax( L), (4.12

which is a function analytic in the lower-half plane equaling

the complex conjugate o, on the real axis. Upon analytic d1(£,1) —q1(Lsj(t),1)

continuation(see, for instanc¢42], for the procedure via (EDe=aa(L0(Ep)+ (1= 5) {—Lsi(D) i
contour deformation we find the equation for the lower-half (4.13
plane to be
where
Zt=Q1(§lt)Z{+q2(§vt)! (44)
_ql(gsj(t)!t)' (4.149
2i
92 == D (4.5 It follows that

We note that while Eq.(4.4 is a nonlinear integro- G({,t)=— ! {24 L+ bo(t), (4.15
differential equation, withy, andq, depending orz, bothq, 2

andg, define analytic functions of for Im(£)<0, as long as
an analytic solution exists on the real domain. Taipriori
information of analyticity ofq; andq, implies thatz in the
lower-half complex plane, satisfying E@.4), has the prop-
erty of the solution of a linear hyperbolic equation with ana-In the case of no initial singularitieby(t) =it andG is the
lytic coefficients[43]. In particular, no singularities af are  Ivantsov solution in the laboratory frame, as we should ex-
spontaneously created in the lower-half plane. The onepect.

. i +0o0 dg’
bO(t):;j,x |Z§( FOR bo(0)=0. (4.1

present initially move with characteristic speett/dt In the vicinity of the singularity;, it is clear that

= —(,, which depends globally on the solutianthrough

the integrand inq,. From expressior(4.2) it follows that E({,t)~Eo(t) +O(&—¢s),

Img, is a harmonic function everywhere in the lower-half

plane (including infinity), taking on boundary values where

t
imay= # 46 Eo<t>=Eo<0>exp(<1—ﬁ> fodt'qu(zsa'),t')). (4.17

From the maximum principle for a harmonic function, it Note that if 3=1, thenEo(t) is a constant.

follows that Given that all singularities will approach the real axis, we
are interested in the behavior of a singularity as it nears that

Img,<0 4.7 axis. Consider the neighborhood of a singularity that is near

the real axis

everywhere in the lower-half plane. This implies that
Ao()+Eo(D)[{— (D] 7P, B<0 4.1
Eo(D[{— (D], B>0, 19

Im¢ >0, (4.9 a
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with 0< — 5,<<1. The factorEy(t) is known from Eq.(4.17) 74(1) 1 [+ dg’
and Ay(t) is the local behavior from every other part of the m” - f . [E—E(D]? |z°(§’ Bk =—My(1),
conformal map. We study the behavior&(t) by looking at S - s g 4.25

its governing equatior4.14) in the limit of ».—0—, in a

fashion similar to that of Tanve¢B4]. First, we separate the \yhere
real and imaginary components of E4.14 and break up
each_integral into an inner contr_ibution adjac_ent to the sin- 22525— E(L)(L— L) PHE(LD)(L—E) P (4.26
gularity where| &’ — £(t)| < € [ being a convenient constant

— n5(t)<e<1, which the final result is independentl@ind s just the conformal map with the singularity placed on
outer contributions The process is similar to that detailed in the real axis. The integral in E¢4.25 is not a principal-

Eq. (2.33 and following argument$By comparing the vari-  value integral. In the vicinity of the singularity, the integrand
ous inner and outer contributions, we find the real part of thén Eq. (4.25 has the behavior
singularity behavior to be governed by

d¢’ 1 ae & —£y(1)[2AD)
. 0 ! 7 7 ~ T IE(2
gs(t)w_ijﬁ S T [€ = &P 20 0 [Eo(D)]
—e &' =&Y [Z,(€7,D)] (4.27)
For 8<0, 7, is governed by We see that if3>3, then the integrand contains at most an
integrable singularity, and j8>1, then the integrand goes to
) 1 zero atég. Therefore, if3>3, then there is no problem in
7s(t)~ A2 (4.20 evaluating the integral in Ed4.25. Equation(4.25 can be

integrated to find
which can be integrated to find

t
¢ dr ﬂs(t)Zﬁs(to)eXP(—ft dt'Mz(t')), B>3. (4.28
ﬂs(t)=7ls(to)+f At )2 (4.2 °
fo 1770 We also find, from Eq(4.17), that

wheret, is a time wherey, is small enough for the equations

to asymptotically hold. Clearly, sinc&, has contributions Eo(t)NEO(tO)(
from every part of the conformal map besides the singularity,

there is no reason to expect the singularity to slow down as it

approaches the real axig<0 singularities will hit the real whelre Ko is a constant. From Eq4.28 we see that a
axis in finite time. B> 3 singularity could only hit the real axis ¥ ,(t) goes to

For 0<B<3, n4(t) is governed by infinity. Considering the dependence bf, on E; in Eq.
(4.27 and the dependence &, on 7, in Eq. (4.29, we
® conclude thap> 3 singularities slow down as they approach
f ds(1+s%) P 1=M(1). the real axis and do not hit in finite time. More information
0 (4.22 can be obtained for >3 singularity as it asymptotically
' approaches thé axis at long times. We begin by examining

7s(to)
7s(t)

1-8
) =Ko[—75()]P7,  (4.29

Wy 2 1
[~ 7O 7 [Eo(0)]?

! the behavior of the real pagt(t). Fort—o, if | £|—« also,
We also find, from Eq(4.17), that then Eq (4.19 tends to
d 2 oo ,
Gt B~ 20— g - m01 = [ a1+ st - L d
dt O~—73 0 5 N2 4.3
e 1) mé(t) ) oo [22(& 1)) (4.30

—2(1+s?)P2]. (4.23
In general, all of the singularities make some contribution to
Combining Eqs(4.22 and(4.23, we find for 0<B8< %, not z?, not just the particulaf under consideration. However, it
0< <3, as claimed previouslj36], that can be easily shown that for precisely a single pok (
=1), the integral in Eq(4.30 approaches a constant at long
t | M1-48) time. Moreover, for an arbitrary initial distribution of singu-
7s(t) ~ ns(to)< 1- t_) ; (4.24  Jarities, those far from the real axis make negligible contri-
S butions to the integral; those that have come close to the axis

wheret, is the time the singularity hits the real axis. The Casem_ak_e O(| m4|*I| Eql?) contr_lt_)u_tlons, and from Eq(4.29_),
1< <1 remains unclear at this time. A tacit assumption inthls_ls found to be small. Utilizing the fact tha_t, at long times,
this analysis is that the local behavior in E4.18 holds all h€ integral approaches a constant, we obtain from£60
the way to the real axis for sufficiently smajl;. This as-
sumption may be violated if there is an additional singularity
at{% on some other Riemann sheet, which could happgh if ,
is not an integer. | 1 Jw i dé N 4.30
For 8>3, n4(t) is governed by 7 ) [z;(€' 1)

