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Generalized hydrodynamics and shock waves
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In this paper, the generalized hydrodynamic equations are applied to calculate the shock profiles, shock
widths, and calortropy productiofenergy dissipationfor a Maxwell and variable hard sphere gas. Shock
solutions are shown to exist for all Mach numbelg,() studied, ranging up tdly, = 10, but this upper Mach
number can be in principle extended to infinity. This is in contrast to the Grad moment equation fitéthod
Grad, Commun. Pure Appl. Math, 257 (1952] which does not admit shock solutions fdf,=1.65 and to
the method of Anile and Majorarf#&. M. Anile and A. Majorana, Meccanich6, 149(1982] and Weis§W.

Weiss, Phys. Rev. B2, R5760(1995] who also used moment equations and found the shock solutions do not
exist forNy,=2.09 and\\,=1.887, respectively. The difference of the present theory from the aforementioned
theories lies in the closure relations used for higher-order moments. The nonlinear factor in the dissipation
terms in the flux evolution equations of generalized hydrodynamics significantly contributes to producing the
shock width increasing with the Mach number. The results calculated are comparable with the Monte Carlo
simulation results and the results by various closures of the Mott-Smith method. The present method is also
applied to calculate the experimental shock widths for argon and found to give results in good agreement with
experiments. The energy dissipation is shown to increase Nyjtlas (N, —a)“, wherea and «a are positive
constants[S1063-651X97)07809-4

PACS numbeps): 47.40.Hg, 47.40.Ki

[. INTRODUCTION why the time-dependent governing equations yield shock so-
lutions whereas the steady-state governing equations do not.
Investigations on shock structures have been made in B any case, it must be noted that if the Burnett- and super-
number of approaches in the past. They include the NavieBurnett-order solutions are examined from the viewpoint of
Stokes theonf1-3], which historically precedes other ap- the H theorem demanded by the Boltzmann equation, they
proaches that include the kinetic theory methods and Montare inconsistent with it since they generally yield a nonposi-
Carlo and molecular dynamic simulation methdds-10|.  tive Boltzmann entropy production. Perhaps, the neglected
The latter group of methods may be regarded as moleculderms mentioned earlier in connection with the work by Fis-
theories of shock structures since they are essentially base#to and Chapman may be responsible for restoring the con-
on either a kinetic equation or molecular equations of motiorsistency with theH theorem. The Mott-Smith method is a
for the particles in the system. In the kinetic theory methodshonsystematic method based on a kinetic equation, for ex-
used for the study of shock structures, there are several apmple, the Boltzmann equation, although it gives adequate
proaches making use of the higher-order Chapman-Enskagumerical results for shock structures and profiles which can
solutions, namely, the Burnett and super-Burnett solutiongary with the moments taken to construct a bimodal distri-
[11-13, the bimodal distribution function method of Mott- bution function. Grad23] made a critique of this feature and
Smith[14] and its generalizationgl5—-22, and Grad’'s mo- formulated a theory by means of moment equations derived
ment method23-26. These molecular theoretic approachesfrom the Boltzmann equation, but his thirteen moment equa-
have been taken because of the failure of the Navier-Stokasons failed to give shock wave solutions as the Mach num-
theory for shock structures for gases, which tends to fail irber exceeds the critical value ofy,=1.65. Since his mo-
the hypersonic regime beyond the Mach number in thement equations form an open set, Grad had to introduce
neighborhood of 1.5. When the Burnett- and super-Burnettelosure relations for moments in order to get the thirteen
order solutions of the Boltzmann equations are implementechoment equations. We will elaborate on his closures later in
with the steady-state governing equations, they generally fathis paper. It must be noted that there is no unique way of
to give adequate solutions for shock wave problems, but thatroducing the closures to the Grad moment equations at
recent work by Fiscko and ChapmpiB] shows that reason- present. Since it is credible to imagine that the moment se-
able results can be obtained for shock structures if somguence converges, the failure of the Grad approach inspired
terms in the Burnett-order solutions are simply neglected anéurther research by a number of auth¢?gl—-26 who have
the time-dependent governing equations are solved instead tidken a larger number of moments or fashioned the moment
the conventional steady-state governing equations used faquations in supposedly more adequate forms. These strata-
steady shock wave problems. The precise reason is not clegems did not succeed in removing the critical Mach number
problem of the Grad approach, and rather complicated mo-
ment equations which become quite difficult to solve do not
* Also at Dept. of Physics and Centre for the Physics of Materialsjncrease the critical Mach number significantly as evident
McGill University, Montreal, Quebec, Canada H3A 2K6. Elec- from the values known in the literaturély,=1.85 in the
tronic address: Eu@OMC.Lan.McGill.ca case of HolwayNy,=2.09 in the case of Anile and Majo-
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rana, and, most recentlii,, = 1.887 by Weiss who used 21 Maxwell gas are compared with the Monte Carlo simulation
moments. Therefore, the Grad method of closure, which igsesults, the results by the Mott-Smith method and its vari-
achieved by expressing the truncatéuigher-order mo-  ants, and the Navier-Stokes theory results. Inverse shock
ments in terms of the lower-order moments retained, doewidths are also calculated by using a variable hard sphere
not yield a set of continuum theory governing equationsmodel and compared with experimental data on argon. They
which yield shock solutions for all values of Mach number &ré found to be in good agreement with experiments. The
as does the Navier-Stokes theory, albeit poorly. This diffi-global calortropy productiof29] is a measure of energy dis-

culty of the Grad moment equations derived from the Bolt-SiPation from a useful to a less useful form of energy in

zmann equation therefore is a challenge for the shock wavir€versible processes. We study its Mach number depen-
ence. Section V is for discussion and conclusion.

