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Thermodynamic perturbative approach for simple fluids:
Structure of a confined square-well fluid
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An approximation, which is based on both the weighted-density approximation~WDA! of Tarazona@Phys.
Rev. A31, 2672~1985!# for the repulsive part of the model potential, and the density-functional approximation
~CNPR! of Callejaet al. @Mol. Phys.59, 973 ~1991!# for the attractive part of the model potential, has been
proposed to study the structural properties of simple fluids and is abbreviated as WDA-CNPR. The WDA-
CNPR approximation can be considered as an extended Choudhury-Ghosh approximation, which is based on
the density-functional expansion of a one-particle direct correlation function corresponding to the attractive
part of the model potential. It has been applied to predict the density profiles of a confined square-well fluid,
and compared with the computer simulation. The calculated results show that for the square-well fluid confined
in planar slits the WDA-CNPR approximation is a significant improvement upon those of the Choudhury-
Ghosh approximation, and compares well with the computer simulation. For the weak fluid-wall interaction a
very good agreement between the results of theory and computer simulation are obtained, but the agreement
deteriorates with the increase of the fluid-wall interaction.@S1063-651X~97!11208-9#

PACS number~s!: 61.20.Gy, 61.20.Ne
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I. INTRODUCTION

Over the last decade, numerical studies have already
dressed problems involving the model fluids confined in s
cial symmetrical systems@1–3#. Many theoretical methods
have been proposed to describe the structural propertie
confined model fluids such as the hard-sphere and Lenn
Jones fluids. For the study of the structural properties
hard-sphere fluid; two kinds of approximate theories, wh
are the integral equations based on the liquid theories and
weighted-density approximations based on either the loca
hybrid weighted densities, are well known. It is known th
for the confined hard-sphere fluid the weighted-density
proximations based on the local density describe their st
tural properties very well compared with well-known int
gral equations such as the Percus-Yevick and hyperne
chain functional approximations. However, at lower te
perature these kinds of weighted-density approximations
to describe the structural properties of the real systems
attractive potentials such as the square-well and Lenn
Jones fluids.

The crux of the problem lies in the fact that the exact fo
of the free-energy functionalF@r# or grand-canonical poten
tial V@r# is still unknown. To find a reliable approximation t
F@r# ~or, V@r#! is now a major activity in density-functiona
approximations. For a model system with the attractive p
of the potential, the most successful class of approxim
theories both from the point of view of numerical accura
and of intuitive appeal are perturbation approximations ba
on the liquid theory. Among many different perturbativ
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theories, there are well-known perturbation theories such
the mean-field density-functional theory~MFDFT! and
density-functional perturbation theory~DFPT! @4#. These ap-
proximations are quite successful for the prediction of
structural properties of confined Lennard-Jones fluid@5,6#. It
is known that, for the structural properties of a confin
square-well fluid, these approximations yield the oscillato
structure on the bulk liquid side of liquid-vapor interfaci
profiles, i.e., the simplified choice made for the attract
contribution of square-well fluid yields an unwanted appro
mate bulk equation of state@7–9#. Song and Kim@9# recently
applied the density-functional approximation of Choudhu
and Ghosh@10#, which is based on the density-function
expansion of a one-particle direct correlation function cor
sponding to the attractive part of the square-well potential
study the structural properties of a confined square-w
fluid. They showed that the Choudhury-Ghosh approxim
tion describes well on the average the structural propertie
confined square-well fluids compared with the availa
computer simulation. However, the agreement with the co
puter simulation is less satisfactory for higher densities a
for the strong fluid-wall interaction. Thus it seems to be
terest to extend the Choudhury-Ghosh approximation
study the structural properties of confined square-well fl
and other simple fluids. On the other hand, the structu
properties of confined square-well fluid have not been st
ied much compared with those of confined Lennard-Jo
fluid @11#.

In this paper, we will propose a density-functional a
proximation ~the WDA-CNPR approximation! which is
based on both the weighted-density approximation~WDA!
of Tarazona@12,13# for the repulsive part of the model po
tential and the density-functional approximation~CNPR! of
Callejaet al. @11# for the attractive part of model potential, t
2889 © 1997 The American Physical Society
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2890 56SOON-CHUL KIM AND SOONG-HYUCK SUH
study the structural properties of simple fluids. We drive
density profile equation for the WDA-CNPR approximatio
We show that in the second-order approximation in the d
sity the WDA-CNPR approximation leads to the Choudhu
Ghosh approximation. In Sec. III, we apply the WDA-CNP
approximation to calculate the density profiles of the squa
well fluid confined in planer walls, and compare the resu
of WDA-CNPR approximation with those of other approx
mations. Finally, we briefly discuss the strengths and we
nesses of the proposed WDA-CNPR approximation in
actual applications.