E()~21t+C, t—ox
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where C is a constant of integration, related to the initial Eo(t) Ko
location of the singularity. 26 )~ T 078~ D)
Obtaining the long-time asymptotic behavior gf from s s
Eqgs.(4.29 or (4.28 depends on finding the proper long-time Ko 1 \/E
asymptotic evaluation of the integri ,(t), defined in Eq. ~ = eXp(FEO) I_) (4.37)

(4.29. Breaking up the integral iM ,(t) into an inner region
adjacent to the singularity and outer regions and then subst

T . Eince they location of the disturbance is £2/2~ —1t, it
tuting into Eq.(4.295, we find that Eq(4.25 reduces to follows thgt the disturbance grows as &

75 1 R(B &P
ns & Kol (—mtTE

Z/(& t)~i&exp( ! 2|y5|> (4.38
aes C Re(Eo) 12/ :

An unspoken assumption in Eq.(4.39 is that
Ro(B) ReEy)/Im(Ey)#0. We will see in the next section that, at
least for poles, this assumption is required in order for

(4.32

where

2 (7B B |&5]— o0 ast—oe. In the context of thé3=0 dynamics, there
BT Rk U A is no limit how small|Ey| can be, so that Eq4.38 allows
2- 18 arbitrarily large growth rates. Ultimately, surface-energy ef-
f“ u du fects set a minimum allowefE,|, which limits the growth
o (U*—2sinpu+1)[u’—2sinN¢—mB)u+1]’ rate of disturbances.

4.3
433 V. A CLASS OF EXACT ZERO-SURFACE-ENERGY
and ¢ =argEy) =argKo). SOLUTIONS: INITIAL POLE SINGULARITIES
There are three different asymptotically valid limiting
forms of Eq.(4.32), depending upon the value gf First, for

the case of a poled=1), the second term on the right-hand : :
side of Eq.(4.32 is easily seen to b®(1/¢,) and so domi- merically by _the method of Baker_, Siegel, an_d Tan\,{egﬂ .
we can obtain many more analytical results if we specialize

nates the first term. Interestingly, this means that global ef;, ~ =~ . o .
. . the initial conditions to include only poles af and constant
fects do not have an impact on the motion of the pole. Inte—, . L ;
; E.’s. Furthermore, solving these specialized equations nu-
grating, we have U : . . . :
merically only requires the integration of ordinary differen-
tial equationgsimilar to Ref.[33]) rather than the integration
1 2t ) . : . .
n~—Cexp —=—— \/—|, t—wo, p=1. (434 Of thg |ntegro-d|fferent|§1l eguatlon(sn.l4) as in 'the af(_Jre-
Re(Eo) mentioned paper. We first integrate these ordinary differen-
tial equations analytically in a “small-residue”E{— 0)
However, forg+ 1, both terms may be comparable. Proceedqimit that is nonlinear at the leading order. We then relate

ing on that basis, the solution is in the form~—Ct™”,  these asymptotic results to the more gen&rat O(1) case

Although the zero-surface-energy problem formulated in
the preceding section is quite general and can be solved nu-

y=1[2(1-p)], and substitution into E¢4.32 gives and then integrate the system of ordinary differential equa-
tions numerically.
lel/ﬁzz(l_ﬁ)RO (21)W28) -1 If we restrict our attention to initial conditions with all
|Kol ' B;i=1, the problem simplifies dramatically. The conformal

mapz(Z,t) will contain only logarithmic singularities, so the
pe~—Ct M21=P1 0 Ll<p<i, (4.3  derivativez, will contain only poles. The integrals depend
only onz,, so they can be evaluated exactly with the residue
where the obvious requirement th@<1 has been ap- theorem. We begin with the conformal m&$.11)—(4.15
pended, sincey, is required to be small in this analysis. In @nd the governing equatiol.14), specialized tg8;=1 and
fact, for >1, only the first term of Eq(4.32) is important, ~ With the E;({,0)=E; chosen as constant for gll One can
as may be verifiech posterioriby a substitution ofys pro- ~ Show from Eq.(4.13 that wheng=1 andE; is initially

portiona| tot_llz into Eq(433 That results in S|mp|y independent Oﬁ, then EJ will remain independent Ot as
well ast for t>0. Without any branch points in their inte-
ne~—Ct 2 t—ow, p>1. (4.36  grands, we can evaluatg [defined in Eq.(4.2)] andby(t)

[defined in Eq.(4.16)] using the residue theorem. Now all

Hence we see that poles pf (3= 1) approach the real axis the poles are in the lower-half plane andis analytic in the
exponentially fast, but branch point singularities approactupper-half plane, so all contributions to the integrals come
algebraically as a power oftl/This means that, at least for from the residues due to the zeroszpf which, it turns out,
B=0 dynamics, with an initial set of singularities at arbitrary are just the complex conjugates of the zerog,ofSince the
locations, the deformation of the crystal boundary due tccombined numerators af, form an (N+ 1)st-order polyno-
poles will dominate the long-time behavior. mial, there aréN+ 1 zeros. The integro-differential equations

Note that on the real axis, the deformation caused by aare thus reduced to a system of ordinary differential equa-
approaching pole singularity is tions for the pole trajectories
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A. Small-residue theory

— 2
2({ ) == 5 {7+ L+bo(h) +,Z‘1 EjIn[{—&s(H], (5. If we now investigate the case where all the pole residues
E; are small, further analytical progress is possible. For ar-
bitrary residues, analytical progress is hampered because the

z2,(L0)= _|§+1+2 (5.2) location of theN+1 zeros is generally impossible to find

{— gsj(t) ' analytically. However, if the residues are small, the zeros can
be found asymptotically with a regular perturbation series.
_ N+1 1 With the zeros known, we can then integrate the equations
bo(t) = E . (5.3 asymptotically as well. Once the pole trajectories are known,
=1 Z§£(§On( ), DZ(£5n(1),1) we can calculate the conformal map from E§.1) to deter-
mine the interface shape. Since the poles will still approach
) Nil 1 the real axis indefinitely, we are in no way limiting the
Li(H)=—2i = , small-residuetheory to smalldisturbancesgit is a fully non-
: 1=1 Zg(Lon(1),Z(Lon(1), DL Eon() — Esi(V)] linear theory, the only restriction being in the nature of the
(5.4 disturbances.
We now want to make the connection between the initial
z,({on(1),)=0, n=1,..N+1, (5.5  singularity location and residue and the presence of small
initial disturbances in the interface. Equatio11) and
2L =(z,F )" (5.6)  (5.1) are not limited to small initial noise; they apply equally

well to large initial disturbances. From E.2), requiring
This formulated problem for the conformal map evolution isthe initial interface disturbances to have small slopes re-
“exact” in the sense that no numerical approximation wasduires
needed to evaluate the integrals. Similar solutions are re- N
ported in the literature for the Hele-Shaw probl¢88,44— 2
47). =
As in Sec. IV, we can look at the behavior of a pole that
is near the real axis. We evaluate EGs19 and(4.29 with  where e is a measure of the size of the noise or roundoff
the residue theorem to obtain error at initial time and isiot related in any way to the of
Sec. lll. This ordering is satisfied if

o §SJ(0) =0(e), (5.10

N+1

. 1
gsj(t)N_ZiE = * * * ) E;
=1 Z(Loi (1), D251 (), i (D) — &5(D) ] . E——
2260 Z\60 0 j E7 T 75(0) O(e) (5.11)
De (1) N+1 1 for all j. If we now make the further assumption that all
i) i) — - - . 7sj(0)=0(1), then we arrive at the small-residue problem
”sj(t) =1 Zgg(goi(t)-t)zg(gm(t)vt)[§0i(t)_fsj(t)] R
©8 Ej=eEj, 75(0)=0(1),