problem, and it is important to overcome it since the Gra
approach provides a simpler set of macroscopic equations

than the Chapman-Enskog method and hence is potentially I GOVERNING GENERALIZED HYDRODYNAMIC
more useful for formulating a macroscopic theory of irre- EQUATIONS

versible processes. In fact, it can serve as the starting pointto \y/e assume that flow is in the direction of tkecoordi-
formulate a theory of irreversible processes as shown in Refate since we are interested in a steady shock wave, the
[27] which is a theory aimed to generalize the classicaly,yerning balance equations for mass, momentum, and en-
theory of linear irreversible thermodynami{@&8]. Therefore, ergy are time independent. They are in the form

the aforementioned difficulty in connection with the closure

poses a serious conceptual problem for the theory of irrevers-

ible processes based on the moment evolution equations. d—XPUZO, 1)
Such a theory ought to be able to account adequately for

shock wave phenomena. Therefore, the shock wave problem d

can serve as a touchstone for both irreversible thermodynam- — (pu?+p+Il,,)=0, 2

ics and the approximate solution methods in the kinetic dx
theory of gases, and thus is an important problem to con-
sider. As will be shown, the closure relations hold the key to i pu
the resolution of the problem and with suitable closures we dx
obtain a well-behaved set of relatively simple governing

equations for flow which provide reliable and accurate nu-¥herep is the mass density is the fluid velocity,p is the
merical results for shock phenomena. pressurell,, is the xx component of the shear stregsis

In this paper, we study the question from the viewpoint ofthe internal energy density, a), is thex component of the
the generalized hydrodynamics formulated in the nonequilibh€at flux. We note that in one-dimensional flow geometry for
rium ensemble methof29] and the version of extended ir- the present problem
reversible thermodynamicg30] which is given statistical 5
mechanical foundations with the former. Since the general- =_

; ; : . [Vulxx=27 dxu. 4
ized hydrodynamic equations employed are basically the mo- 3

ment evolution equations, one can wonder if there is anyl_h bal . | d by th luti
basis to hope that they will provide us with an adequate "€S€ balance equations are supplemented by the evolution

solution to the problem. The answer is in the affirmative,equationS foI andQy W‘th"ﬁ the framework of the first
since the closure relations used for the constitutive equatiorid!Ilt€€n moments. The evolution equation for the stress ten-
in this work make a crucial difference from those used bySOT and heat flux27] are

Grad[23] and other§24—26. Furthermore, the applications ~

1
5+§ u2)+u(p+Hxx)+Qx =0, ®)

of the steady constitutive equations subjected to the closur d_H= —V-ip—2p[Vu]?@—2[I1-Vu]@ - L g(«),
relations used here have produced some results which are in dt Mo
guantitative agreement with experimental rheological data 5)

[31-34. Such agreements have been rather encouraging and dé

we would like to show that similarly encouraging results can _ - r -

be obtained for shock wave problems. In this work, we will ? dt — ~V g pCTV In T-I1-Vh+V(pstID)- 11

only consider a one-dimensional steady shock wave prob- -

e ~@-vu- 22T g0 ®
The present paper is organized as follows. In Sec. I, we No R

present the governing equations for the one-dimensional

shock problem which are derived from the generalized hywhereé'is the unit second-rank tensat/dt=d/dt+u-V is

drodynamic equations presented in the previous workghe substantial time derivative, anfl, and ¢ are higher-

[27,29,3Q related to the nonequilibrium ensemble methodorder moments which are defined, in the case of a dilute

and extended irreversible thermodynamics formulated bynonatomic gas, by the statistical formulas

one of us. The new closure relations are explicitly presented. @

In Sec. lll, these governing equations are examined for shock ¥, =(MC[CC]'V(C;1)),

solutions. In Sec. IV, the governing equations are solved for 1

shock profiles and shock widths for a Maxwell gas. The in- = 2 .

verse shock widths calculated by the present theory for a Vs <2 mc CCf(C't)>’ ™
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with C denoting the peculiar velocity anf{C;t) the non- wheref, is the local equilibrium distribution function and
equilibrium distribution function obeying a kinetic equation, the coefficientsA, and A, are, respectively, proportional to
say, the Boltzmann equation. The symp®lu]‘® stands for 11 and Q. It must be noted that in this approximation the
the traceless symmetric part 8u. Other symbols are as moments higher thal andQ (e.g., the third and fourth rank
follows: I denotes the traceless symmetric part of pressuréensors are set equal to zero. Therefore, we find

tensorP, II=11/p; Q is the heat fluxQ=Q/p; C, is the

. : 2
specific heat per mass at constant pressoreC,T is the _4 _opT _7p
enthalpy per massjy, and\ are the Chapman-Enskog vis- '/’2_5 T-Q = 2p ot 2p 1L, (12
cosity and thermal conductiviyd7], respectively; andj( «)
is a nonlinear factor defined by whereT is an isotropic fourth-rank tensor defined [&7]
_ sinhx 3 1 1

) == ® Tija=5 (8w + 81850~ 5 ;0.

where

On the other hand, in the present theory the distribution func-
tion is written in an exponential form in terms of tensor

(kaT)1/4 1 1/2 X i () - .
_ . . Hermite polynomialsH'“)(w) (k=0) of reduced peculiar
I+ —Q-Q . 9) i \
v2pd 270 No velocity w= \m/kgTC as in

