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Screw dynamo and the generation of nonaxisymmetric magnetic fields

Abhik Basu*
Department of Physics, Indian Institute of Science, Bangalore 560012, India

~Received 18 February 1997!

A mechanism is presented here for the amplification of large-scale nonaxisymmetric magnetic fields as a
manifestation of the dynamo effect. We generalize a result on restrictions of dynamo actions due to laminar
flow originally derived by Zeldovich, Ruzmaikin, and Sokolov@Magnetic Fields in Astrophysics~Gordon and
Breach, New York, 1983!#. We show how a screwlike motion havingf andz components of velocity can help
to grow a magnetic field. This model postulates a large-scale flow havingf and z components with radial
dependences~helical flow!. Shear in the radial field, because of a near-flux-freezing condition, causes ampli-
fication of thef component of the magnetic field. The radial and axial components grow due to the presence
of turbulent diffusion. The shear in the large-scale flow induces an indefinite growth of magnetic field without
the a effect; nevertheless, turbulent diffusion forms an important part in the overall mechanism.
@S1063-651X~97!04808-3#

PACS number~s!: 47.65.1a, 91.25.Cw
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I. INTRODUCTION

The maintenance of large-scale magnetic fields has l
been a problem, particularly in astrophysical situations.
literature this is known as ‘‘the Dynamo problem.’’ The e
fect has been ascribed traditionally to the action of a tur
lent dynamo; large-scale differential rotation in the disk a
ing on the poloidal field leads to the generation of t
toroidal field and thea effect due to small-scale cycloni
turbulence completes the cycle, converting the toroidal fl
to a poloidal flux~Parker@1# and Zeldovich, Ruzmaikin, and
Sokolov@2#!. As an alternative, Spencer and Cram@3# raised
the intriguing possibility that large-scale flows like galac
winds can act as efficient dynamos. On the basis of a lo
calculation ~where onlyz derivatives of various quantitie
are kept!, they speculated that magnetic fields can grow o
time scale associated with the shear in the wind. Howeve
is well known that any simple velocity field with the strea
lines confined to two-dimensional surfaces can at best ac
a slow dynamo, with the growth rate going to zero as
magnetic Reynolds number increases to infinity. In this w
we therefore reexamine the dynamo generation of magn
fields due to large-scale flows like galactic wind or accret
to form a galaxy, without making the local approximation

In Sec. II, we first begin by showing the general res
that any dynamo action based on laminar flows along tw
dimensional surfaces will be a slow dynamo. We then ma
ematically formulate a model dynamo problem where rad
fluid motion is neglected compared to the vertical and ro
tional motions, and the velocities are assumed to be inde
dent of the direction perpendicular to the azimuthal pla
This model has all the essential features of the realistic s
ation obtained in a typical astrophysical situation, e.g.,
wind dynamo, at the same time being analytically tractab
In our proposed mechanism, growth depends on axial
azimuthal flows that are steady and axisymmetric. It sho
also be noted that an axisymmetric magnetic field canno
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sustained by an axisymmetric velocity field. However, the
is no theoretical restriction on the sustainance of a non
symmetric magnetic field by an axisymmetric flow~Cowling
@4#!. Therefore, we look for nonaxisymmetric solutions
the induction equation in the magnetohydrodynamics kine
regime which have harmonic dependences forf andz com-
ponents. The resulting one-dimensional problem is then a
nable to a WKBJ solution. Indeed, the problem we are so
ing is the screw dynamo problem already studied in
literature ~see, e.g., Ponomerenko@5#; see also Gilbert@6#,
Ruzmaikin, Sokoloff, and Shukorov@7#, and Soward@8#!.
However our analytical treatment differs in some essen
details from existing works, like that of Ref.@7#.

II. DYNAMO GENERATION OF FIELDS
DUE TO LARGE SCALE MOTION

Since we are interested in producing a dynamo mec
nism which can operate even when thea effect is weak or
absent, we work with the classical induction equation

]B

]t
5“3~V3B!1h“

2B, ~2.1!

whereh is the effective diffusion coefficient~including the
effect of turbulent diffusion!. We cannot afford to neglec
turbulent diffusion as it is much stronger than ordinary d
fusion, and our model will crucially depend upon it. S
mathematically, the problem reduces to one in which one
to solve this equation with proper boundary conditions with
prescribed velocity field. Before doing this let us exami
the general restrictions on the nature of the dynamo mod
with laminar velocity fields. Some simple examples of su
restrictions are already described in Ref.@2#. We generalize
these restrictions further.