Since the right-hand sides of Eqg.19 and(4.25 are real | N

valued, the sums on the right-hand sides of E§s?) and 2 =3 _
(5.8) must also be real valued, even though the individual 28 2 ¢ +§+b°(t)+ej§=:1 By In[£= 4o (0],
terms in the sums are complex. In the presence of computer

roundoff error, the real part of E@5.4) reduces naturally to -

Eq. (5.7), but the imaginary part of Eq5.4) becomes se- (L) =—i¢+1+ 52

verely contaminated by roundoff error gg approaches the (- gSJ(t)
machine precision. In the numerical solution of the equa-

tions, Eq.(5.8 was used to calculatdzs/dt when 75 is ~ An examination of the conformal map on the crystal-melt

(5.12

small enough. interface indicates that smadlleads to narrow disturbances

For the case when a zero is close to the real éxs, for ~ in the vicinity of &;, when the pole is close enough to the

example, the equations for the polé5.4) reduce to real (§) axis, but that thelepthof the disturbance depends on
{sj, which can become anything by an appropriate choice of

1 1 initial conditions. This implies that the small-residue theory
_ ' I . (5.9 is not a linearized small-disturbance theory, even though the
770j(t) |Z§5(§°J(t)’t)| [£0j (D)= Zsn(t)] interface disturbances are chosen to be initially small.
With the above form foz,, we can determine the zeros
asymptotically from the conformal map. Under some restric-
fions noted below, the zeros of are given by

an(t)w

We see that ifpg;—0, then all the poles will reach infinite
velocity, so that a zero impact generates a global effect. Th
formulated set of Eqs(5.1)—(5.6) generally requires a nu-
merical solution. However, we look first at the case of small iE
E; and solve the system of equations in closed form, asymp- Loj~{sj—€ |LL§]
sj

, 2, j=1,...N (513
totically.
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NE, 391(Ls0j(1),1)
§0N+1~_i+€nzl i+§sn+o(62)’ (5.14 qll(gsoi(t)'t)z(%>5_o
|§sj_§sn|>€, j#n, (5.19 = —(ggj_ggj)(t)( - -
| € [£5;(D)17+ 1) 7so5(t)
i+ Lon>e. (5.16 +011(t). (5.2

In deriving these results, we take the poles as known quan- ) ,
tities. We see from Eq(5.13 that each pole has a compan- 1he form ofqy, arises from the Nl +1)st term inq;. (The
ion zero and that the zero’s trajectory depends only on jtdVantsov-zero effects dominate the effects of the other zeros.

poles to this order. TheN+ 1)st zero(5.14) arises from the ~ he influence of all the other zeros come in at theterm,
underlying Ivantsov solution, the “Ivantsov zerctas it is ~ Where the first part arises from then term inq, (due to the

present in the Ivantsov solutipiThe requirement that the POl€’S companion zejanddq, is a messy sum of terms that
poles not be too close togethés.15 ensures that the first are all well behaved ags;—0. The pole-interaction effects
N zeros are independent of the other poles to this order. Tha'€ all contained in the, term. _ _ _
last inequality(5.16) requires that the poles not be too close  The leading-order behavior is determined by integrating
to the Ivantsov zerd5.14). With this knowledge of the zero [from Eq.(5.4)]

locations, it is easy to determine a criterion for cusp forma-

tion caused by zeros impacting the real axis in this limit. g = — QyLei(t) )= —
Since all of the poles are destined to move arbitrarily close to s0j 1085 S0 5

the real axigby Eq. (4.8)] and their companion zeros are

forced to beO(€) away from the polefby Eq.(5.13], cusps £50j(0)=5j(0). (5.22

will be prevented if 774;| > | 7j| asns;—0 for all j. In terms

of the residues, this requirement can be obtained from Ecfortunately, these nonlinear equations for the pole trajecto-
(5.13, ries are easily integrated to get

i_ésoj7

Re(Ej)ésj+Im(Ej))>0 for |7i(t)|—0. (5.19 {soj(D=1+2t+[£5(0)—i 1%, (5.23

This requirement will be related to the initial data shortly. \yhere the square-root branch is chosen so [inaZ;)| de-
With the zeros known, we now find the singularity trajec- creases with time. We make several observations about Eq.

tories. We begin with the regular perturbation (5.23. First, not only are the poles decoupled at leading
2 order, their trajectories are independent of their residties
Csi()~Ls0j(D) + €Ls1j (1) + O(e%), at the leading order too. Second, the imaginary axis acts as a
) separatrix in that poles in quadrant Ill move to the left and
{0 (1)~ Logi(1) + {01 () + O(€%), poles in quadrant IV move to the right. Third, the assumption

) | 7sjl=0(1) is violated inO(1) time for eachj, so that Eq.
di(4)~au( 4 ) +edu(£,1) +0(e).  (5.18 (523 is the trajectory only initially. With the assistance of

) ) ) ) Eq. (5.23, we can now construct initial conditions that avoid
One convenient quantity that will show up repeatedly in thecysps. Define

analysis below is

i §soj(t1)E§soj(t1):i+\/2t1+[§sj(o)_i]2
~——1—=0(1). (5.19 = &qj(t1) = &6;(0)[1— 75;(0)]

i+ Lsoj(t)
=t1=3{[1- 750~ 1)[&(0)+1]. (529

(goj_gsj

€

In the perturbation analysis, we find four distinct behaviors
and we examine each in turn: We then combine Eq(5.24) with Eq. (5.17 to find that
cusps are prevented if
(1) 75=0(1), (2) 75=0Ce), psarep

s) ! J :