II. WDA-CNPR APPROXIMATION

In the density-functional theory, the grand-canonical p
tential V@r# and intrinsic~Helmholtz! free-energy functiona
F@r#, both unique functionals of the one-particle dens
r~r !, are related as

V@r#5F@r#1E dr r~r !@uext~r !2m#, ~1!

wherem is the chemical potential of the system anduext(r )
an external potential. The Helmholtz free-energy functio
F@r# can be generally written as the ideal contributi
F id@r# plus the excess free-energy functionalFex@r# origi-
nating from the particle interaction

F@r#5F id@r#1Fex@r#, ~2!

where the ideal part is known exactly,

bF id@r#5E dr r~r !$ ln@L3r~r !#21%, ~3!

where b51/kBT is the inverse temperature andL
5h(2pmkBT)21/2 the thermal de Broglie wavelength.

Since little is known about the exact form ofFex@r# for
the model system with the attractive part of the potential,
need to approximate the excess free-energy functional.
this, we introduce the perturbative theory which is w
known in the liquid theory. Following the perturbativ
theory, the pair interaction potentialu(r ) of a model system
can be divided by the reference parturep(r ) corresponding to
the repulsive part of the model potential plus the attract
part uatt(r ) corresponding to the attractive part of the mod
potential:

u~r !5urep~r !1uatt~r !. ~4!

In this case, the excess free-energy functionalFex@r# for the
model system can be approximated as the repulsive co
bution F rep@r# corresponding to the repulsive part of th
model potential plus the attractive contributionFatt@r# origi-
nating from the attractive part of the model potential,

Fex@r#5F rep@r#1Fatt@r#. ~5!

Since the exact forms ofF rep@r# andFatt@r# are still un-
known, some kinds of approximations forF rep@r# and
Fatt@r# must inevitably be introduced. It is well known tha
weighted-density approximations based on either the lo
density or the globally averaged density describe well
e
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structural properties of hard-sphere fluids@2,3#. Thus, as an
approximation for the repulsive contributionF rep@r#, we
adopt the WDA of Tarazona@12,13#, which is known to give
excellent results for the hard-sphere system. In the WDA
Tarazona,F rep@r# is assumed to be

F rep@r#5E dr r~r ! f rep@ r̄ rep~r !#, ~6!

with the weighted densityr̄ rep(r ),

r̄ rep~r !5
2r̄0~r !

@12 r̄1~r !#2$@12 r̄1~r !#224r̄0~r !r̄2~r !%1/2,

~7!

where

r̄ i~r !5E ds r~s!v i~ ur2su! for i 50, 1, and 2, ~8!

and f rep(r) is the excess free energy per particle correspo
ing to the repulsive part of the model potential, a
v i(ur2su) is the weighting function and only a function o
the coordinate. Since the excess free energyf rep(r) per par-
ticle is also difficult to obtain exactly, approximations ha
to be made. In the actual calculation, the excess free en
corresponding to the hard-sphere contribution is taken by
quasiexact Carnahan-Starling equation of state. The wei
ing function v i(ur2su) is given by requiring close agree
ment, over a range of densities, of the two-particle dir
correlation function~DCF! that predicted by the Percus
Yevick approximation for the homogeneous hard-sph
fluid @12#:

v0~r !5
3

4ps3 u~ ur u2s!, ~9!

v1~r !50.47520.648S ur u
s D10.113S ur u

s D 2

, ur u,s

50.288S s

ur u D20.92410.764S ur u
s D20.187S ur u

s D 2

,

s,ur u,2s

50, ur u.2s ~10!

v2~r !5
5ps3

144 F6212S ur u
s D15S ur u

s D 2Gu~ ur u2s!, ~11!

wheres is the diameter of the hard sphere, andu(r ) is the
Heaviside step function and is equal to 1 ifr .s and 0
otherwise. Then the weighting functionv i(ur2su) satisfies
the following normalization condition:

E dsv i~ ur2su!51 for i 50
~12!