A. Restrictions on dynamo models with laminar flows

Let us consider a two-dimensional flow, in which the flu
is moving over a system of statianary surfac
c(r )5const. Following Ref.@2#, we decompose the tota
2869 © 1997 The American Physical Society
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2870 56ABHIK BASU
magnetic field into components perpendicular and paralle
the surface c5const. We have B'5(B•n̂)n̂, where
n̂5“c/u“cu is the normal to the surface.Bi can be further
split up into its solenoidal and irrotational parts:

Bi5“3~F8n̂!1“l ~2.2!

Hence

B5“3~F8n̂!1~B•n̂!n̂1“l

5“3F8
“c

u“cu
1B•“c

“c

u“cu2 1“l5“3@F“c#

1Bc

“c

u“cu
1“l, ~2.3!

where F5F8/u“cu and Bc5B•“c. Since “•B50, we
have “•@Bc(“c/u¹¢ cu)#52“

2l. We substitute this into
the induction equation. We write down the induction in t
following way:

]Bi

]t
5e i jk] j~V3B!k1h“

2B i . ~2.4!

We take the dot product of the above equation with“c to
obtain the following equation:

d

dtE 1
2 Bc

2d3r52hE @~“Bc!212Bc]kBi~] i]kc!

1BcBk] i~] i]kc!d3r #2E Bc
2dl nr

dt
d3r .

~2.5!

We use equation of continuity to write the last term. Th
Bc can be advected or compressed by the velocity field,
can only be coupled to the other components through di
sion. In other words, generation ofBc can only be due to the
diffusion of the other components of the field. The growth
this component will then be slow, on the diffusion tim
scale, and will be proportional to the inverse of the magne
Reynolds number.

Let us now consider the diffusion dependent terms
more detail. It is quite clear that, as discussed in Ref.@2#,
growth will depend on the nature of the surfacesc5const.
We also recognize that if the fluid is confined to move ov
a planer surface, then the magnetic field will inevitably d
cay as the integral will be negative definite. We turn now
the equation forF. Substituting the expression ofB into the
induction equation and taking the cross product withn̂, we
obtain an equation forF, remembering that the term
V•“c50, since there is no component of velocity perpe
dicular to the surface:

“c3“

dF

dt
52

]Bc

]t
2“

]l

]t
1S, ~2.6!
to

,
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-

f
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n
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-

-

where S contains terms withl and terms proportional to
h. From this equation, by inverting the operator“c3“

~which can be done in Fourier space! we can construct a time
evolution equation forF:

S ]

]t
1V•“ DF5L21F2

]Bc

]t
2“

]l

]t
1SG ~2.7!

or

dF

dt
5L21F2

]Bc

]t
2“

]l

]t
1SG , ~2.8!

whereL21 is the operator inverse of“c3“. Thus we see
that in the time evolution equation ofF, there is no shear
term, and the source is a function ofBc, which again grows
on the slow-time scale of diffusion; thus,F can grow only
on the time scale of diffusion. This is an extension of t
basic results as given in Ref.@2# ~see Chap. 7, pp. 84–86!.
Thus any flow which is confined to a surface can at best
as a slow dynamo with the growth of the magnetic fie
occurring on the diffusive time scale. This restriction was n
taken into account by Spencer and Cram, since they ma
local approximation and thereby obtained a fast dynamo~see
Ref. @3#! Sec. 2, Eq. 15; one should obtaing→0 on putting
eacht→`, i.e., equivalently setting diffusion coefficients t
zero, butg does not reduce to 0!. In our opinion, a similar
problem also exists in the work of Chiba and Lesch@9#, who
considered the dynamo generation of magnetic fields i
disk galaxy with motions confined to the plane of the dis

Having established that a laminar flow along surfaces
act at best as a slow dynamo, it will suffice to take a sim
form for the surfacec5const, along which the fluid flows
Such a simplification allows us to estimate the growth ra
analytically, and also to understand qualitatively t
magnetic-field generation in a more general situation.
will therefore consider below the case of an axisymme
flow along a cylinderc5r 5const, where we use a cylindri
cal coordinate system (r ,f,z), with the planez50 coincid-
ing with the midplane.

B. Mathematical formulation of the problem

We consider the situation where the flow is along cyl
ders r 5const, and is axisymmetric. We then takeVr50,
Vf5rv(r ), andVz5V(r ). We also assume that there is n
z dependence onVz andv.