Hered denotes the diameter of the molecule ands the _ 1 5 )

molecular mass. In Eq6), we have omitted a term related to ~ T(C;t)=exp — keT | 2 mC +k§>:1 XeHE (W) = e |

a third-rank tensor, namelymCCCf(C;t)):Vu in accor- (13)
dance with the spirit of the thirteen moment method. Further-

more, this term, even if taken into account, would not chang
the basic conclusion of this work; it will merely add to the
second term from the last in E(®) if it is expressed in terms
of lower-order moments. The higher-order momesand
i3 obey their own evolution equations. Therefore, the evo-

?Nhere,u is the normalization factor and, are the general-
ized potentials which depend only on macroscopic variables
such adl andQ. Then, it is possible to show that

lution equationg5) and (6) are the leading members of an Y= \kgT/M[O3+0,4],
open set of moment equations. It is usually closed by ex-
pressingys, and ¢s; in the lower-order moments, namely, U= kgT/M[O 4+ 0,5], (14

andQ as well as the conserved momeptsi, and&. Within
the first thirteen moment approximatia@¥ is proportional to
Q, whereas)s; is given in terms ofl. Such closure relations
give rise to partial differential equations fbF andQ, which
form the governing equations for shock wave problems in
the approachel24—-26¢ based on the moment equations fol- . ) .
lowing Grad[23]. We have earlier mentioned that such ap- 1herefore, the closures in EGLO) imply that in the present
proaches do not yield shock solutions for the Mach numbefheory the higher-order-momen®;, ©,, etc., are ex-
beyond a critical value. We propose a different set of clo-Pressed as follows:
sures in this paper.

We take the following closure relations faf, and i 0;=—0,6=0, 0,=—-0,6=-116. (16)
appearing in the moment evolution equations Fbiand Q:

where@®,, etc., are moments defined by

0O, =(H®(W)f(C;t)). (15)

Note that®,=IT sinceH?(w) =ww— &, and®,=0. These
U= yYn=0. (10 results should be examined in the context of Grad’s expan-
sion (11) for f where the third-, fourth-,..., rank tensor terms
This set of closure relations is different from those taken inare set equal to zero. Since both the Grad's and the present
Grad’s theory of solution for the Boltzmann equation andclosure express the higher-order moments in terms of lower-
various existing variants of it, but there is agoriori reason ~ order moments, the same idea is used but their manners of
to disfavor the present closure relations over those whiclimplementation are different. However, despite the same
expandy, and s in Q andII as well as density and tem- idea the different manners of implementation make their im-
perature, since Grad’s closure does not have a theoreticlications greatly different as we will see in the case of shock
justification either. It is worthwhile to examine this closure Structures obtained.
relation a little more closely in order to see its difference  With the closure relation§l0) the constitutive equations
from Grad’s closure. In Grad's closure using the thirteenare given by
moments, the distribution functiof{C;t) is written as

1 2 2 P
1 pgp =~ 2p[Vu]?=2(IT- Vu]® ~ —Tq(x),
f(C;t)="fo| 1+A, [CCI?+A, Emc:2c . (11 70 a7
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dQ . . . pu2+p+11,,=P, (24)
p H:—pCpTV INnT—II-Vh+V(pé+II)- II-Q-Vu
1
pépT pu 5+§U2 +u(p+Hxx)+Qx:Qi (25
~ o Q). (18)

whereM, P, andQ are integration constants with the di-
mension of momentum per volume, momentum flux per vol-
dme, and energy flow per volume, respectively. These equa-
tions are also supplemented by the equation of state and the
caloric equation of state

We have shown in a number of studi&¥,31-36 on non-
linear transport coefficients that the constitutive equation
(190 and (20) give rise to sufficiently accurate nonlinear
transport coefficients and particularly non-Newtonian vis-
cosities in comparison with experiments. On the strength of p=pRT,

this finding, we take the closure relations in Ed0) and

show their effectiveness for the shock wave problem. We are

thereby able to formulate a continuum hydrodynamic theory &= > RT, (26)

of shock waves which provides shock solutions beyond the

critical Mach numbers mentioned earlier in connection withyyhereR is the gas constant per mass. Let us define dimen-
the moment method approaches. Based on the examinatiiynjess variables

of the direction field for the governing equations in the

present theory, it will become evident that shock solutions v=MuP™l, 6=M?RTP 2,
should exist for all Mach numbers.
The nonconserved variables suchldsand Q vary on a o=I,,P 1 ¢=pPL
faster time scale than the conserved variables such as the
density, energy(or temperaturg and momentun{or fluid r=PpM~2, ©=Q,Q %,
velocity). Therefore, on the time scale of variation in the
conserved variables the nonconserved variables have already E=x1"1, a=MQP 2 (27

reached their steady state, and it can be shi@vihthat the

following approximate constitutive equations hold fdrand ~ The length scale is provided by the mean free padiefined
: with the upstream momentum per volunM=p,u,, where

the subscript 1 refers to the upstream. The downstream will

p be designated by subscript 2. The upstream mean free path is
—2p[Vu]®—2[I-Vu]® - 7o Ma()=0, (19 defined by

~pC,TV In T-I1.Vh+V(pé+1I)- 11— Q- Vu = (28)
pépT . . . .
— Qq(«)=0. (200  Where 7, is the upstream Newtonian viscosity at the up-
Ao stream temperaturg; . The transport coefficients, and\ g

are reduced with respect to the upstream transport coeffi-

This approximation is called the adiabatic :':1pproximf:1tion(.§:ients7701 and\,, respectively:

The utility of this approximation has successfully been teste
for a number of flow problemp27]. We use these constitu-
tive equations in the present work for shock waves.