51 for i 51 and 2.

Let us consider an approximation for the attractive con
bution Fatt@r# corresponding to the attractive part of th
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56 2891THERMODYNAMIC PERTURBATIVE APPROACH FOR . . .
model potential. As an approximation ofFatt@r#, here we
employ the density-functional approximation proposed
Calleja et al. @11# ~hereafter, we will call it the CNPR ap
proximation! to predict the structural properties of the co
fined hard-sphere and Lennard-Jones fluids. Following
CNPR approximation@11#, the excess free-energy function
corresponding to the attractive part of model potential can
written as

bFatt@r#52E drE ds K~ ur2su!r~r !r~s!

2BE drE dsE dt L~r ,s,t!r~r !r~s!r~ t!,

~13!

whereK(ur2su) andL(r ,s,t) are kernels symmetric in thei
arguments, andB is an unknown constant. The kerne
K(ur2su) and L(r ,s,t) are related to the two-particle DC
catt

(2)(ur2su,r) and three-particle DCFcatt
(3)(r ,s,t,r) corre-

sponding to the attractive part of the model potential, resp
tively. Notice here thatcatt

(3)(r ,s,t,r) is the three-particle
DCF for the homogeneous fluid@see Eqs.~14! and ~15!#.
With B50, that is, in the absence of the term of third ord
in the density, it can be shown that Eqs.~6! and~13! lead to
the Choudhury-Ghosh approximation, which was propo
by Choudhury and Ghosh@10# to study the structural prop
erties of colloidal suspension and sticky hard-sphere flu
Thus the CNPR approximation combined with the WDA
Tarazona can be considered as an extended Choudh
Ghosh approximation. However, the three-particle D
catt

(3)(r ,s,t,r) is not known, so we need an approximation f
the kernel L(r ,s,t). In fact, it appeared that the kern
L(r ,s,t) is not very sensitive when the separation of any t
of the coordinates,ur2su, is greater than a molecular diam
eter s @14–16#. Thus we have chosen a practically simp
form of the kernel as

L~r ,s,t!5E du a~ ur2uu!a~ us2uu!a~ ut2uu!, ~14!

with

a~ ur u!5
6

ps3 uS s

2
2ur u D , ~15!

whereu(x) is the Heaviside step function and is equal to 1
r .s/2, and 0 otherwise. The constantB appeared in
Fatt@r#, which depends on the properties of the homo
neous bulk fluid, and is determined by the equation of s
of the system.

Then the grand-canonical potential is given, from E
~1!, ~3!, ~6!, and~13!, as
y

e

e

c-

r
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bV@r#5E dr r~r !$ ln@L3r~r !#21%1E dr r~r !@buext~r !

2bm#1E dr r~r !b f rep@ r̄ rep~r !#

2E drE ds K~ ur2su!r~r !r~s!

2BE drE dsE dt L~r ,s,t!r~r !r~s!r~ t!. ~16!

The equilibrium particle density distribution of the inhom
geneous fluid corresponds to the minimum of the gra
canonical potential satisfyingdV@r#/dr(r )50, which leads
to the Euler-Lagrange equation, from Eq.~1!,

bm2buext~r !5b
dF@r#

dr~r !
. ~17!

From Eq.~16!, one obtains the equilibrium particle densi
distributionr(r ) given by

lnFr~r !

r1
G52buext~r !2b f rep@ r̄ rep~r !#

2E ds r~s!b f rep8 @ r̄ rep~s!#
dr̄ rep~s!

dr~r !

12E ds K~ ur2su!r~s!

13BE dsE dt L~r ,s,t!r~s!r~ t!, ~18!

with

dr̄ rep~s!

dr~r !

5
v0~ ur2su!1v1~ ur2su!r̄ rep~s!1v2~ ur2su!r̄ rep~s!2

12 r̄1~s!22r̄2~s!r̄ rep~s!
,

~19!

where r15L23exp(bm). If the inhomogeneous fluid is in
contact with the homogeneous bulk fluid, its chemical pot
tial bm is equal to that of the homogeneous bulk fluid. Th
Eq. ~18! becomes

lnFrb

r1
G52b f rep~rb!2rbb f rep8 ~rb!12rbE ds K~ ur2su!