This is, of course, an asymptotic cusp prevention criterion

1. 75=0(1): Initial trajectories and breakdown that is not exact, but valid in the—0 limit. Inequality
of the attempted regular perturbation series (5.25 provides the cusp-prevention criterion in terms of the
We begin with7s;=0(1). Theasymptotic terms foq, in_itial data. If we deliberately violate E¢5.25), then acusp
are will form at t~t; and z~2z(é4;(t;),t1), as defined in Eq.
(5.29.
A10(Zs0j (1), D)=[d1(Ls0j(1),D)]c—0 From Eq.(5.13, we know that the zeros and poles are at

the same location to leading order, so we need to fipdo
distinguish the pole trajectories from the zero trajectories.
The governing equation is

:m:%o@soj(t)), (5.20
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{s1j(1) = = dyog (£s0j (1)) Ls1j (1) — G12(Ls0j (1), 1),

£1j(0)=0, (5.26

3091

The solution fory, is obtained by separating the real and
imaginary parts of Eq(5.31), integrating the imaginary part,
and then using that solution to integrate the real part. The
real and imaginary parts thus found are then recombined to

which is a linear, first-order ordinary differential equation obtain an implicit solution forys. The matching to the ear-

that has the solution

q11(Zsoj(t'),t")

t
{a1j(t)= —Q1o(§soj(t))fodt’ Qi)

(5.27

We know from Eqgs.(5.21) and (5.24) that the integrand in
If we add and subtract the

Eq. (5.27) is singular ag—t;.
form of the singularity in the integrand of E.27) and then
perform the integration, we find thdt; has the form

—&s0j(ta)
i = {s0j(1)

) ( & gSJ) (tp)In(t,—t)+ §51J(t)
(5.28

wherezslj is the contribution that is well behaved tatt, .
This solution(5.28 is still an exact representation fdt; .

531,-<t>=('

lier time solution(5.29 is effected in an intermediate match-
ing zone, as is often the case with matching involving loga-
rithmic terms. The implicit solution fog is

oj— &s
Xs(7)— (0' ]>(tZ)In{_[§§Oj(t2)+1]Im[XS(T)]}

Esoj(to) +i ;
E5(t2) +1

There are two possibilities to consider next. Either the
pole’'s companion zero hits the real axis or it does not. The
case where the zero remains safely away from the real axis is
the easier case, so we consider it first.

(5.32

- zslj(tz) = (

3.|ns|<e: Evolution on an O(1) time scale regained

The presence of the |Ogar|thm indicates that the solution Since Eq (5 32 is an |mp||C|t solution, it is difficult to
breaks down as the pole nears the real axis. In the neighbogicture the pole trajectory in the layer, but the implicit

hood oft=t,, the outer solution becomes

€s0j(ty) i

ARSI

gsj(t)wgsoj(tl) + (

( o gsj) (t)In(t—t)+ fzslj(t)' (5.29

We will use this equation in the matching to tb&¢e) solu-
tion below.

2. p5j=0(e): Inner layer, fast time scale
We now investigate the behavior of the pole in tlayer

adjacent to the real axisys;=O(e€). Define the inner vari-
ables

t—t,=e€r,

Lsi(t) = Espj(t2) = exs( 1),
tZEtl+I‘L(€)Tl!

§s0j(t2)=Es0j(t1) + u(€)REE;),

u(e)=—c€Ine,

leRqéj)gst(tl)+lm(éj)- (5.30

solution becomes explicit as—«. From Eq.(5.32, we ob-
serve that ag—x, y¢(7) has the behavior

|m[Xs(T)]N—WEX el

Re(E)) )
Re xs )~< = = , (5.33
D R e () +IM(Ey) )

where
7,=Re(E;) gy (tp) + IM(E))

(ty). (5.39

70j — Msj
€

= —[&5(ty) +1]

From this definition ofr,, Egs.(5.33 have the correct be-
havior (pole moves closer to the real axinly if the pole is
closer to the real axis than the zero. So, if a cusp was going
to form, then Eq.(5.33 is not the correct behavior for the
pole. Now the act of letting— o means that we are leaving
the O(€) time scale and returning to &(1) time scale. We
consider the time scale to @(1) again whene Im[x47]

= 75{(1)<O(¢). In this case, we can finally use the asymptotic
equations(5.7) and (5.8 that apply when a pole is suffi-
ciently close to the real axis. If we expand E@5.7) and
(5.8 in the small-residue limit, we find that the governing
equations ar¢now with all thee's absorbed into thé&;’s)

Using these inner variables, we obtain the inner equation for

Xs»
| Esi(tp) 5&—&)
Xs(7) §§oj(t2)+1 +( P (t2) §§oj(t2)+1
X ! (5.3)
Imx( )]+ | 22— "S')(m

N Re(E;)
&si Re(E)) &g+ Im(E))’

(5.353
EN -1 o -'S!:sj
nsj Re(Ej)&s;+Im(E;) Re(Ej)

From Eq.(5.17) we know that Ref)&;+Im(E;)>0, or else
the pole’s companion zergy; would have hit the real axis

(5.35h
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back Whennsj:O(e), Therefore, thef direction the pole 4, |noj|<e: Imminent cusp formation and global effects
moves in is determined by the sign of Bg( The matching If the pole’s companion zero is going to hit the real axis,
conditions are, rewriting E(5.33 in the outer variables, it will occur while the pole is in thee layer. In terms of the
t—t inner variables, the zero’s location is given by
()~ — —26— exp( - —2) (5.363
s itz +1 ery )’ Loj= s
R&E)) Loj~ &soj(ta) + exs(7) T € — (2,
gsj<t>~§s,-<t2>( o )(t_tz)- (5.36h
Re(E)) &+ Im(E)) —

Im{xo( 7))~ ML xe( )]+ =] (t2).  (5.43

By combining Eq.(5.36h with Eq. (5.353, we see that the

matching condition foi; is just a Taylor-series expansion o ) ) ) )

aboutt=t, so that matching will be automatic. Equations  'he implicit equation for the zero is obtained by combin-

(5.39 can be integrated to find |ngtths.(5.4]) and (5.32. We only look at the imaginary
part here,

'FT(E?; +sgiRe(E))]
«E, Im[xo( )]+

Im(E;)\?
x \/Z(t_t2)+(§soj(tz)+ RGEES) :
B € ex;{ fsoj(tz)_fsj(t)
£t +1 Re(E;)
if Re(E;)#0 and

si()~—

@)uz)('”[[éim(tz)m M)

R T
X(tz) = 1M xo(7)] ]—1)—%11“2):W'
) (5.37 (5.42

From Eq.(5.42 we find that cusp formation is imminent at

7e= = 72lIN(= 72) = 1] = [£;(t2) + 1] 7aj(t2). (5.43

nsj(t)N

&sj(t) ~ Esoj(t2),

€ t—t, Using Eg.(5.43, we can write the imaginary part of the
i(tHy~-— ex 5.3 zero's trajectory as
A AR “(Im(Eo) (538 jectory
if Re(E;)=0. Equationg5.37) are actually uniformly valid as Im[ xo(7)]+ (M) (ty)In| 1— _Imbxo(m]
ReE;)/Im(E;)—0, with Eq.(5.39 as the limiting form. € M0j — 7sj (t,)
With these result$5.37), we can say something about the € 2

behavior of the singularities as they move very close to the
real axis. First, we see that the pole approaches the real axis _ 7 Tc (5.44
exponentially fast and moves along the real axis e cf. gszoj(t2)+1' '
Eq. (4.3D]. Now let us say, for example, thg;(t,)>0. If

