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Thermodynamic perturbative approach for simple fluids:
Structure of a confined square-well fluid
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An approximation, which is based on both the weighted-density approxim@ti@A) of Tarazond Phys.
Rev. A31, 2672(1989] for the repulsive part of the model potential, and the density-functional approximation
(CNPR) of Callejaet al. [Mol. Phys.59, 973(1991)] for the attractive part of the model potential, has been
proposed to study the structural properties of simple fluids and is abbreviated as WDA-CNPR. The WDA-
CNPR approximation can be considered as an extended Choudhury-Ghosh approximation, which is based on
the density-functional expansion of a one-particle direct correlation function corresponding to the attractive
part of the model potential. It has been applied to predict the density profiles of a confined square-well fluid,
and compared with the computer simulation. The calculated results show that for the square-well fluid confined
in planar slits the WDA-CNPR approximation is a significant improvement upon those of the Choudhury-
Ghosh approximation, and compares well with the computer simulation. For the weak fluid-wall interaction a
very good agreement between the results of theory and computer simulation are obtained, but the agreement
deteriorates with the increase of the fluid-wall interacti@®1063-651X%97)11208-9

PACS numbeps): 61.20.Gy, 61.20.Ne

I. INTRODUCTION theories, there are well-known perturbation theories such as
the mean-field density-functional theoryMFDFT) and
Over the last decade, numerical studies have already adensity-functional perturbation theot@FPT) [4]. These ap-
dressed problems involving the model fluids confined in speproximations are quite successful for the prediction of the
cial symmetrical systemfl—3]. Many theoretical methods structural properties of confined Lennard-Jones fl6i@). It
have been proposed to describe the structural properties & known that, for the structural properties of a confined
confined model fluids such as the hard-sphere and Lennargguare-well fluid, these approximations yield the oscillatory
Jones fluids. For the study of the structural properties oftructure on the bulk liquid side of liquid-vapor interfacial
hard-sphere fluid; two kinds of approximate theories, WhiCPPrOfII?S’ ie., the simplified c'hou.:e made for the attractive
are the integral equations based on the liquid theories and tg@ntribution of square-well fluid yields an unwanted approxi-

weighted-density approximations based on either the local gnate bulk equatio_n of sta_{éf—g]. Song :_;md Kin{g] recently
hybrid weighted densities, are well known. It is known thatapp“ed the density-functional approximation of Choudhury

for the confined hard-sphere fluid the weighted-density ap‘-’de Ghosh[lO], which IS bas_,ed on the Qen5|ty-fqnct|onal
proximations based on the local density describe their StruCexpanslon of a one-particle direct correlation function corre-

: " : sponding to the attractive part of th re-well potential, t
tural properties very well compared with well-known inte- sponding to the attractive part of the square-well potential, to

I i h he P Yevick and h study the structural properties of a confined square-well
gral equations such as the Percus-Yevick and hypemettgg - They showed that the Choudhury-Ghosh approxima-

chain functional approximations. However, at lower tem-i,, jescribes well on the average the structural properties of
perature these kinds of weighted-density approximations faitqnfined square-well fluids compared with the available
to describe the structural properties of the real systems WitEomputer simulation. However, the agreement with the com-
attractive potentials such as the square-well and Lennargsyter simulation is less satisfactory for higher densities and
Jones fluids. for the strong fluid-wall interaction. Thus it seems to be in-
The crux of the problem lies in the fact that the exact formterest to extend the Choudhury-Ghosh approximation to
of the free-energy functiondl[ p] or grand-canonical poten- study the structural properties of confined square-well fluid
tial Q[p] is still unknown. To find a reliable approximation to and other simple fluids. On the other hand, the structural
Flp] (or, Q[p]) is now a major activity in density-functional properties of confined square-well fluid have not been stud-
approximations. For a model system with the attractive parted much compared with those of confined Lennard-Jones
of the potential, the most successful class of approximatéuid [11].
theories both from the point of view of numerical accuracy In this paper, we will propose a density-functional ap-
and of intuitive appeal are perturbation approximations basegroximation (the WDA-CNPR approximation which is
on the liquid theory. Among many different perturbative based on both the weighted-density approxima@aéfDA)
of Tarazond 12,13 for the repulsive part of the model po-
tential and the density-functional approximati@®NPR of
*Electronic address: sckim@anu.andong.ac.kr Callejaet al.[11] for the attractive part of model potential, to
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study the structural properties of simple fluids. We drive thestructural properties of hard-sphere flui@3]. Thus, as an
density profile equation for the WDA-CNPR approximation. approximation for the repulsive contributiofdp], we