13Brb
2E dsE dt L~r ,s,t!, ~20!

where rb is the homogeneous bulk density of the syste
Combining Eqs.~18! and ~20! and eliminating the chemica
potential bm ~or, r1!, one obtains the equilibrium particl
density distribution~or, density profile equation! given by
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2892 56SOON-CHUL KIM AND SOONG-HYUCK SUH
lnFr~r !

rb
G52buext~r !1b f rep8 ~rb!1rbb f rep8 ~rb!

2b f rep@ r̄ rep~r !#

2E ds r~s!b f rep8 @ r̄ rep~s!#
dr̄ rep~s!

dr~r !

12E ds K~ ur2su!@r~s!2rb#

13BE dsE dt L~r ,s,t!@r~s!r~ t!2rb
2#. ~21!

Since the two-particle DCFcatt
(2)(ur2su,rb) corresponding

to the attractive part of model potential is defined by

catt
~2!~ ur2su,rb!52 lim

r~r !→rb

d2bFatt@r#

dr~r !dr~s!
, ~22!

the two-particle DCFcatt
(2)(ur2su,rb) for the homogeneous

bulk fluid becomes, from Eq.~13!,

catt
~2!~ ur2su,rb!52K~ ur2su!16BrbE dt L~r ,s,t!.

~23!

The two-particle DCFc(2)(ur2su,rb) for the model system
is related to the two-particle DCFcrep

(2)(ur2su,rb), corre-
sponding to the repulsive part of the model potential

catt
~2!~ ur2su,rb!5c~2!~ ur2su,rb!2crep

~2!~ ur2su,rb!, ~24!

wherecrep
(2)(ur2su,rb) is defined as

crep
~2!~ ur2su,rb!52 lim

r~r !→rb

d2bF rep@r#

dr~r !dr~s!
. ~25!

Then, the density profile equation, Eq.~21!, becomes,
from Eqs.~14! and ~23!,

lnFr~r !

rb
G52buext~r !1b f rep8 ~rb!1rbb f rep8 ~rb!

2b f rep@ r̄ rep~r !#

2E ds r~s!b f rep8 @ ḡr rep~s!#
dr̄ rep~s!

dr~r !

1E ds catt
~2!~ ur2su,rb!@r~s!2rb#

13BE du a~ ur2uu!dr~u!2, ~26!

with

dr~s!5E dt a~ us2tu!@r~ t!2rb#. ~27!

Here, we can check that, withB50, Eq. ~26! leads to the
Choudhury-Ghosh approximation@10#. The strength param
eterB in Eq. ~26! is chosen to satisfy the equation of state
 r

the homogeneous bulk fluid. The pressureP of the homoge-
neous fluid obtained from the functional~16! is given by

bP52bV@r#/V

52rb ln@rb /r1#1rb2rb
2b f rep~rb!

1rb
2E ds K~ ur2su!1Brb

3E dsE dt L~r ,s,t!, ~28!

whereV is the volume of the system. From Eqs.~14!, ~23!
and ~28!, one obtains the equation of state as

bP5rb1rb
2b f rep8 ~rb!2

rb
2

2 E ds catt
~2!~ ur2su,rb!1Brb

3.

~29!

since*ds*dt L(r ,s,t)51. WhenB is chosen in this way, all
the functions and parameters of the fluid in this approxim
tion are determined by the properties of the homogene
fluid. Taken together, Eqs.~26! and~29!, constitute the den-
sity profile equation for the WDA-CNPR approximation
Equations~26! and ~29! provide an exact route to calculat
the density profiles of confined model fluids provided t
two-particle DCFcatt

(2)(ur2su,rb) is known; for the givenP
~or, the givenB!, Eq. ~26! has to be solved by the numeric
iteration.

III. RESULTS AND DISCUSSION

As a simple application of the WDA-CNPR approxim
tion, we consider the square-well system with the well de
e. In this case, the intermolecular potentialbu(r ) is given as

bu~r !5`, 0,r ,s

52be, s,r ,s1d

50, r .s1d . ~30!

whered is the well width of the attractive potential. Follow
ing the perturbative theory, we divide the square-well pot
tial by the repulsive part~the hard-sphere part! plus the at-
tractive part, respectively:

burep~r !5`, 0,r ,s

50 , r .s ~31!

and

buatt~r !50, 0,r ,s

52be, s,r ,s1d

50 , r .s1gd. ~32!