Re(;)>0, then the pole will continue to move toward In the limit of 7— 7., Eq.(5.44) can be solved for Imf),
&= +oo without further incident, at least until surface-energy

_ i 1/2
effects become important. On the other hand, if R0, Im[ o r)]~—[ , 770j 7751)(»[2)(7 —9
then the pole will be heading towag= —, but along the Esoj(ta) +1 ¢
way it will have to cross the imaginary axis. When the pole (5.49

crosses the imaginary axis, the corresponding indentation in o _
the crystal-melt interface will cross the tip; a tip splitting will A zero hitting the real axis, therefore, generates a square-root

occur. Tip splitting is prevented in these solutions if singularity in finite time and generates a cusp in the inter-
face. We cannot get past the cusp formation without includ-
sgri Re(E;)]=sgr &;(0)], (5.39 ing surface-energy effects.

. When cusp formation is imminent, we know from Eg.
so that the pole does not change quadrants. Finally, the pol& g) that there is a global effect on the other poles, not just
creates an indentation in the crystal-melt interféatea fixed  the zero's companion pole. Let us investigate this now. An
location in the laboratory fram87]), oriented at an angle  expansion of the governing equations Wi, <O(e) pro-

ReE;) duces
Binden=tan | — J 5.4 .
indent Im(EJ) ( Q é, 1 . |EJ|2
with respect to the axis. Since thé;’s are specified quan- R 05\ g2 V112 Engi(ty) — '
tities, the angles of the indentations are fully determined by € [£s0j(t2 1 s0i(t2) = £sid
the initial conditions we specify; we have full control to (5.46

make them whatever we want them to be. Random initial
conditions would therefore have a random distribution ofWe see that the zero’s global effects become leading order
indentation angles in this zero-surface-energy case. when n0j=0(ez). If we define the inner variables



56 DENDRITIC CRYSTAL GROWTH FOR WEAK UNDERCOOLING 3093

t—t.= 63,7\'1 gsk(t)_gsok(tc)zesj\(s(})y te=trtere, Lsonlte)=i+ \/2t0+[§sk(0)_i]21 (5.47

we find the solution(written in the outer variables again

sl(t) = Csok(te) — tt + €32 2|éj|2(tc—t)1/2
s sOk\tc i — sok(t) P—— 7
e (t2) | [&s0j(t2) = Lsok(te)]

(5.48

2[£5(ty) +17°

We see from Eq(5.48 that, although the zero had a global The third assumption means that the poles are far from the
influence on the poles, there just was not enough time leftvantsov zero and hence far from the origin. This implies that
before cusp formation to deflect the pole trajectories signifithe generalization of the small-residue theory holds if the
cantly. singularities are far apart and far along the sides of the crys-
tal (but still in region |, of coursg Now the orders become

B. Connection betweenE;=0(€) and O(1) theories
' —7s()>1, —75i(1)=0(1),

After having found a lot of nice analytical results for the

E;j=0(¢) case, we would like to try to generalize the results —n5i(D<L,  —ng(t)<1. (5.54
to largerE;’s. Consider the assumptions made above so that
the small-residue theory holds, The last assumption in Eq5.53 states that we start far

enough from the real axis that E€.23 will be the initial
trajectory. We do not really have to satisfy this assumption
) (unless we want the initial interface disturbances to have

i +§sj|>f' —75/(0)>e. (5.49 small slopes We can start the pole at any distance from the

_ _ ) ) . real axis and then investigate the trajectory starting in the

Thg res.ult of these assumptions is that the singularity trajecappropriate region according to E€6.54. These ordering
tories display four types of behavior arguments show that there is a direct correspondence be-
tween the small residue theory and a laigetheory with
O(1) residues and well-separated singularities. We do not

_ pursue the details of the connection further since it would be
— 75j(t)=0(e)=Eq. (5.32, a repetition of Sec. V A.

Ej=0(6), |§si_§sj|>6v

— 75j(t)>e=Eqgs. (5.23 and (5.28),

~ 7si(1)<e=EQgs. (5.37 and (5.38, C. Numerical solutions
— 10j(t) <e=Egs. (5.45 and (5.48. (5.50 We now want to solve the governing equatigbsl) and
(5.6) numerically to confirm the smak-theory and so that
Now consider the following generalization of assumptionswe are not limited by its assumptions that lead to no-pole

(5.49: interactions. To solve the system of ordinary differential
equations, we wrote a complex variable Bulirsch-Stoer equa-

E= O(ed), 0<A=<1, tion solver[48,49 complete with variable step size and order

control to keep the temporal error within user-specified error

(= s> €, i+ =€, —ng(0)>€. (5.5) tolerances. In spite of the automatic error control, we found

that asn,—0, the error innps was not always adequately
The basic change in the assumptions is that if the pole resimaintained, so we also included a maximum step size
dues are larger, then the poles must be further apart, furthe¥ty,,,=min|E;| as necessary once the singularities got close
from the Ivantsov zero, and initially further from the real to the real axis, in accordance with the smatime scales
axis. Under these modified assumptions, the different ordefound above. The algebraic equations for the zef®@$)

of 75; become were solved using Newton’s method with the smalkyp-
proximations(5.13 and(5.14), with e=1, providing the ini-

- nsj(t)>e7‘, - nsj(t)=0(e"), tial guess. If the Newton iteration diverges or the calculated
zeros are not all distinct, then we explicitly introdueas a

—nsj() <€, —mj(t) <€ (5.52  continuation parameter so that the iterations converge and all

the zeros are found. As stated previously, the real part of Eq.
The results of the new theory are virtually the same; we just5.4) reduces naturally to the asymptotic equatibry) in the

replacee with €. presence of roundoff error ag;— 0, but the imaginary part
Now consider the limit aa —0, becomes severely contaminated by roundoff error. Therefore,
we replace the imaginary part of E(p.4) with asymptotic
E;=0(1), |isi—{sj>1, result(5.8) when| 54| <10~ *2, which worked quite welf50].

We first sought to compare the numerical results to the
li +§sj|>1, — —7j(0)>1. (5.53 asymptotic results determined above, both as a test of the
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easily generated as well. As time progresses, the poles will

7 approach the real axis in pairs, creating pairs of indentations
in the crystal-melt interface. Conditioi(s.25 and(5.39 are
satisfied, so there will be no cusp formation or tip splitting.