We show that in the second-order approximation in the denadopt the WDA of Tarazonl 2,13, which is known to give
sity the WDA-CNPR approximation leads to the Choudhury-excellent results for the hard-sphere system. In the WDA of
Ghosh approximation. In Sec. Ill, we apply the WDA-CNPR TarazonaF ] p] is assumed to be

approximation to calculate the density profiles of the square-
well fluid confined in planer walls, and compare the results
of WDA-CNPR approximation with those of other approxi-
mations. Finally, we briefly discuss the strengths and weak- , o
nesses of the proposed WDA-CNPR approximation in theVith the weighted density e(r),
actual applications.

Fre;{p]:f dr P(r)fre;{l)—m[(r)]a (6)

— 2po(1)
ry= — — — ,
Il. WDA-CNPR APPROXIMATION Pred ) = 10,01 (12— pa() P~ Aol pa( 2 -
In the density-functional theory, the grand-canonical po-
tential Q[ p] and intrinsic(Helmholt2 free-energy functional where
F[p], both unique functionals of the one-particle density o
p(r), are related as pi(l’):f ds p(s)wi(|r—9g) for i=0, 1, and 2, (8)
Qlp]= F[p]+J dr p(r)[Uex(r)— ], ) andf{p) is the excess free energy per particle correspond-
ing to the repulsive part of the model potential, and

w;i(|r—9) is the weighting function and only a function of
Fhe coordinate. Since the excess free endygyp) per par-

ticle is also difficult to obtain exactly, approximations have
to be made. In the actual calculation, the excess free energy
corresponding to the hard-sphere contribution is taken by the
gquasiexact Carnahan-Starling equation of state. The weight-

where u is the chemical potential of the system amg(r)

an external potential. The Helmholtz free-energy functional
F[p] can be generally written as the ideal contribution
Fidlp] plus the excess free-energy functiofal] p] origi-
nating from the particle interaction

Flpl=Filpl+Felp], (2)  ing function w;(|r—¢|) is given by requiring close agree-
ment, over a range of densities, of the two-particle direct
where the ideal part is known exactly, correlation function(DCF) that predicted by the Percus-
Yevick approximation for the homogeneous hard-sphere
fluid [12]:
BFdo1= [ ar pfnA%(0]-1), @ 12
3
where B=1/kgT is the inverse temperature and wo(N =773 o(|r|— o), 9

=h(2mmkgT) Y2 the thermal de Broglie wavelength.

Since little is known about the exact form Bf,[ p] for Ir]
the model system with the attractive part of the potential, we  w1(r)=0.475- 0.64E<—
need to approximate the excess free-energy functional. For 7
this, we introduce the perturbative theory which is well . Ir] Ir[\2
known in the liquid theory. Following the perturbative :o_zsz{ _) —0.924+ 0.764< _) —0.18{ _) ,
theory, the pair interaction potentia(r) of a model system 1] o o
can be divided by the reference paf(r) corresponding to

Ir[)\?
+0.113—| , |r|<o
g

the repulsive part of the model potential plus the attractive o<|r|<20
partu,{r) corresponding to the attractive part of the model _
potential: =0, [r|>20 (10
= 5o’ r rl\?
HCP) = Uregl 1) + Uanl1). @ A1) = 612" | 5[] [o(ir1 -0, v
144 o T

In this case, the excess free-energy functidhgl p] for the
model system can be approximated as the repulsive contriwhere o is the diameter of the hard sphere, af(d) is the
bution Ff p] corresponding to the repulsive part of the Heaviside step function and is equal to 1rito and 0

model potential plus the attractive contributiBg{ p] origi-  otherwise. Then the weighting functian;(|r—s|) satisfies
nating from the attractive part of the model potential, the following normalization condition:
Felp]=F +Fadp]. 5
olpr] re[{P] atl P] 5) J dS(vi(|l'—S|)=l for i=0
Since the exact forms d¥ ¢ p] andF,{ p] are still un- (12
known, some kinds of approximations fdf.Jp] and =1 fori=1 and 2.