In the case of flow geometry for the present problem, the
steady-state constitutive equations fég, andQ, under the  wjith these reduced variables we cast E@8)—(26) in the
closure relations mentioned are obtained from E.and  forms
Eq. (6) as follows:

x_ o )\*_E

, = . 29
701 Aoy @9

d=r0,
p 4 4
ﬂ—OHXXQ(K)'FgHXXﬁXU-Fg po,u=0, (21 ro=1,
: ro’+¢+o=1,
b N
— Qxq( k) +Qydzu+Iludu+h(p+Il,,)dy INT=0.
Ao < o e o rv+5¢v+20v+2ap=a. (30

(22)
From these equations and on reducing constitutive equations

Equations(21) and(22) are partial differential equations for (21) and (22) we obtain the following five equations;
velocity component and temperatur&. We emphasize that

there do not appear partial derivativedbf, andQ, in these dv=20, (31
equations owing to the closure relations taken.
Integration of the balance equatio(i9—(3) yields v+oto=1, (32

pu=M, (23 v2+560+20v+2ap=a, (33
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1 4 4
F doq(k)+ 3 o+ 3 hdv=0, (34

a 5

)\—'f Oeq(k)+(aptvo)dp+ > 0(p+0)de In 6=0.
(35

Here the new dimensionless paramesas defined by

5

ﬁ=3—01|\|pr

(36)

2985

£ Vi, M2
T amd* T PZ

which is the reduced Maxwell potential energy of potential
strengthV,,, for two hard spheres of radiu#/2 at contact.
This reduced potential energy is set equal to unity by suit-
ably choosing the reduction parametétsandP. Therefore,

for Maxwell molecules withE4 so taken we obtain

B 37 1/4 3A2(5) 1/2 1 8 - 1/2
- B v B

(39

with ¢, denoting the reduced upstream temperature and th@;e note that the parameteris related to the upstream Mach

Prandtl number defined with the upstream quantitias

number as follows:

=CpT17m01/N\o1. Since the reduction scheme used here is

slightly different from that in the literaturi8,23], it is useful

to explain it, especially, with regard to the appearance of the

dimensionless numbeg in Eq. (35). On multiplication of the
mean free path, the first term in Eq(22), apart from the
nonlinear factomg(«), can be reduced as follows:

Ihp _57¢¢ IP%Q
Ao X 2AF T AgM?’

where the second factor on the right can be written as

IP3Q

o1 PSQ 2Np, P2
AoiM2 Ao M3

5o, ¢ W7

(40)

B [1+(1/5u
N = 1— (13w’

pn=1+25—16a.

where
(41

The parametej ranges from 0 to 3 which yieldsly, = .
Note that the upstream Mach number can be equivalently
defined by

U1

N

NM:

The second equality in the equation above follows on mak!WN€re yo is the polytropic ratioy,=C,/C, .

ing use of the definition of Prandtl number and the reduce

temperature. Finally, we obtain

hp  aBrde P2

VI G VT

and Eq.(35) follows on dividing the equation witP?M ~?2
and use of the definition g8 in Eq. (36). The argumenk in
the nonlinear factog(x) is given by the formula

1/4, 1/2] o v 1
k=4(2v0) “(5CNy) "~ (0—1) o
) 8 - 1/2
X| ¢ T5rg @® ) : 37
where
o I_ Amh g 39)

f=———
In 15KgT1 701

with |, denoting the mean free path for hard spheres in terms

of the hard sphere viscosity= 7q;(hard sphereM. In the
case of a Maxwell gad,=1 and

16 [6,
C=—F——7—\/=>
15\27A,(5) Y Eq

whereA,(5)=0.436 and

d To determine the boundary conditions en¢, andé, we

observe thar—0 ande—0 asé— +o. Equationg34) and
(35) are identically satisfied in the limits if and § become
independent of at the boundaries. Therefore, &s> +

o,¢—0, (42
0= ¢v, (43
v+o=1, (44
v2+560=a. (45)
The solutions of Eqs(43)—(45) are

1
v=g(5xu), (46)

1
$=5 (3% ), (47

1 — 2

0=a(15+2,u—,u, ). (48)

The upper sign is for the upstream and the lower sign is for
the downstream. These solutions provide the boundary con-
ditions at the upstream and downstream. They also imply
that the reduced density is given by

(49
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With the help of EqS(31)—(33) the differential equatiOﬂS pa‘[h|n is given by|n:(7701/p1), ’7T/2RT1 The governing

(34) and (35) may be cast into the following forms: equationg50) and(51) are quite different from the evolution
dv  36(v2—v+6) equations foro and ¢ appearing in the moment equation

— = q(«), (50) approach of Grafi23]. The governing equations in the latter
dé  4n"vi(l-v) approach, which are differential equations for the stress ten-
) sor and heat flux, were found to fail to produce shock solu-
ag_ 0 Bov(1—v)(atv —2v—30) tions for Ny, =1.65. The differential equations fer and ¢
d¢é  5v%(1-v)? \* arise in the Grad theory, primarily because of the particular
5 5 closure relations foil, and ¢ taken, which inevitably give
" 3(v"—v+0)(a—v—50) q(x) (51)  'ise to spatial derivatives af, ands. In the following we
4n* ' examine the governing equatio(&0) and(51) and the exis-

) ) i tence of shock solutions with the help of singularities of the
These governing equations for shock profiles are solved sulirection field equation.

ject to the boundary conditions in Eqt6)—(48). These  Here we will examine the governing equations in the case
equations generalize the governing equations in the Naviegf the transport coefficients satisfying E¢54). For the
Stokes theory as will be discussed presently. Navier-Stokes theory the direction field equation is given by
Ill. SHOCK SOLUTIONS dv w(v2—v+0)
OF THE GOVERNING EQUATIONS 46 v(30+20—v7—a)’ (56)