Then the excess free energyF rep@r# corresponding to the
repulsive part of the square-well potential is presented by
hard-sphere contribution, whereas the attractive partFatt@r#
is treated as the perturbative term. In the numerical calc
tion, the excess free energy corresponding to the hard-sp
contribution, f rep(r), is taken by the quasiexact Carnaha
Starling equation of state@17#
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56 2893THERMODYNAMIC PERTURBATIVE APPROACH FOR . . .
b f rep~r!5
h~423h!

~12h!2 , ~33!

where h5prs3/6 is the packing fraction. We have use
an analytic solution of the Percus-Yevick approximation
the hard-sphere fluid@18,19# as the two-particle DCF
crep

(2)(ur2su,r) corresponding to the repulsive part of th
square-well potential, since the Percus-Yevick results
comparable with the computer simulation up tors350.8.
For the two-particle DCFc(2)(ur2su,r) of the square-well
fluid, the mean spherical approximation~MSA! @4,20# for the
square-well fluid has been used, because~i! it is easy to solve
the MSA numerically compared with any other integr
equations@4#, and~ii ! the MSA yields quite good results u
to rs350.8. To determine the constantB that appeared in
Eq. ~29!, the bulk pressurebP for the square-well fluid ob-
tained from the computer simulation of Henderson and
Swol @7# was used as input. Through these calculations,
square-well potential~the well depthbe51.0! with the cut-
off at d50.5s was used to compare with the available co
puter simulation@7,8#.

Let us consider the square-well fluid confined in plan
slits consisting of the structureless hard walls. In this ca
the spacial dependence of quantities is onz only, not onx
and y, because of the symmetry of the problem:r(r )
5r(z), v i(z,r)52p*0

`dR v i(@R21z2#1/2,r), catt
(2)(z,r)

52p*0
`dR catt

(2)(@R21z2#1/2,r), and so on. The wall-fluid
interaction~the external potential! buext(z) is given as

buext~z!50, 0,z,L

5` otherwise, ~34!

wherer(z) is defined in the range of 0,z,L.
The density profilesr(z)s3 of the confined square-we

fluid ~d50.5s, be51.0! at four different densities~rs3

50.678, 0.741, 0798, and 0.819! are displayed in Figs. 1–4
with those of the Choudhury-Ghosh approximation and
computer simulation@7#. At lower densities, the WDA-
CNPR approximation is better than the Choudhury-Gh
approximation, and shows an excellent agreement with
computer simulation. For example, the Choudhury-Gh
approximation near a hard wall is in poor agreement with
computer simulation even at the low density~rbs350.678,
which is above but quite close to the critical densityrbs3

50.648!, as can be seen from Fig. 1. However, at high
densities, the slight discrepancy between the WDA-CN
approximation and computer simulation can be seen nea
second maximum (z;s) and near the third maximum (z
;2s), even if the excellent agreement shows at the h
wall. In the WDA-CNPR approximation, the excellent agre
ment near a hard wall comes perhaps from the propert
the CNPR approximation; i.e., the constantB in Eq. ~29! is
determined to satisfy the equation of state for the homo
neous square-well fluid. At higher densities, the poor agr
ment with the computer simulation can be seen in
Choudhury-Ghosh approximation. We can think that
higher densities these discrepancies perhaps come from~i!
the calculation ofcatt

(2)(ur2su,r) by both the MSA approxi-
mation for the square-well fluid and the Percus-Yevick a
proximation for the hard-sphere fluid, and~ii ! the CNPR ap-
r
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proximation corresponding to the attractive part of squa
well system, because of the weak dependence on the l
densityr(r ) of the two-particle DCFcatt

(2)(r ,s;@r#) as

catt
~2!~r ,s;@r#!5catt

~2!~ ur2su,rb!

16BE dt L~r ,s,t!@r~ t!2rb#. ~35!

Thus, as the first trial to reduce the disagreement with
computer simulation, it is expected to use the modified
pernetted chain approximation@21#, which is better than the
MSA, to calculate the two-particle DCF of square-well flui
However, the overall picture shows that the WDA-CNP
approximation is a significant improvement upon those

FIG. 1. Density profiles of the confined square-well fluid~d
50.5s, be51.0! in the gap of widthL511.18s at rs350.678.
The solid and dotted lines are from the WDA-CNPR a
Choudhury-Ghosh approximations, respectively. The open cir
are from the computer simulation@7#.