Fad p] must inevitably be introduced. It is well known that
weighted-density approximations based on either the local Let us consider an approximation for the attractive contri-
density or the globally averaged density describe well théoution F [ p] corresponding to the attractive part of the
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model potential. As an approximation &%,{p], here we 3

employ the density-functional approximation proposed byBQ[p]:J dr p(r){in[A p(r)]—1}+f dr p(r)[ Buex(r)
Callejaet al. [11] (hereafter, we will call it the CNPR ap-

proximation to predict the structural properties of the con- _ f —

fined hard-sphere and Lennard-Jones fluids. Following the Aul® | dr p(1)Blred pregl)]

CNPR approximatiofi11], the excess free-energy functional

corresponding to the attractive part of model potential can be - J er dsK(|[r—9)p(r)p(s)

written as

—Bf drfdsf dt L(r,st)p(r)p(s)p(t). (16
ﬁFat{P]:_f drf dsK([r—s)p(r)p(s)

The equilibrium particle density distribution of the inhomo-
geneous fluid corresponds to the minimum of the grand-
—BJ er dsJ dt L(r,s,t)p(r)p(s)p(t), canonical potential satisfyingQ[ p]/6p(r)=0, which leads
to the Euler-Lagrange equation, from Ed),
(13
__oF[p]
B BUex(r)=p Sp(n) (17)
whereK(|r—9|) andL(r,s,t) are kernels symmetric in their
arguments, andB is an unknown constant. The kernels
K(l[r—9) andL(r,st) are related to the two-particle DCF
c@(jr—9,p) and three-particle DCR{)(r,st,p) corre-
sponding to the attractive part of the model potential, respec-
tively. Notice here thatc{3(r,st,p) is the three-particle In
DCF for the homogeneous fluisee Eqgs.(14) and (15)].
With B=0, that is, in the absence of the term of third order -
in the density, it can be shown that E¢8) and(13) lead to —j ds p(8) Bfred Pred 9]
the Choudhury-Ghosh approximation, which was proposed
by Choudhury and GhosH.0] to study the structural prop-
erties of colloidal suspension and sticky hard-sphere fluid. +2f ds K(|r=s)p(s)
Thus the CNPR approximation combined with the WDA of
Tarazona can be considered as an extended Choudhury-
Ghosh approximation. However, the three-particle DCF +3Bf dsf dt L(r.st)p(s)p(t), (18
cgf’t)(r,s,t,p) is not known, so we need an approximation for
the kernelL(r,st). In fact, it appeared that the kernel with
L(r,s,t) is not very sensitive when the separation of any two
of the coordinatedr — 9, is greater than a molecular diam- P_rep(S)
eter o [14-16. Thus we have chosen a practically simple
form of the kernel as op(r)

_ wo(|r =)+ 01(|r =) pred S) + @2(|T = ) pred )
1= p1(9)—2p2(9) preS) ’
L(r,s,t)=f du a(|r—u]a(|s—upa(jt—u|), (14 (19

From Eq.(16), one obtains the equilibrium particle density
distributionp(r) given by

@}: _ P
01 BUex(T) Bfrer{Prep(r)]

OPred )
op(r)

where p;=A "3exp(8u). If the inhomogeneous fluid is in

with contact with the homogeneous bulk fluid, its chemical poten-
tial Bu is equal to that of the homogeneous bulk fluid. Then
Eq. (18) becomes

6 o
allr= s 0| 31 as)
moT A2 In[%}—Bfrep<pb>—pbﬁf;ep<pb>+2pb f dsK(|r-s))

wheref(x) is the Heavisjde step function and is equal tq 1if +3Bp§f dsf dt L(r,s1), (20)

r>og/2, and 0 otherwise. The consta® appeared in

Fad pl, which depends on the properties of the homoge-

neous bulk fluid, and is determined by the equation of statavhere p,, is the homogeneous bulk density of the system.

of the system. Combining Eqs(18) and(20) and eliminating the chemical
Then the grand-canonical potential is given, from Egs.potential Bu (or, p1), one obtains the equilibrium particle

(1), (3), (6), and(13), as density distribution(or, density profile equatigrgiven by



p(r) ' '
In _b == BUex{1) + Bfred pb) T PoBTred Pb)