20 Equation (5.40 indicates that the indentations will all be
perpendicular to thg axis, the axis of growth. We see for

18 this particular initial condition that the evolving crystal tip is
a smooth parabola, which, by the way, is moving about twice
as fast as the underlying Ivantsov solution. This speedup is

16 due to the strength of the pole residugsand the distance
the poles are from the origin when the poles get close to the

14 real axis at{s;~ &sj(t1). A short distance behind the tip, we
see small disturbances in the interface from the poles that are

12 not too close to the interface at this time. Further from the
tip, we see deeper indentations due to the poles that are quite
close to the real axis. For this particular initial condition, the

>~ 10 indentations are all equally spaced and of equal width; this

does not happen for random initial conditions. Furthermore,

8 putting indentations next to each other creates growing side
branches between them as the indentations grow deeper and
deeper. Notice that although the singularities are moving in

6 the ¢ plane, the indentations are growing at fixed locations in
the z plane. The base of the indentation is also a fixed dis-

4 tance from they-axis. This distance depends égj(t,). Fi-
nally, the width of the indentation depends|@h|; the larger
the [E;|, the wider the indentation.

2 The next generic behavior of the zero-surface energy so-
lutions is tip splitting, obtained when E¢.39 is violated.

0 . 7L This time we use the following initial conditions for a one-

////// / pole simulation that demonstrates tip splitting:
2 .
P 4 5 0 ) 4 p E;=0.04—-1+2i),
N t;=1,
FIG. 5. Forty-pole numerical simulation displaying dendritic be- Eo(t) =1,
havior. !
numerical code and to verify the difficult-to-obtain £5(0) =i+ V[ ésoj(t1) —i117—2t;. (5.56

asymptotic results. This comparison is carried out in great
detail by Kunka[50] and the agreement between the numeri-The significant difference between this initial condition and
cal results and the theory is outstanding. initial condition (5.59 is that Eq.(5.39 is violated ancE;

We then investigated the effects of many poles on thé'ow has an imaginary part large enough that &q29 is
interface evolution. Ideally, we would use random initial dis- Satisfied, so that a cusp does not form. Figure 6 shows the
tributions of poles and perform some statistical analysis oriesults fromt=0 to 5. Att=0, the pole is far enough from
the resulting dendrite features. However, we are going tdéhe real axis that the initial interface shape is nearly para-
limit our attention here to just a few examples that are notolic. At t=1, the pole is close enough to create a sizable
random initial distributions, just to provide some examplesdisturbance. At=2, the disturbance is deeper and a finger is
of possible interface behavior. Figure 5 shows the dendritisvell developed. Note that the angle of the indentation is
result of a 40-pole simulation frorh=0 to 10. The initial ~ across the axis of the crystal, in accordance with G0
conditions were chosen with the help of the outer asymptoti@nd that the location of the opening of the indentation is an

behavior(5.23 indication of the pole’s location near the real axis in the
plane. Att=2, the pole is a little to the right of the imaginary
Ej=%0.05 t3;=], &sj(ty)==1, axis in the{ plane. Att=3, the pole is a little to the left of
the imaginary axis. As time progresses, the original crystal
gsj(O)=it\/[gsoj(tlj)—i]z—Ztlj, (5.55 tip is pushed to the side as the finger in the2 curve

becomes the new crystal tip.
where the ‘+” indicates that half the poles are to the right ~ The third generic behavior of the zero-surface-energy so-
of the imaginary axis and the other half are to the left. Welutions is cusp formation, when a zero hits the real axis in the
have deliberately chosen initial conditions that will produce{ plane. This time, we violate E@5.25 and use the follow-
a symmetric solution, but nonsymmetric solutions can beng initial conditions for a one-pole simulation:
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att=0.8, the zero has moved close enough to the real axis to
create a bulge that develops into a cusp tby0.823 63.
When cusps form, the zero-surface-energy solution cannot
continue and the numerical solution cannot continue either.
This breakdown in the-zero-surface-energy solution indicates
that surface energy must become important. Indeed, in cer-
tain cases, surface energy effects can become important even
when the zero-surface-energy solution corresponds to a
smooth interfac¢36]. We investigate the effects of surface
energy on the interface evolution in subsequent parts.

D. Scenario for coarsening

By qualitatively comparing our numerical solutions with
the numerous experimental pictures of growing dendrites
(such as that of Huang and Glicksmi@i), even though the
experiments are three dimensional, we have developed a sce-
nario for coarsening. We caution that this is a “scenario”
and not an explanation, as surface energy effects are absent
at this time and we expect that only very spectfie O so-
lutions are the limiting solutions fa8— 0. First, recall from

FIG. 6. One-pole simulation displaying tip splitting and compe- Fig. 5 that the poles in the theory create parallel-sided inden-

tition.

Ej=-0.05 t1=1, &xi(t)=1,

£5i(0) =i+ [ty —11° -2ty (5.57

Figure 7 shows the interface evolution from=0 to

tations in the crystal-melt interface and that side branches are
formed as the interface grows between these indentations.
The theory also shows that, since poles approach the real
axis exponentially fagtby Eqgs.(4.34 and(5.37)], the inter-
face will be most often deformed by pole-type indentations
with parallel sides. The experimental pictures confirm this
part of the theory; many of the indentations between the

0.823 63, where cusp formation occurs. The step-size contrsidebranches do seem to have parallel sides.
in the numerical method signals the onset of cusp formation With the theory suggesting that we look not at the side-

when the step size rapidly goes to zero. FbeO,

branches but instead at the indentations, we find that there

0.2, ..., 0.6, the zeroand pol¢ are far enough from the are narrow indentations near the axis of the experimental
real axis that the crystal shows nearly steady behavior. Thelendrite with wider indentations further from the central

0.80

0.60 t=0.82363

)

0.40
0.20
0.00

) : ' < ' ~\.
A 020 \\ \\\

-0.40

-0.60

-0.80

-1.20
-2.00 -1.50 -1.00 -0.50 0.00 0.50 1.00 1.50 2.00

FIG. 7. One-pole simulation @=0,0.1...,0.8,0.82363 display-
ing cusp formation.

axis. Also the narrower indentations are also found close to
the crystal tip, whereas the wider indentations are always
much further from the tip. These wider indentations stop the
growth of the side branches growing between the narrower
indentations.

Figure 8 shows a typical coarsened side-branch structure
and the singularity distribution that could generate such a
structure. The narrowest indentations that are closest to the
crystal core are created by sméllpoles that are close to the
Re(() axis. These poles are also closely spaced, so that the
sidebranches are also narrow close to the crystal core. Be-
hind these smalE poles are mediunk poles that create
wider indentations and are also spaced further apart, so that
the side branch between them is also wider. The presence of
these two poles essentially stops the further growth of the
smaller side branches. Behind the medikmoles is a large-

E pole that creates the largest indentation at the top of the
interface structure. This pole also stops the growth of the
side branches formed between the mediEmeoles. In the
experiments, the large-poles are also spaced even further
apart, so that the growing side branches continue to get wider
as they grow further from the central core.

