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Screw dynamo and the generation of nonaxisymmetric magnetic fields
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A mechanism is presented here for the amplification of large-scale nonaxisymmetric magnetic fields as a
manifestation of the dynamo effect. We generalize a result on restrictions of dynamo actions due to laminar
flow originally derived by Zeldovich, Ruzmaikin, and SokoldMagnetic Fields in Astrophysid&ordon and
Breach, New York, 1983. We show how a screwlike motion haviggandz components of velocity can help
to grow a magnetic field. This model postulates a large-scale flow ha¥iagd z components with radial
dependencethelical flow). Shear in the radial field, because of a near-flux-freezing condition, causes ampli-
fication of the¢p component of the magnetic field. The radial and axial components grow due to the presence
of turbulent diffusion. The shear in the large-scale flow induces an indefinite growth of magnetic field without
the a effect; nevertheless, turbulent diffusion forms an important part in the overall mechanism.
[S1063-651%97)04808-3

PACS numbd(s): 47.65+a, 91.25.Cw

[. INTRODUCTION sustained by an axisymmetric velocity field. However, there
is no theoretical restriction on the sustainance of a nonaxi-
The maintenance of large-scale magnetic fields has longymmetric magnetic field by an axisymmetric flg@owling
been a problem, particularly in astrophysical situations. In4]). Therefore, we look for nonaxisymmetric solutions to
literature this is known as “the Dynamo problem.” The ef- the induction equation in the magnetohydrodynamics kinetic
fect has been ascribed traditionally to the action of a turbutegime which have harmonic dependences#andz com-
lent dynamo; large-scale differential rotation in the disk act-ponents. The resulting one-dimensional problem is then ame-
ing on the poloidal field leads to the generation of thenable to a WKBJ solution. Indeed, the problem we are solv-
toroidal field and thea effect due to small-scale cyclonic ing is the screw dynamo problem already studied in the
turbulence completes the cycle, converting the toroidal fluditerature (see, e.g., Ponomerenkb]; see also Gilberf6],
to a poloidal flux(Parker{1] and Zeldovich, Ruzmaikin, and Ruzmaikin, Sokoloff, and Shukorop], and Soward8]).
Sokolov[2]). As an alternative, Spencer and CrgBhraised However our analytical treatment differs in some essential
the intriguing possibility that large-scale flows like galactic details from existing works, like that of R€f7].
winds can act as efficient dynamos. On the basis of a local
calculation (where onlyz derivatives of various quantities Il. DYNAMO GENERATION OF FIELDS
are kept, they speculated that magnetic fields can grow on a DUE TO LARGE SCALE MOTION
time scale associated with the shear in the wind. However, it
is well known that any simple velocity field with the stream
lines confined to two-dimensional surfaces can at best act
a slow dynamo, with the growth rate going to zero as the?
magnetic Reynolds number increases to infinity. In this work B
we therefore reexamine the dynamo generation of magnetic —=VX(VXB)+ V2B, (2.1
fields due to large-scale flows like galactic wind or accretion Jt
to form a galaxy, without making the local approximation.
In Sec. Il, we first begin by showing the general result
that any dynamo action based on laminar flows along two
dimensional surfaces will be a slow dynamo. We then math
ematically formulate a model dynamo problem where radial

I!md Imotlgn IS ne%kiﬁted Icorn{pared to the ve(;tltcaé and dmta'to solve this equation with proper boundary conditions with a
lonal motions, and the velociies are assumed o be In epe'5'rescribed velocity field. Before doing this let us examine
de_nt of the direction perpendpular to the a2|muth§1I .planethe general restrictions on the nature of the dynamo models
This model has all the essential features of the realistic SitUzith laminar velocity fields. Some simple examples of such '

at_ion obtained in a typical qstrophysical situ_ation, €.9., thEf'estrictions are already described in Re&X]. We generalize
wind dynamo, at the same time being analytically tractableH]ese restrictions further

In our proposed mechanism, growth depends on axial an
azimuthal flows that are steady and axisymmetric. It should
also be noted that an axisymmetric magnetic field cannot be