Since the given velocity field isf and z independent,
eachf andz mode will evolve separately, hence we look f
solutions of the formB5b(r )exp(imf1ikz1Gt); i.e., each
Fourier mode inf and z will evolve independently. Thus
m can be regarded as a measure of nonaxisymmetry. At
point, one should recall the fact that an axisymmetric vel
ity field cannot sustain an axisymmetric magnetic fie
~Cowling’s theorem! @4#. Thus we could not obtain any
growth for them50 mode in view of Cowling’s theorem
We see below that this holds explicitly for the growth rat
that we derive.

The above set of equations reduces to
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h

r

d

drS r
dbr

dr D2
hm2br

r 2 2hk2br2 ivmbr2 ikvbr2Gbr

2
hbr

r 2 5
2imhbf

r 2 , ~2.9!

h

r

d

drS r
dbf

dr D2
hm2bf

r 2 2hk2bf2
hbf

r 2 2Gbf2 ivmbf

2 ikvbf52
2ihmbr

r 2 2rbr

dv

dr
. ~2.10!

We do not use thez component of the induction equatio
directly; instead we use the divergence-free condition to fi
out Bz :

“•B5
1

r

]~rBr !

]r
1

1

r

]Bf

]f
1

]Bz

]z
50. ~2.11!

We see explicitly that our proposed dynamo model w
be a slow dynamo-growth rateG→0 ash→0, since diffu-
sion is the only source forr andz components.

We also notice that form50, i.e., for an axisymmetric
magnetic field, theBr equation is decoupled fromBf ; there
is no source term, and so no growth, and hence our equa
automatically satisfy Cowling’s theorem@4#. To solve these
equations we resort to the WKBJ approximation metho
We follow Mestel and Subramanian@10# ~hereafter MS! in
solving these equations.

For the sake of convenience, we scale the above equa
to give them dimensionless forms in the following way: w
scaleG→(r o

2/h)G andv→(r o /h)v, wherer o is any suitable
length scale. Hence Eqs.~2.9! and ~2.10! reduce to

1

r

d

drS r
dbr

dr D2
m2br

r 2 2k2br2 ivmbr2 ikvbr2Gbr2
br

r 2

5
2imbf

r 2 , ~2.12!

1

r

d

drS r
dbf

dr D2
m2bf

r 2 2k2bf2
bf

r 2 2Gbf2 ivmbf2 ikvbf

52
2imbr

r 2 2rbr

dv

dr
. ~2.13!

C. WKBJ solutions for growth rates

It is convenient to use a new radial coordinatex defined
by r 5ex ~as in the WKBJ method, one looks for an exp
nentially decaying solution with the independent varia
→6` ~see, e.g., Heading@11# or MS!. With this, Eqs.~2.12!
and ~2.13! reduce to

d2br

dx2 2~m211!br2bre
2x~k21 ivm1 ikv1G!52imbf ,

~2.14!

d2bf

dx2 2~m211!bf2bfe2x~k21 ivm1 ikv1G!
d

l

ns

s.

ns

522imbr2bre
2x

dv

dx
. ~2.15!

We rewrite the above equations as

d2Q

dx2 1aQ1bP50, ~2.16!

d2P

dx2 1cQ1dP50, ~2.17!

where

Q5br , ~2.18!

P5bf , ~2.19!

a52~m211!2e2x~k21 ivm1 ikv1G!, ~2.20!

b522im, ~2.21!

c52im1e2x
dv

dx
, ~2.22!

d52~m211!2e2x~k21 ivm1 ikv1G!. ~2.23!

The coefficientsa, b, c, andd are assumed to vary withx
over a typical scaleL@1 ~i.e., the original physical variable
vary over a scale larger than the length scaler o). Solutions
are sought of the forms

P5exp@ ic~x!#@Ao~x!1A1~x!/L1•••#, ~2.24!

Q5exp@ ic~x!#@Bo~x!1B1~x!/L1•••#, ~2.25!

where L is the length scale over which coeffecientsa, b,
c, and d are assumed to vary,c8;Ø(Lo), c9;Ø(L21),
etc.,Ao8;Ø(L21), Ao9;Ø(L22), etc.

Following MS,

~c6!25p65@a1d6A~a1d!224~ad2bc!#/2
~2.26!

or

~c68 !25p652~m211!2e2x~k21 ivm1 ikv1G!

6F22imS 2im1e2xUdv

dxU D G
1/2

, ~2.27!

wherec68 56@(c8)2#1/2. We want to draw the attention o
the reader to the fact that Eq.~2.27! is equivalent to~but not
quite the same as! Eq. ~10! of Ref. @7#. We present a shor
discussion about this below@see following Eq.~2.32! of this
paper#.