To understand how coarsening occurs, we take this fixed-
time singularity distribution based on Fig. 8 and move the
singularity distribution back in time to follow the chain of
events that leads to the coarsened dendrite. Figure 9 follows
the hypothetical trajectories of the small-, medium-, and
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FIG. 8. Interfacial indentations between side brandhend Q

and the pole distribution that creates them.
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FIG. 10. Initial conditions for coarsened dendrite simulation.

Re(¢) axis on each side of the crystal at some distance behind
the crystal tip. The smalt poles all create narrow indenta-
tions that are a fixed distance from the long axis of the den-
drite and open away from the long axis, creating the central
core of the crystal(as in the numerical solution Fig. 5
above. Later, the mediunt poles come in behind the small-
E poles, creating wider indentations and starting the coars-
ening process. The mediuthpoles are spaced further apart
and start further from the origin, so that coarsening begins
after the initial sidebranches have formed and the active side
branches grow wider as they grow longer. Third, the ldEge-

largeE poles used to create a coarsened dendrite such as Figoles come in behind the mediuEhpoles, creating even
8: At initial time, the smallE poles are relatively close to the wider indentations and thus more coarsening. The I&ge-
Im(¢) axis, whereas the larg&-poles are further from both poles are spaced even further apart and start further from the

the Im() and the Ref) axes. This initial distribution of sin-

origin, so that this stage of the coarsening occurs even fur-

gularities is consistent with an initial interface shape that isher from the crystal tip. The process contin@esnauseum
nearly Ivantsov. As the singularity distribution evolves, aas stronger and stronger poles continue to come close to the
stream of closely spaced, sméllpoles comes close to the real axis further and further from the crystal tip.

.() O.U ().00908 >
o ™
o
o °
2) o
3) © °

00 T O

FIG. 9. Singularity distribution that leads to coarsened den-
drites: 1, smalE poles; 2, mediunk poles; 3, largee poles.

To add some numerical support for this scenario, we con-
sider the evolution of the initial conditior(&ig. 10

E] weak— + 005, E] strong: + 0125,

t1j weak= (] +1)/2, tlj strong 1.45+8.55,

gsoj(tlj)weak: +2,

sj(0) =1 = V[ £oj(tyj) —i1°—2ty;. (5.58

We see that the weaker poles are closer to the imaginary axis
and that the stronger poles are further from the imaginary
axis and further from the real axis so that the initial interface
disturbances are not too largéAs a practical matter, we
could not make the initial disturbances very small, but this in
not important in what develops beldpw

We first examine the evolution of just the weak singulari-
ties (Fig. 11). We deliberately chose the initial conditions so
that the poles would create a sequence of narrow indenta-
tions that are closely spaced so that the side branches are also
narrow.

Now consider the evolution and interaction of both the
weak and strong polg§ig. 12. We make two observations.

gSOJ' (tlj )strong: +4.47,
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FIG. 11. Simulation with weak poles only. FIG. 13. Simulation with two waves of weak poles, displaying

doublon formation.
First, the wider indentations created by the stronger paddes
stop the growth of the affected side branches. Second, the In addition to a coarsened dendrite, we can reproduce the
narrow and wide indentations can interfere and generatgo-called “doublon” formation previously found in direct
nearly cusps and nearly corners. The extreme curvature efumerical simulations with surface energy using the quasi-
the nearly cusp, especially, indicates that surface-energy e$tationary approximatiof51] and fully unsteady equations
fects must become important once the zero-surface-enerd$2]. Using the initial conditions
coarsening has begun. This solution also indicates that the

type of evolution arising from more-random initial condi- Ej waver™ Ej wavez= =0.05,  t3j waver=]»

tions, which would lead to coarsening somewhere, causes the

zero-surface-energy solutionB€0) to deviate from the t1j waves=2.90 +6.80,  &50j(t1j)waver= =2,
asymptotic5—0 solution inO(1) time. Contrast this with

the solution in Fig. 11, where the lack of interfering inden- €0j(t1)) waver= T 4.47,

tations causes local surface energy effects to be delayed until

t>1. We plan to explore these surface-energy effects further Lsj(0) =i = [ £qojty)) —11°—2ty;, (5.59

in the companion papers.
we find the formation of doublons due to side-branch tip

splitting in Fig. 13. As in side-branch coarsening, doublon
8 formation results from waves of poles approaching the real
axis, but this time with comparable residues. Such structures

p S SN N SN S S S have also been studied theoretically with the inclusion of
CA L U R ¢ f .

r=90 < surface-energy effec{$3] though not in the context of sin-
gularity dynamics. Doublons are believed to play an impor-

4 = % + tant role in the formation of the “seaweed” morphology in

7T < the absence of anisotrop$2].
C LT C
~ 2 e T ;
PG C i =0 E. Pole-trajectory summary

0 —— / We now present the following picture for pole movement

for the B=0 solution, in the small-residue limit. Let the ini-
/////// tial conditionsE; and {;(0) be given so that the pole starts
2 T in quadrant 1V, for example. Whileps;>O(e), the pole
moves toward the real axis and away from the origin accord-

4 ing to Eq.(5.23 and its companion zerg,, moves accord-
ing to Eq.(5.13. TheO(€) correction to the trajector§s.28

is singular in finite time, which indicates a breakdown in the

solution as we approachsj=0(e€). When 7g;=0(e), the

pole moves according to the implicit soluti¢b.32. If in-

FIG. 12. Simulation with weak and strong poles, displaying €quality (5.29 is satisfied, the pole’s companion zero will
coarsening. not hit the axis and the pole’s trajectory alters so
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that its £ velocity is the same sign as F&), by which time ~ we show that it is consistent to assume that the solution in
7sj=0(€). Then, the pole’s motion is given by E¢p.37. other far-field asymptotic regions is given by the lvantsov
Now, recalling that we are still in quadrant IV, if Rgj ~ solution fort< P