_IBfrer{P_rep(r)]

5pred )
op(r)

- J ds p(3) Bf jed Pre )]
+2stK<|r—s|>[p<s>—pb]

3B f ds f dt L(r,sOlp(9p(h—pdl.  (21)

Since the two-particle DCE)(|r — |, p;,) corresponding
to the attractive part of model potential is defined by

& BF ad p]

M So(op(9)’

p(N)—pp

cE(Ir—5,pp) = - (22)

the two-particle DCFc{Z(|r—9|,pp) for the homogeneous
bulk fluid becomes, from Eq13),

dt L(r,st).
(23

céﬁ>(|r—84,pb)=2l<(|r—q)+65pr

The two-particle DCFc®(|r—9|,p,) for the model system
is related to the two-particle DCEZ)(|r—5,pp), corre-

sponding to the repulsive part of the model potential

cl(Ir=9,po) =c?(|r =5, pp) — ([T —sl.pp), (24
wherec)(|r—s|,pp) is defined as
52:8Fre[[p]

M o (op(9)°

p(N)—pp

c&(Ir=s.pp)=— (25)

Then, the density profile equation, E(R1), becomes,
from Eqgs.(14) and (23),
p(r)}
In|—
Pb

== BlUgy(r) + Bfr,ep(Pb) + Pbﬁflfep(Pb)

_,Bfre;{l)_re[(r)]

SpredS)
op(r)

- J ds p(9) Bf e Or red 9]
+ f ds c&(Ir =9, pp)[ p(5) — pp]
+38 du a(lr—u) o0, (26
with

3p(9)= f dt a(|s—t))[p(t) — pp). 27

Here, we can check that, witB=0, Eq. (26) leads to the
Choudhury-Ghosh approximatigd0]. The strength param-
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the homogeneous bulk fluid. The pressiref the homoge-
neous fluid obtained from the functiondl6) is given by

BP=—pBQ[p]IV

= —pp IN[pp/p11+ po—PaBFed Pb)

+p§f dsK(|r—s4)+Bpgf dsf dt L(r,st), (29

whereV is the volume of the system. From Ed4&4), (23)
and(28), one obtains the equation of state as

2
, Pp
BP=py+piBtiepo) — 5 J ds i (|r—5.p0) + Bpj.
(29

sincefdsfdt L(r,s,t)=1. WhenB is chosen in this way, all
the functions and parameters of the fluid in this approxima-
tion are determined by the properties of the homogeneous
fluid. Taken together, Eq$26) and(29), constitute the den-
sity profile equation for the WDA-CNPR approximation.
Equations(26) and (29) provide an exact route to calculate
the density profiles of confined model fluids provided the
two-particle DCFc{2(|r—9/,pp) is known; for the giverP

(or, the givenB), Eqg. (26) has to be solved by the numerical
iteration.

IIl. RESULTS AND DISCUSSION

As a simple application of the WDA-CNPR approxima-
tion, we consider the square-well system with the well depth
e. In this case, the intermolecular potential(r) is given as

Bu(r)y=wo, 0<r<o
=—Be, o<r<otd
=0, r>o+594. (30

where §is the well width of the attractive potential. Follow-
ing the perturbative theory, we divide the square-well poten-
tial by the repulsive partthe hard-sphere parplus the at-
tractive part, respectively:

BUedr)=e«, 0<r<o
=0, r>o (3D
and
Bu(r)=0, 0O0<r<o
=—Be, o<r<o+é
=0, r>co+gd. (32

Then the excess free ener@y.J p] corresponding to the
repulsive part of the square-well potential is presented by the
hard-sphere contribution, whereas the attractive pgfftp]

is treated as the perturbative term. In the numerical calcula-
tion, the excess free energy corresponding to the hard-sphere
contribution, f (p), is taken by the quasiexact Carnahan-

eterB in Eq.(26) is chosen to satisfy the equation of state for Starling equation of statel7]
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_ n(4-37)
ﬁfrepﬁp)_ WQ_, (33

where »=mpo?/6 is the packing fraction. We have used
an analytic solution of the Percus-Yevick approximation for
the hard-sphere fluid18,19 as the two-particle DCF
c&)(Ir—sl,p) corresponding to the repulsive part of the
square-well potential, since the Percus-Yevick results are
comparable with the computer simulation up go=0.8.