The general solution of Eqs.~2.24! and~2.25! ~as long as
the WKBJ treatment is valid! can be written as
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P5A1FK1expS i E
xo

x

p1
1/2dxD 1K2expS 2 i E

xo

x

p1
1/2dxD G

1A2FK3expS i E
xo

x

p2
1/2dxD 1K4expS 2 i E

xo

x

p2
1/2dxD G ,

~2.28!

Q5B1FK1expS i E
xo

x

p1
1/2dxD 1K2expS 2 i E

xo

x

p1
1/2dxD G

1B2FK3expS i E
xo

x

p2
1/2dxD 1K4expS 2 i E

xo

x

p2
1/2dxD G .

~2.29!

The general ways of analyzing WKBJ solutions who
singular points are in the complex plane was nicely descri
by Heading@11#. Recall that our solution has to die out
x→6`.

Now since there will be complex zeros fromp650, we
have to choose those nearest to thex axis, so that the solution
obeys boundary conditions. Sincep6 goes to zero not in the
real axis, but in the complex plane,p1 andp2 will generally
not be zero at the same points. Now our general solution m
consist of~i! only p1 , ~ii ! only p2 , or ~iii ! a linear combi-
nation of both. Now, sincep1 and p2 do not go to zero
simultaneously, and our solution has to die out atx→6`, if
we have a linear combination ofp1 and p2 , both of them
will not die out at x→6`, and hence the third option i
ruled out. This forces us to set eitherK3 andK4 or K1 and
K2 to be zero, i.e., a general solution cannot be a comb
tion of p1 and p2 solutions. We immediately realize tha
P and ~also Q) obeys a one-dimensional Schro¨dinger-like
equation of the form

d2P

dx2 1p6~x!P50. ~2.30!

The WKBJ solution of this is

P5
A

p6
1/4expS i Ex

p6
1/2dxD1

B

p6
1/4expS 2 i Ex

p6
1/2dxD ,

~2.31!

whereA andB are constants.
The eigencondition is given by

E
x1

x2
p6

1/2dx5~2n11!p/2, ~2.32!

wheren is an integer, andx1 andx2 are the zeros ofp6 . We
pause here for a while and compare our results with tha
Ref. @7#. We draw the attention of the readers to the fact t
Ruzmaikin, Sokoloff, and Shukorov made their asympto
expansions in terms of the conventional radial coordinatr ,
and solved the radial equation directly using the WKBJ
proximation, whereas we worked with equations written
terms of the modified radial variablex. The discrepancies in
the final results appear because of that. We, however,
that the former approach is not quite appropriate. In t
context we refer to the book by Heading@11# ~pp. 127–131!,
d

ay

a-

of
t

c

-

el
s

and references therein, and also to MS and Jeffreys@12# ~pp.
245–247!. Even Gutzwiller@13# briefly refers to the problem
in direct application of the WKBJ method to the radial equ
tion in the hydrogen atom problem in quantum mechan
~see p. 212 of Ref.@13#! and as a remedy refers to Lang
@14#. In fact, the transformationr 5exp(x) was not only a
convenient one but was also a necessity. We also see th
we work out everything withv5vo /(A11r 2) ~this type of
profile qualitatively resembles galactic rotation curve!, then,
the prescription of Ref.@7#, one finds that there is no extrem
of the function (1/r )(dv/dr) at any finite r . Thus the
method of Ref.@7# does not seem to be the right one for th
kind of situation.

We notice that the only growth term is the shear term
the f equation; ther component grows due to the diffusio
of the f component. Since growth will be controlled b
shear~the r udv/dru term!, the growing modes will naturally
be concentrated around the maximum of shear. Thus in
region, we can neglect the diffusion term~the m2i /r 2 term!
compared to the shear term.

Thus we obtain

p6

r 2 52@k21G#2
m211

r 2 6
12 i

r
A2mF rUdv

dr UG
1/2

2 i ~vm1kv !.

We expand@r (dv/dr)#1/2 about the pointr m where it is
maximum, and retain up to the first nonvanishing order. Th
we obtain~in terms of ther coordinate!

p6

r 2 5A~r 2r m!21B~r 2r m!1C, ~2.33!

where

A52
i

2

d2

drm
2 ~vm1kv !6

12 i

r m
A2m

d2

drm
2F r mU dv

drm
UG1/2

,

B52 i
d

drm
~mv1kv !,

C52@k21G#2
m211

r m
2 2 i ~mv1kv !r m

6
12 i

r m
A2mF r mU dv

drm
UG1/2

.