The second term on the right-hand side of Exfl) stems

from the thermoviscous effect involving the second and thirdvhere
terms as well as the termll,,d, In T in Eq. (22). These, 150*
together with the second term in E@1), are the terms that w= _
do not appear in the Navier-Stokes-Fourier theory. To indi- 4pn* 6
cate the difference between the governing equations in the

classical Navier-Stokes-Fourier theory and the present theoty is independent o for the transport coefficients obeying
and to facilitate the solution procedure for EqS80) and  EQ.(54). The singularities of the direction field are given by
(51), we present the governing equations for a one-

(57)

dimensional shock wave in the former theory v?—v+6=0,
dv_3(v°-v+0) (52) v?2—20-360+a=0,
dé dn*v
v=0. (58)
de 0B(a+v?—2v—36)
de BN : 53 There are three singular points:

These equations follow from Eqé0) and (51), if 1 —v is 1 1 )
replaced by, Eq. (43) is made use of, and the second term Porv=g5 (5+w), 0=5;(15-2u—pn%),
on the right-hand side of Eq51) is omitted since it arises
from the thermoviscous coupling term that must vanish in 1 1
the linear order. Clearly, Eq$52) and(53) are special cases Piiv==(5—pn), 60=— (15+2u—pu?),
of Egs.(50) and (52). 8 64

We note that in the case of a hard sphere gas the reduced
transport coefficients;* and\* depend or¥ only: P,:v=0, 6=0.
0 1/2
'91) '

. 312 Note thatP, andP, coincide with the boundary values given
A= 9_1 ' (54) in Eqgs.(46) and(48). We remark thaP, andP are also the
singular points of the governing equatiof®2) and (53) for
To facilitate comparison of the present governing equationshe Navier-Stokes theory where the derivativkdd¢ and
with the governing equations in the literature, we note thed#/d¢ vanish. It can be shown by calculating the eigenval-
relation between the reduced distaricim the present work ues of the linearized governing equations, tAgts a saddle
with the reduced distanczin the literature: point whereasP, is a node andP, is a spiral. The shock
solution is a curve connectingy, and P, as é—o from &
[o =—oo, It is possible to show that there exists a unique such
&= 1 z 6 N - (55 solution for every value o [3,23] since the aforementioned
nature ofP, andP; remains invariant for all Mach numbers.
This relation stems from the difference in the definitions of Therefore, the Navier-Stokes theory admits shock solutions
mean free path in the present work and the literature whiclfior all values of Mach number.
has been used to reduce the governing equations. The re- We now examine the governing equatio®®) and (51)
duced distance is defined az=x/l,, where the mean free by using the direction field equation

*

7’:
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dv —o(l-v)(v2—v+0)

40 [v(1—v)(v3—20—360+a)+3/4B(v2— v+ 0)(a—v2—56)]" (59

It is interesting to see that the nonlinear faaldk) does not P, is located at the origin of thev(6) coordinates, whereas

appear in this equation and thus the singularities of the dipointsP5; andP, are the intersection of the closed loop with

rection field is not affected by the nonlinear factor. The sin-line v =1. Both theories share the same inverted parabola

gularities of the direction field are given by the equations (heavy ling which intersects the broken line and the closed
loop described by Eq62) or Eq.(63) at the same pointB,

1-v=0, 60 and P,. PaintP5 is neutral in a direction and unstable in the
2 ~0 61 other, wheread, is unstable—an unstable focus. It there-
vi-vt6=0, (62) fore means that both theories not only share the same bound-

ary conditions at the upstream and downstream, but also
have an intersection of domains which are bounded by
curves of negative slopes and where the shock solutions lie.
+ B (v?=v+6)(a—v?-56)=0. (62 SingularitiesP; and P, are not associated with shock solu-
tions. It must be noted that line=0 is neither the locus of
The first two equations are for the loci of zero slopesZ€ro slopes nor the locus of infinite slopes. As the Mach
whereas the last equation is for the loci of infinite slopes. Eqnumber increases, the intersectiéhs P3, andP, coalesce
(62) factorizes to the form atv=1 which corresponds to the boundary value for veloc-
ity at infinite Mach number. This situation is almost achieved
15 at N,,=10 as shown in Fig. 2. The shock solution must
28 (0—B+B*+A)(6—B—\VB*+A)=0, (63  connectP, andP;. The fact that the singularitie®, andP;
are shared by both theories and there is an intersection of
where domains where the slopes are negative means that a shock
solution must exist for the governing equatidbg) and(51)
for all Mach numbers as is the case for the Navier-Stokes
equations for all Mach numbers. The uniqueness follows
(64)  from the uniqueness of the solution to E§9).

v(1-v)(v?—2v—30+a)

3
1+ —|v?—2v|,

a+ 48

4
A=—v(v—1){(l——

2B
= . (65 2

2o

B ag)" 4B

The intersections of the curves arising from E(f)—(62)
are the following five points: ..