FIG. 2. As in Fig. 1, but forL510.55s andrs350.741.
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2894 56SOON-CHUL KIM AND SOONG-HYUCK SUH
the Choudhury-Ghosh approximation, and gives good res
for the hard walls near or above the critical density.

In Figs. 5, 6, and 7, the density profiles in the wall-liqu
interfacial region of our square-well wall system have be
represented, in which the fluid-wall potential is given as

buext~z!52bew , 0,z,s/2

50, z.s/2, ~36!

andew represents the well depth of the fluid-wall potenti
In this case, the densityr(z)s3 is defined in the range of 0
,z,`. The separation ofL516s is taken to calculate the
density profiles of square-well fluid; forL516s, the exact
relation@4,15#, bPw5rw , is satisfied, so that a separation
16s can be considered as an infinite separation, whererw is
the liquid wall density at a hard wall. As can be seen fro
Figs. 5, 6, and 7, the density near a square-well wall

FIG. 3. As in Fig. 1, but forL510.18s andrs350.798.

FIG. 4. As in Fig. 1, but forL510.06s andrs350.819.
lts

n

.

-

creases relatively with the increase of fluid-wall interacti
because of the attractive fluid-wall interaction near a squa
well wall. For the weak fluid-wall interaction (2be
521.5), the WDA-CNPR approximation shows an exc
lent agreement with the computer simulation@8#, whereas in
the Choudhury-Ghosh approximation the poor agreem
can be seen near the square-well wall. For the strong fl
wall interaction~2bew521.0, which is the position of dry-
ing transition!, the agreement between the WDA-CNPR a
proximation and computer simulation is less satisfactory n
a square-well wall (0,z,s/2). However, the overall pic-
ture shows that the WDA-MWDA approximation, on the a
erage, compares well with results from the computer sim
lation. The calculated results also show that the WDA-CN

FIG. 5. Density profiles of the square-well fluids near a squa
well wall with the fluid-wall interactionbew51.5 and atrs3

50.648. The solid and dotted lines are from the WDA-CNPR a
the Choudhury-Ghosh approximations, respectively. The o
circles are from the computer simulation@7,8#.

FIG. 6. As in Fig. 5, but forbew51.25 andrs350.639.
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approximation is a significant improvement upon those
the Choudhury-Ghosh approximation. Even if we did n
show the results of van Swol and Henderson@8# in Figs. 5–7
for clarity, the comparison shows that the WDA-CNPR a
proximation is comparable with those of van Swol a
Henderson@8#, who proposed a weighted-density approxim
tion ~WDA! density-functional theory based on the dire
input of the desired bulk equation of state, because, for
structural properties of the confined square-well fluid,
usual perturbation theories such as the MFDFT and DF
approximations possess a qualitative flaw, to varying deg
of quantitative significance@8,9#. In the WDA density-

FIG. 7. As in Fig. 5, but forbew51.0 andrs350.651.
ol.
f
t

-

-
t
e

e
T
es

functional theory, the bulk equation of state for the squa
well fluid has been obtained by fitting the simulation is
therms possessing a relatively modest amount of molec
simulation data. The present approximation needs only
two-particle DCF for the square-well fluids as input, thus w
believe that the present approximation is computationa
easier than the WDA density-functional theory if the tw
particle DCF’s for the model systems are known.

In summary, we proposed the WDA-CNPR approxim
tion, which can be considered as an extended Choudh
Ghosh approximation, to study the structural properties
square-well fluid confined in planar slits. The calculated
sults show that the WDA-CNPR approximation shows go
agreement with the computer simulation, even if the agr
ment is less satisfactory for the strong fluid-wall interactio
On the other hand, we can basically apply the WDA-CNP
approximation to study the structural properties of sim
fluids with the attractive part of potential such as t
Lennard-Jones system. As a comment, it is known t
weighted-density approximations based on the local dens
fail to describe the structural properties of the sticky ha
sphere fluid@22# with the extreme pair potential, whereas th
CNPR approximation shows an excellent agreement with
computer simulation@23–25#. Thus it is also very interesting
to apply the WDA-CNPR approximation to study the stru
tural properties of sticky hard-sphere fluid: We will leav
these problems to a future study.
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