For the two-particle DCR?(|r—¢|,p) of the square-well
fluid, the mean spherical approximati@SA) [4,20] for the
square-well fluid has been used, becalisit is easy to solve
the MSA numerically compared with any other integral
equationg 4], and(ii) the MSA yields quite good results up
to pa=0.8. To determine the constaBtthat appeared in
Eq. (29), the bulk pressur@P for the square-well fluid ob-
tained from the computer simulation of Henderson and van
Swol [7] was used as input. Through these calculations, the
square-well potentialthe well depthBe=1.0) with the cut-

off at 6=0.50 was used to compare with the available com-

£,0°=0.678

1.0

3

p(z)d

0.0 L :

z/0

FIG. 1. Density profiles of the confined square-well flui6l

puter simulatior{7,8]. =0.50, Be=1.0) in the gap of widthL=11.18r at po>=0.678.

Let us consider the square-well fluid confined in planarthe solid and dotted lines are from the WDA-CNPR and
slits consisting of the structureless hard walls. In this caseChoudhury-Ghosh approximations, respectively. The open circles
the spacial dependence of quantities iszoanly, not onx  are from the computer simulatid].

and y, because of the symmetry of the problem(r)

=p(2), oi(z.p)=27[5dR w;([R*+2?]¥2p), c@(z.p) proximation corresponding to the attractive part of square-
—27f2dR (é‘%t)([R2+22]1/2 p), and so on. The wall-fluid well system, because of the weak dependence on the local

H : 2 .
interaction(the external potentiplBue.(z) is given as densityp(r) of the two-particle DCR{(r 5[ p]) as

BUex(z2)=0, 0<z<L

=0 otherwise, (34

wherep(z) is defined in the range ofQz<L.

c@(r,spl)=c@(Ir—5,pp)

+65f dt L(r,sH)[p(t)—pp]. (35

The density profilep(z)® of the confined square-well Thus, as the first trial to reduce the disagreement with the
fluid (5=0.50, Be=1.0) at four different densitiegpo®  COMputer simulation, it is expected to use the modified hy-
—0.678, 0.741, 0798, and 0.818re displayed in Figs. 1-4 Pernetted chain approximati¢@1], which is better than the
with those of the Choudhury-Ghosh approximation and thé¥SA, to calculate the two-particle DCF of square-well fluid.
computer simulation[7]. At lower densities, the WDA- However, the overall picture shows that the WDA-CNPR

CNPR approximation is better than the Choudhury-GhosiRPProximation is a significant improvement upon those of

approximation, and shows an excellent agreement with the
computer simulation. For example, the Choudhury-Ghosh
approximation near a hard wall is in poor agreement with the
computer simulation even at the low densipyo>=0.678,
which is above but quite close to the critical densiyo>
=0.648, as can be seen from Fig. 1. However, at higher
densities, the slight discrepancy between the WDA-CNPR
approximation and computer simulation can be seen near the
second maximumz~o¢) and near the third maximumz (
~20), even if the excellent agreement shows at the hard
wall. In the WDA-CNPR approximation, the excellent agree-
ment near a hard wall comes perhaps from the property of
the CNPR approximation; i.e., the const@&hin Eq. (29) is
determined to satisfy the equation of state for the homoge-
neous square-well fluid. At higher densities, the poor agree-
ment with the computer simulation can be seen in the
Choudhury-Ghosh approximation. We can think that at
higher densities these discrepancies perhaps come (ifom
the calculation ofc{?)(|r—s|,p) by both the MSA approxi-
mation for the square-well fluid and the Percus-Yevick ap-
proximation for the hard-sphere fluid, afid) the CNPR ap-