P o
Po: L 5 _1 15-2 2 -
o-U—g( +u), 9—@( —2p—p), @ of
Pyiv== (5 b= (15+ 20 2 1
1'v_8( ,bL), _64( M Iu’)1 -
P, v=0, 6=0, oL , ‘ , ,
04 0 0.5 1 15 2
P;:v=1, 6=0, v v

1 FIG. 1. Loci of zero and infinite slopes in the direction field for
Psiv=1, 6=—=(a—1). the Navier-Stokes and generalized hydrodynamic theories in the
> case ofNy,=2. The broken line is for the Navier-Stokes theory
The singularitiesPy, Py, and P, coincide with the singu- whergas the h.eavy_ line is for both the Navier-Stoke; and pr_esent
o h - eories. The light lines are for the present theory which predicts a
larities of the Navier-Stokes eql_Jatlons. It can be ShOW’? th losed loop for a locus. Both theories share the same points of
Po and Py are als_o a Sa‘_jd'e point and a npde, reSpeCtIVelyintersectionPO and P, as well asP, and the domain of negative
whereasP, is a spiral as in the case of Navier-Stokes theorys|0pes bounded by curves passing throBgrandP; . Shock solu-
An gxample of loci of zero and i.nfinite slopes fpr both the tigns Jie in the domain and conne@t, and P, . PointsP, and P,
Navier-Stokes and present theories are plotted in the case @hich are intersections of the closed loop and the bold solid line,
Ny=2 in Fig. 1, where the broken line is for the Navier- and p,, which is the intersection of the closed loop and line
Stokes theory and the heavy solid line is for both the Navier=1, are not indicated in the figure. One of the parabolas which
Stokes and present theories, whereas the light line is for theéhould appear in the the upper left corner is out of the picture in the
present theory only. The light line is a closed loop. The pointpresent figure.
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FIG. 2. Same as Fig. 1 except fbk,=10. Notice thatP, al- FIG. 4. Shock profiles for density for various Mach numbers for

ready has almost approached pofty atv=1, §=0. The closed a Maxwell gas. The same meanings for the lines as in Fig. 3.
loop in Fig. 1 becomes almost rectangular with the minimum at
aboutf~ —50. The parabola at the upper right corner almost meetsd

with the closed loop aé—1 and =0, istancet used in this work; see E@55). In Fig. 6 the shock

widths calculated ©) by the present theory are compared
IV. NUMERICAL RESULTS AND COMPARISON with Monte Carlo simulation dat&) by Nanbu and Wa-
WITH SIMULATION DATA tanabg 5], the results by the Mott-SmitG2 (+) andC? (0J)
closureq 14], and the results by Salwest al. who modified
the Mott-Smith method to include an additional moment
The governing equations are numerically solved subjecfe.g., (ci,cxcz) (X) or (Cf(‘,cxcz) (¢) closureg[16]. The
to the boundary conditions given in E¢S0) and(51). Some  solid line is drawn through the results of the present theory to

examples for shock profiles for velocity and density areguide the eyes. The Navier-Stokes predictions are presented
given for a few values of Mach number in Figs. 3 and 4. In

these and other figures in this work, the solid line is for
Ny = 1.5, the bold solid line is foN,,=2, the dashed line is 0.2
for Ny, =5, the dotted line is foN,,=8, and the dash-dotted
line is for Ny, =10. The corresponding values for the stress
(o) and heat flux(¢) are plotted in Fig. 5. In the literature, 0.15!
the shock widths is defined by means of the density profile
in the following form:

A. Shock profiles and widths

5= 2= 66
(dn/d2) (66

where the reduced distanzehas the relation to the reduced 0-08

R o=
\\\ \\
0.8} =\ - -0.02}
—0.04}
0.6} ]
> - L
006
0.4} -
-0.08}
0.2y ~0.1
q ‘ . .,,»‘,.’:.:_,_T -0.12}
10 5 0 5 10 . . .
z -10 5 0 5 10

FIG. 3. Shock profiles for velocity for various Mach numbers
for a Maxwell gas. Solid lineNy=1.5; bold solid line:Ny=2; FIG. 5. Shock profiles for stress and heat flux for various Mach
dashed line:Ny,=5; dotted line:Ny=8; dash-dotted lineNy, numbers for a Maxwell gas. The same meanings for the lines as in
=10. Fig. 3.
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0.27 : : , ‘ , closure(Cd). The Monte Carlo simulation method of Nanbu
and Watanabgb] is a modification of Bird’s methof4] and,
especially, its treatment of collisions is basically the same as
in the latter method. Consequently, the method of Nanbu and
Watanabe, as expected and noted by tH&ip gives the
same results as by the Bird method. Since the Mott-Smith
method can be by no means regarded as exact ar(dﬁtbed

0.2

§ 0.14 7 Cf closures give divergent results, the converged results are
quite probably located elsewhere if the method ever yields

convergent results as the number of moments included is

0.068[ 4 increased. The reason for this expectation can be seen in the

work of Salwenet al.[16] which gives different values from
those by the Mott-SmithC2 closure for the inverse shock
width. Interestingly, the Mott-SmithC§ closure method
11 yields the shock widths which coincide with the results ob-
tained by the Monte Carlo simulation method of Nanbu and
Watanabd 5], who report that the same results also are ob-
tained by the method of Bir#]. Since the simulation results
FIG. 6. Inverse shock width Wi\, for a Maxwell gas. The solid by Yen and Ng[7] differ from those of Nanbu and Wa-
line is drawn through the present results to guide the eyes. Thganabe, it is not clear where true values lie. The comparison
meanings of the symbols are as follows: present resultt: Monte made in Fig. 6 therefore does not resolve the question re-
Carlo result of Nanbu and Watanafig; +: Mott-Smith C,"(‘zclosure garding the accuracy and reliability of the present continuum
[5); 0 Mott-Smith C, closure[16], >: Mott-Smith (CC«C?  theory method, although it produces results that appear to
closure[16]; ©: Mott-Smith (C¢,C,C*) closure[16]. have a qualitatively correct behavior with regard to the Mach
number dependence in the entire regime of Mach number.
in Table | together with the inverse shock width values for To resolve this question, we have performed a calculation
the points appearing in Fig. 6. Since the differential equawith a variable hard sphere model which gives the viscosity
tions (50) and (51) are stiff, the solutions are obtained by as o= IU“O(T/TO)S! WhereMO and TO are constants and we
using Gear's method with a relatively high tolerance have takers=0.75 in this work. This value df lies between
(<10™%). Therefore, the numerical results are not of highg 72 for the shock tube value and 0.81 for the wind tunnel
precision, but they are adequate for comparison. The presefhjue suggested in Ref6]. This model has been tested in
results obtained are closer to those by the Mott-Srlfh  connection with shock widths for argon and helifié}. To
closure () for all Mach numbers examined whereas theymake a comparison of the results by the formulas in the
differ from the Monte Carlo simulation dat&) of Nanbu  present theory with experiment it is necessary to use a some-
and Watanabe by 14 to 20 %. Note that the Monte Carlavhat different length scale from the scale given in E&f).
simulation results well agree with the results by the Mott-This difference arises from the different definitions of mean
Smith CZ closure (), but this method of closure does not free path. The experimental data in question are based on the
give results convergent with those by the Mott-Sm@  definition of mean free path by Bird[38] Ig