>0, satisfying Eq.(5.39, then the pole will continue to Within this interval of time, we considered various as-
move toward¢=+ o0 without further incident, at least until Pects of both linear and nonlinear dynamics in region I. We
surface-energy effects become important. As it nears the re8ve obtained expressions for the linear growth of an arbi-
axis, the pole creates an indentation in the crystal-melt intertrary short-wavelength disturbance about an arbitrarily time-
face that is oriented at an angte= tanfl[—ReCEj)/Im(Ej)] evolving base state, not necessarily steady. Concrete expres-
with respect to theg axis. On the other hand, if RE)<O0, sions have been obtained for large times in the restricted case
violating Eq. (5.39, then the pole will be heading toward for which the base state approaches an Ivantsov parabola in
£=—, but along the way it will have to cross the imagi- the far field. These expressions are in agreenteptto a

nary axis. When the pole crosses the imaginary axis, th@refactoy with those obtained by Barber, Barbieri, and
indentation will cross the tip; a tip splitting will occur and Langer[16] for a globally steady base state. We also show
the new tip will outrun the original tip. If at any time a zero that linear theory predicts that an initially localized distur-

is about to hit the real axifbecause Eq5.25 is violated, ~ Pance does not remain localized: a fact that does not seem to
the singularities’ movements are governed by Eg4g. have been recognized before. Further, in this case, the
However, the global effects of cusp formation occur too latedrowth of disturbances is related to the zero-surface-energy
in the formation process for there to be much of a globalmotion of singularities. The dispersion of such a disturbance
effect before a cusp forms and =0 solution ceases to into a partially wavy interface with a sharp edge is related to

have meaning. the Stokes phenomenon exhibited by the solution of the inner
We also found that there is a correspondence between ttRgluations governing the region in which small surface-
small-residue theory and a larde- theory with well- €nergy effects become important.

separated poles. In a generic initial condition consisting of a With the connection of zero-surface-energy singularity
random distribution of singularities, the singularities would Motion to interfacial dynamics for small, nonzero surface
not usually be well separated. This is a limitation of the€n€rgy exemplified in the linear problem, we examined as
current largez, theory, but the theory is still useful for in- fully as possible, in Sec. IV and Iater, the n.onllnea}r dynamics
vestigating the evolution of a special initial condition con- of the zero—surfacg-energy Slngu_larlty motion. This approach
sisting of a single pole, or something similar. serves as a starting point for inclusion of small surface-
We then integrated the poles’ equations numerically. WeENergy effects, planned to be shown in future papers. We
found excellent agreement between the numerical angtudied various features of the nonlinear dynamics of com-
asymptotic results. We also generated initial conditions foP!€X singularities in the lower-half complexplane that are
the numerical solutions using the smaltheory so that we ~r€lévant to finger competition, cusp formation, and side-
could control the final form of the crystal-melt interface. Pranching. However, not all the features of the zero-surface-
Three generic types of behavior of the zero-surface-energ§N€rdy dynamics are relevant in the limit of zero-surface
solutions include dendritic behavior, tip splitting, and cusp®N€rdy, as we plan to demonstrate for a specific set of initial
formation. Numerically, we only looked at examples of the conditions in future papers. Nonetheless, the relation be-
interface behavior. A more ambitious numerical investiga-een singularity motion and localized disturbance dynamics
tion would be to look at the evolution of the interface with ranscends the restrictions of linear analysis. Changes in mo-
random distributions of singularitigsince we are using sin- 10N of zero-surface-energy complex singularities due to non-

gularities to simulate random initial nojsand perform some inéar effects have immediate consequences for the growth of
statistical analysis on the dendrite shapes to learn the «gyefhterfacial disturbances, even with small but nonzero surface-

age” pattern of growth. energy effects. In particular, our findings on the motion of

Finally, we developed a scenario for side-branch coarser0€ singularities imply that the maximal growth rate of a
ing, in which coarsening is due to the interaction of weakerdeneral disturbance advecting far from ffle tip will not be
and stronger poles. The weaker poles create narrow indentBIOPortional to the linear growth ej(—yq)~"], wherey, is
tions in the crystal-melt interface and then the stronger polef’€Y location(Fig. 1) of the center of the disturbance aod
create wider indentations that stop the growth of the narrov SOMe constant depending on surface energy. Instead, non-
sidebranches. We caution that these pole interactions mdy*ear theory for disturbances associated with poles gives rise
not be the only mechanism leading to side-branch coarsen© an associated conformal map growing a_s[eeryd)lz]
ing. Furthermore, without surface-energy effects, there is nélnd the |nterfaC|aI.d|_sturbance remains localized, contrary to
determination of the various length scales and angle seledinear theory predictions. The dependence of the constant

tions present in real dendrites. on surface energy is not addressed here. Further, for a local-
ized disturbance associated with a pole close the real axis in
V1. CONCLUSION the lower-half plane, there is no dispersion, in contrast with

the predictions of linear theory. It is also clear from the non-
We have considered time-evolving aspects of a one-sidelihear analysis that unlike the linear case, the growth rate, as
two-dimensional model for dendritic crystal growth for small well as other features of the disturbance, is not independent
undercooling(i.e., Pelet numberP<1). We have identified of the type of complex singularities associated with it.
a large regior(l) around the tip where the temperature field We have also given a scenario for dendrite coarsening in
is harmonic. When the initial interfacial and temperature determs of the motion of complex singularities. At this stage,
viations from the Ivantsov solution are limited to this region, this is only a scenario rather than a complete explanation
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since the selection effects of surface energy is missing fromealization, which must then be complemented with studies
our analysis thus far. Inclusion of surface energy is necessanf an ensemble of initial states, which would then presum-
for developing concrete predictions of the coarsening rate. ably allow comparison with experiment or simulatitwith-
Most of this paper concentrates on the nonlinear aspecigut filtering). Further, the class of initial conditions consid-
of a generally time-evolving dendrite problem; as far as weered has been restricted to functions that are analytic, but
know, this is the first analytical calculation of its kind. The paye very specific forms for isolated singularities in the
method is based on studying dynamics in the complex plangger-half complex plane. We cannot, for instance, accom-
where the zero-surface-energy problem is well posed. Suchodate initial interfacial shapes whose analytic continuation
an approach allows investigation of small nonzero surfacg, the complex plane contains natural boundaries, which is to
energy effects by means of singular perturbation methods. pe expected for generic initial conditions. Nonetheless, we
Another point to be remembered in comparing interfacialpelieve that the aggregate features of the dynamics should

predictions arising from complex singularity dynamics with not be be very sensitive to the precise class of initial singu-
real experimental data or numerical calculations is that theyrities.

starting point of our investigation is a particular conformal
map, with a specified singularity distribution in the extended
complex plane. In experiment or simulation, there is some
nonzero error involved in the specification of initial condi-
tion (experimental noise or roundoff erjoil he analytic con- We have benefited from discussions with Professor Greg
tinuation of such initial conditions will invariably lead to Baker and Professor Seppo Korpela. This research was sup-
rather different distributions of singularities than what we ported by the National Aeronautics and Space Administra-
start out with(unless a filtering procedure similar to Kras- tion (Grants Nos. NAG3-1415 and NAG3-194™M.D.K. re-

ny’'s [54] is employed in simulation Thus real-life interfa- ceived additional support from the NASA Graduate Student
cial dynamics is to be understood in terms of the dynamics oResearchers ProgrartGrant No. NGT-51072 S.T. ac-

an ensemble of initial singularity distributions that leave theknowledges additional support from the Dept. of Energy
interface shape invariant to within experimental error. Our(DE-FG02-02-92ER251)9and the University of Chicago
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