1.5
p,0%=0.741
1.0
"o
=
Q
0.5
0.0 L .
0 1 2 3
z/a

FIG. 2. As in Fig. 1, but fol.=10.55% and po®=0.741.
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3 1.6
Be=1.5
1.2+
£,0°=0.798

o) S
« Kt

0 | 1 0.0 ] 1 1 1 L

0 1 2 3 0.0 0.5 1.0 1.5 2.0 2.5 3.0
z/0 z/o
FIG. 3. As in Fig. 1, but folL.=10.18 andpc®=0.798. FIG. 5. Density profiles of the square-well fluids near a square-

well wall with the fluid-wall interactionBe,=1.5 and atpo®
the Choudhury-Ghosh approximation, and gives good results 0.648. The solid and dotted lines are from the WDA-CNPR and
for the hard walls near or above the critical density. the Choudhury-Ghosh approximations, respectively. The open
In Figs. 5, 6, and 7, the density profiles in the wall-liquid circles are from the computer simulatin,8].
interfacial region of our square-well wall system have been
represented, in which the fluid-wall potential is given as ~ creases relatively with the increase of fluid-wall interaction
because of the attractive fluid-wall interaction near a square-

BUe(2)= — Bey, 0<z<0l2 well wall. For the weak fluid-wall interaction |Se
=—1.5), the WDA-CNPR approximation shows an excel-
=0, z>0/2, (36)  lent agreement with the computer simulat{@), whereas in

the Choudhury-Ghosh approximation the poor agreement
and e, represents the well depth of the fluid-wall potential. can be seen near the square-well wall. For the strong fluid-
In this case, the density(z) o is defined in the range of 0 wall interaction(— Be,,= — 1.0, which is the position of dry-
<z<x. The separation of =160 is taken to calculate the ing transition, the agreement between the WDA-CNPR ap-
density profiles of square-well fluid; fdr=160, the exact proximation and computer simulation is less satisfactory near
relation[4,15], BP,,= p,, is satisfied, so that a separation of a square-well wall (&<z<o/2). However, the overall pic-
160 can be considered as an infinite separation, wpgres  ture shows that the WDA-MWDA approximation, on the av-
the liquid wall density at a hard wall. As can be seen fromerage, compares well with results from the computer simu-
Figs. 5, 6, and 7, the density near a square-well wall delation. The calculated results also show that the WDA-CNPR

4 1.6

3 * 1.2 Be=1.25
: £,0°=0.819

3
3

p(z)a
plz)o

0 L | 0.0 L L L L L

z/o z/a

FIG. 4. As in Fig. 1, but fol.=10.060 and po®=0.819. FIG. 6. As in Fig. 5, but forBe,=1.25 andpo®=0.639.
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3

p(z)o

z/c

FIG. 7. As in Fig. 5, but forBe,,= 1.0 andpo®=0.651.

2895

functional theory, the bulk equation of state for the square-
well fluid has been obtained by fitting the simulation iso-
therms possessing a relatively modest amount of molecular
simulation data. The present approximation needs only the
two-particle DCF for the square-well fluids as input, thus we
believe that the present approximation is computationally
easier than the WDA density-functional theory if the two-
particle DCF's for the model systems are known.

In summary, we proposed the WDA-CNPR approxima-
tion, which can be considered as an extended Choudhury-
Ghosh approximation, to study the structural properties of
square-well fluid confined in planar slits. The calculated re-
sults show that the WDA-CNPR approximation shows good
agreement with the computer simulation, even if the agree-
ment is less satisfactory for the strong fluid-wall interaction.
On the other hand, we can basically apply the WDA-CNPR
approximation to study the structural properties of simple
fluids with the attractive part of potential such as the
Lennard-Jones system. As a comment, it is known that
weighted-density approximations based on the local densities
fail to describe the structural properties of the sticky hard-
sphere fluid 22] with the extreme pair potential, whereas the

approximation is a significant improvement upon those ofCNPR approximation shows an excellent agreement with the
the Choudhury-Ghosh approximation. Even if we did notcomputer simulatiofi23—25. Thus it is also very interesting
show the results of van Swol and Hender§8hin Figs. 5-7  to apply the WDA-CNPR approximation to study the struc-
for clarity, the comparison shows that the WDA-CNPR ap-tural properties of sticky hard-sphere fluid: We will leave
proximation is comparable with those of van Swol andthese problems to a future study.

Hendersorn8], who proposed a weighted-density approxima-
tion (WDA) density-functional theory based on the direct
input of the desired bulk equation of state, because, for the
structural properties of the confined square-well fluid, the We wish to thank Dr. N. Choudhury for giving us his
usual perturbation theories such as the MFDFT and DFPTesults for the sticky hard-sphere fluids, prior to publication.
approximations possess a qualitative flaw, to varying degreebhis paper was supported by the Non Directed Research
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