o

TABLE I. Inverse shock widths by various theories for a Maxwell gas. Mhgott-Smith Cf closure, M-S: Mott-Smith Cf closure[14];
SGZy4 Salwen, Grosch, ZieringC(,Z(,CXCZ) closure, SGZ; Salwen, Grosch, ZieringC(i’,CxCZ) closure[16]; MC: Monte Carlo[5]; NS:
Navier-Stokes.

Ny M-S, M-S, SGZy; SGZ; MC Present NS
1.2 0.0557 0.0504 0.0653 0.0650 0.0651
1.5 0.124 0.116 0.136 0.143 0.147
1.7 0.152 0.164 0.173 0.188
2 0.184 0.193 0.192 0.212 0.193 0.226 0.232
2.25 0.198 0.218 0.200 0.224
2.5 0.20% 0.202 0.239 0.275
3 0.206 0.251 0.196 0.223 0.205 0.244 0.293
4 0.188 0.248 0.170 0.193 0.186 0.228
5 0.165 0.228 0.146 0.165 0.163 0.208
6 0.143 0.145 0.185
7 0.127 0.128 0.163
8 0.113 0.116 0.146
9 0.102 0.105 0.135
10 0.0945 0.138 0.0804 0.0902 0.0925 0.123

8Data from Ref[5].
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FIG. 7. Comparison of theoretical inverse shock widths with  FIG. 8. Profiles for reduced calortropy production for various
experimental data at various Mach numbers. A variable hard-sphefdach numbers for a Maxwell gas. The same meanings for the lines
model is used for the potential for whichy= uq(T/Ty)® with s as in Fig. 3. The case fady,=1.5 is invisible in the scale of the

=0.75.0O: present theory,1: Alsmeyer[39], ": Schmidt[40], +: figure.

Garenet al.[41], ¢: Linzer and Hornig42], and X: Camac[43].

A solid line is drawn through the theoretical values to guide theby experiments. This is in contrast to the Navier-Stokes

eyes. theory and other approachgs3-25 in the moment method
mentioned earlier. As far as the present authors are aware,

=(101/p1)BVTI2RT, where B=(7—2s)(5—2s)/24. For there is no continuum hydrodynamic theory to have accom-

this definition of mean free path the reduced distafitethe  plished such results comparable with experiments over the

present theory is related to the reduced distance used for tigtire range of Mach number studied. We thus have achieved
an adequate continuum theory generalization of the Navier-

experimental data considered here as follows:
Stokes theory for shock waves in the hypersonic regime, and
5 the closure relations, together with the nonlinear fag(at),
¢=zB\/ 5 Nu- (67)  taken for the constitutive equations for the stress tensor and
heat flux hold the key to the results obtained.

Therefore, the shock widths are calculated with the formula
B. Calortropy production—energy dissipation

S=B \/E N N2~ M (69) Energy dissipation is closely associated with shock wave
M . . . . P
6 (dn/d§) max phenomena. It competes with compression in determining
the thickness of a shock wave. Therefore, it is interesting to
The results calculate@D) for the variable hard-sphere model examine energy dissipatid@4]. In the framework of irre-
are compared with various experimental data reported byersible thermodynamics on which the present theory is
Alsmeyer [39] (), Schmidt[40] (%), Garenet al. [41] based, the calortropy productip80] gives a measure of en-
(+), Linzer and Hornig[42] (<), and Camad¢43] (X) in  ergy dissipation in the system from a useful to less useful
Fig. 7. Aline is drawn through the theoretical values in orderform. We have calculated the calortropy production associ-
to guide the eyes. Although the data of Linzer and Hornigated with shock waves for various Mach numbers. For the
and Camac do not appear to be consistent with the data @onstitutive equations the calortropy production is given by

Alsmeyer, Schmidt, and Garegt al. and therefore are diffi- [27]

cult to analyze with the present theory together with those of )
the latter, they are included in the figure for completeness. oca= kegx(1I1,Q)sinhk(1I1,Q), (69