Now we recognize that this being a quadratic in comp
r , it will have two roots~in general complex!, unlike the case
in the complexx coordinate@the reason is quite obvious
r 5exp(x)5exp(x12pni)#. So we need not worry abou
choosing the correct zeros. We also see that asr→`,
Im(*zo

z Ap6)→0; thus the anti-Stokes line approaches thex

axis asr→0, obeying the boundary condition.
Thus the eigenvalueG is given by

c2
B2

4A

AA
5n1 1

2 . ~2.34!
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We notice thatB2,0. It is obvious thatGp1
is always

greater thanGp2
. We also notice that when (mv1kv)50

identically @case~i!; see below#, the growth rate forp2 is
negative, which signifies decay. So we work withp1 hence-
forth. We can have two situations:~i! when mv1kv50;
whenv andvz show exactly the same dependence onr , i.e.,
when the pitch of a helical streamline does not depend on
radius, certainm andk always exist such that
n
ax

a
.,
ee
e
s
d
tin
te
m
se

y

e

m

k
52

v~r !

v~r !
5const,

and hence the advection term vanishes identically.~ii ! When
mv1kv Þ0—this the general case.

In the second case, the growth rate reduces to
G52hk22h
m211

r m
2 1h

12 i

r m
A2mF r mU dv

drm
UG1/2

2 i ~mv1kv !ur m

1

F d

drm
~mv1kv !G2

2S 2 i
d2

drm
2 ~mv1kv !12

12 i

r m
AhAm

d2

drm
2 F r mU dv

drm
U1/2G D 2~n1 1

2 !~x21y2!1/4S cos
u

2
1 isin

u

2D , ~2.35!
n-
ow
-
has
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x5
Ah

2
Am

r m

d2

drm
2F r mU dv

drm
UG1/2

,

y52
Ah

2

d2

drm
2 ~mv1kv !2

Ah

2
A2m

r m

d2

drm
2F r mU dv

drm
UG1/2

,

and

u5tan21
y

x
.

We see from this expression thatG is negative~i.e. decays!
whenm50, directly manifesting Cowling’s theorem, i.e., a
axisymmetric magnetic field cannot be sustained by an
symmetric velocity field. Also,G decreases as2m2 and
grows asAm; so even though low-m modes will be growing,
asymptotically G will decrease with increasingm and
n—which is also expected from energy consideration;
with increasingm andn, the mode becomes more kinky, i.e
higher currents are associated with the loops, and so n
higher energy to grow. So there will be few growing mod
with low-m values, and all higher modes will decay. Plea
note that our model is essentially a simplified model, a mo
concerned with the underlying basic principles, represen
the real life situations somewhat qualitatively. As a next s
one may try to work out the same for a conical flow geo
etry, even though our basic results will be valid for that ca
We also see from the expression ofG that, in the limith→0,
G→0, which shows that our dynamo model is a slow d
namo as expected on theoretical grounds.
i-

s

ds
s
e
el
g
p
-
.

-

III. SUMMARY

In this work we have shown that any velocity field co
fined to move over a stationary surface will lead to a sl
dynamo only; that growth will be on the time scale of diffu
sion. The component normal to the stationary surfaces
diffusion of the other components only as it source. We m
tioned the fact that an axisymmetric magnetic field cannot
sustained by an axisymmetric velocity field—which
known as ‘‘Cowling’s theorem’’ in the literature. Keepin
this constraint in mind, we demonstrated how an axisymm
ric cylindrical velocity flow can act as a slow dynamo
produce a nonaxisymmetric magnetic field. We explici
demonstrated that the growth rateG→ 0 as diffusion coeffi-
cient h and azimuthal mode numberm→ 0, thus directly
proving that it is a slow dynamo, and directly satisfyin
Cowling’s theorem. We have also given a physical reas
that generation will be confined to the region where shea
dominant. In these context, we compare our procedure w
that of Ref.@7#.

Our simple model of dynamo generation of a magne
field may be applied in some realistic astrophysical syste
In the case of galactic wind, taking over from the disk in t
form of a helical motion, our model may be applied to e
plain the growth of magnetic field. At this stage one shou
probably try to justify the existence of turbulent diffusion
the absence of ona effect ~molecular diffusion will be too
weak to cause any significant growth of the magnetic fie!.
Recently, it has been theorized that thea effect is suppressed
long before large-scale magnetic-field strength could re
the presentmG level ~Kulsrud and Anderson@15#!. Now the
relevant question for our case is whether turbulent diffus
is also suppressed along with thea effect. In this context we
refer to the results of recent works of Gruzinov and Diamo
@16# ~see also Vainshteinet al. @17#, and Jones and Gallowa
@18#!, where it was shown that thea effect may be su-
pressed, but not turbulent diffusion. This supports our
sumptions.
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