Given the experimental uncertaintié$—5 % according to o212
Alsmeye) and the errors in the numerical solutions of the whereg=(m/kgT)~“/2n“d". Therefore a reduced calortropy

governing equations, the theoretical results are judged to beroduction relative to the upstream condition may be defined
in good agreement with experiment and, especially, withPY

those by Alsmeyer, Schmidt, and Garenal. In fact, the

agreement with Alsmeyer’s data is excellent. Therefore, it . Ikaa(T _ \/? rp)? e

can be concluded that the present theory yields reliable re-?ca= 9ca/Ke9(T1,n1)= 9\ T x(o,@)sinfk(o, ¢).
(70)

sults for inverse shock widths over the entire experimental

range of Mach number.
The present theory is a continuum hydrodynamic theorylhe reduced calortropy production is computed from the

for shock waves, and it provides shock structures adequatebhock solutions obtained and presented in Fig. 8. It is peaked
for the range of Mach number studied by other methods andround the transition point in the shock profile and the peak
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height increases with the Mach number. In the scale of theally consistent in the sense that it conforms to the require-
figure oy is so small forN,,=1.5 that it does not show up ment of thermodynamic laws. The aforementioned nonlinear
in the figure. factor is known to be responsible for correctly accounting for
Since the global value for calortropy production is of in- the shear rate dependence of fluids in the non-Newtonian
terest and perhaps more relevant to the present problem, wegime of viscosity 31—-36, the emergencl5] of boundary

define a reduced integral calortropy production layers in flows under a steep pressure gradient, plug flows
[46,47, the resolutiorj48] of the Knudsen paraddx9], etc.
- | \/F r)? . The nonlinear factog(«) is not present in the moment equa-
=e= f_wdg 0\ T «(o,@)sintw(, ) tions in the conventional approach following the formulation

of Grad’s moment method. As is evident from Ed0), q(«)

5 o \/F v\? ) is closely related to the calortropy production arising from
V& NMJ’%dZ 0, (v_l) (o, @)sinhk(o,¢). the irreversible process in the system since &) can be
recast in the form
(72)

This global calortropy production has been calculated as a Tca=kegx*(IL,Q)q(x)=0. (73)
function of Mach number in the case of the Maxwell model.
The results of the calculation show th&f, increases with  Since «?(I1,Q) is basically the Rayleigh dissipation func-

Mach number asN,,—a)%; namely, tion, this nonlinear factogq(«) modifies the Rayleigh dissi-
_ " pation function[50] because there are nonlinear transport
Ec=K(Ny—-a)% (72 processes present in the system.

The generalized hydrodynamic equations presented in this
work have been derived from the Boltzmann equation for
modela=0.85 anda=3.14, whereaa=0.87 anda=2.98 4 1e gases. Therefore, one may infer that they are limited to
for the variable hard sphere model wigk0.75. It probably g ,,ch gases. However, it is shown in the literati2@ that
is fair to takea=3.0 as an approximation, given the uncer- ggsentially the same forms of evolution equations hold for
tainties of the numerical results and curve fittings. This eNviquids and for dense gases except for the meanings of the
ergy di_ssipation.c_ompetes with th_e compressional effect Of)arameters appearing in the equations which must be re-
shock in determining the shock thickness. garded as those for liquids or dense gases. More specifically,
one can simply regard the transport coefficienpgsand\ as

V. DISCUSSION AND CONCLUSION well asp andC,, in the constitutive equationd9) and (20)

In this paper we have presented a continuum hydrody2S those for the liquid or dense gas in question and apply

namic theory of shock waves which yields shock structurednem to flow problems in such fluids. Therefore, the good
(shock widthg comparable to those by Monte Carlo methods@dreement of the theoretical results with experiments sug-

and the Mott-Smith methods over the entire range of Mactgests the utility of the present generalized hydrodynamics
numbers studied for the Maxwell model of potential. It re- @PProach to shock wave phenomena in liquids or dense gases

moves the weakness of the Navier-Stokes theory of shocwhere Monte Carlo simulation methods comparable to those

waves. However, the present results agree only within 1407 Bird and Nanbu and Watanabe are not available at
20 % with the Monte Carlo results obtained by Nanbu andPresent. In this connection, we note that there are some mo-
Watanabe[5] and with the results by the Mott-SmitG2 lecular dynamics simulations on shock waves in liquids
closure method. Our present results are closer in [;(erfor[-s_lo]' In conclusion, we believe that, together with the con-

mance to those by the Mott—Smith(’ closure method. Since servation Iayvs for mass, momentum, and energy, the consti-
&utlve equations foll and Q presented in this work form a

none of the Mott-Smith methods can be judged to be exact . .. . . i
and they yield nonconvergent numerical results for the in- ontinuum(generalized hydrodynanidheory of flow phe

verse shock widths for the Maxwell model, it is difficult to no?iigﬁ;nzgdwgulsdhﬁﬁg \;\(/)a\;(ejz. a note in connection with
Coneld WCh one = coser lo I e vaee K Pine losure relatons leating to EG49 and GO, wheh
verse éhock widths by the prese'nt theory for a Ii)/ariable hargrise. in the adiabatic approximation. Instead of the closure
sphere model and compared the results with experimentdfations in Eq.(10), one may treajpdIl/dt+V -y, and
data on argon. They are found to be in good agreement witgdQ/dt+V - ;5 as a perturbation in Eqé5) and(6), respec-
experiments. Thus, we now have a continuum hydrodynamiéVely. Then, the steady-state constitutive equatidr®s and
theory for shock waves which correctly performs beyond the(20) arise as the lowest-order approximations to Efsand
regime of Mach number where the classical Navier-Stoked8) in the perturbation theory applied to the generalized hy-
theory remains useful. Such a theory is designed from thdrodynamic equations within the framework of the first thir-
moment equations derived from the Boltzmann kinetic equal€€n moments.
tion, primarily, by using different closures from those used in

the moment methods by others for the same purpose. The
performance of the governing equations is enhanced by the

presence of the nonlinear factgfx) which basically arises The present work has been supported in part by a grant
on resummation of the Boltzmann collision contributions forfrom the Natural Sciences and Engineering Research Council
all Knudsen numbers. The present theory is thermodynamief Canada.

whereK, a, anda are constant parameters. For the Maxwell
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