Since we are interested in producing a dynamo mecha-
d%')sm which can operate even when theeffect is weak or
sent, we work with the classical induction equation

where 7 is the effective diffusion coefficieniincluding the
effect of turbulent diffusion We cannot afford to neglect
turbulent diffusion as it is much stronger than ordinary dif-
Esion, and our model will crucially depend upon it. So,
athematically, the problem reduces to one in which one has

A. Restrictions on dynamo models with laminar flows

Let us consider a two-dimensional flow, in which the fluid
is moving over a system of statianary surfaces
*Electronic address: abhik@physics.iisc.ernet.in (r)=const. Following Ref[2], we decompose the total
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magnetic field into components perpendicular and parallel tavhere S contains terms withh and terms proportional to

the surface y=const. We haveB, =(B-n)n, where 7. From this equation, by inverting the operat@n/xV
ﬁ=V¢/|V¢//| is the normal to the surfac& can be further (which can be done in Fourier spasee can construct a time

split up into its solenoidal and irrotational parts: evolution equation forb:

Bj=Vx(d'n)+VA (2.2 ARV P V) S
RS el BTy @7
Hence
A o or
B=VX(®'n)+(B-n)n+Vx
, vy vy db | 4l By A

VX 4BV Y £ VA=V X [0V Y] i L 5 Y tS| 28
+ B¢E+V>\, 2.3 Wher_eL‘1 is the operator inverse o¥ /X V. Thus we see
|Vl that in the time evolution equation @b, there is no shear

term, and the source is a function Bf,, which again grows
where ®=®'/|Vy| and B,=B-V. SinceV-B=0, we on the slow-time scale of diffusion; thu& can grow only
have V-[B,(V ¢/|Vy{)]=—V?\. We substitute this into N the time scale of diffusion. This is an extension of the
the induction equation. We write down the induction in thePasic results as given in Re] (see Chap. 7, pp. 8486
following way: Thus any flow which is confined to a surface can at best act
as a slow dynamo with the growth of the magnetic field
B, occurring on the diffusive time scale. This regtriction was not
i €k d;(VXB)y+ 7V 2B, . (2.4  taken into account by Spencer and Cram, since they made a
ot local approximation and thereby obtained a fast dynésee
Ref.[3]) Sec. 2, Eq. 15; one should obtaja~0 on putting
We take the dot product of the above equation Wity to ~ eachr—, i.e., equivalently setting diffusion coefficients to
obtain the following equation: zero, buty does not reduce to)0In our opinion, a similar
problem also exists in the work of Chiba and Le$8h who
considered the dynamo generation of magnetic fields in a

d 3BId%r=— nj [(VB,)?+2B,0xBi(ddcth) disk galaxy with motions confined to the plane of the disk.
dt Having established that a laminar flow along surfaces can
dinp act at best as a slow dynamo, it will suffice to take a simple

+B¢Bk(9i(ai&k¢)d3r]—f le,,Td%. form for the surfacey=const, along which the fluid flows.

Such a simplification allows us to estimate the growth rates
(2.5 analytically, and also to understand qualitatively the
magnetic-field generation in a more general situation. We
We use equation of continuity to write the last term. Thus,Will therefore consider below the case of an axisymmetric
B, can be advected or compressed by the velocity field, bufow along a cylindery=r =const, where we use a cylindri-
can only be coupled to the other components through diffu¢@l coordinate systent (¢,2), with the planez=0 coincid-
sion. In other words, generation Bf, can only be due to the "9 with the midplane.
diffusion of the other components of the field. The growth of

this compon_ent will then be slow, on the diffusion timg B. Mathematical formulation of the problem
scale, and will be proportional to the inverse of the magnetic ) o , ,
Reynolds number. We consider the situation where the flow is along cylin-

Let us now consider the diffusion dependent terms indersr=const, and is axisymmetric. We then takg=0,
more detail. It is quite clear that, as discussed in R&f.  V¢=r(r), andV,=V(r). We also assume that there is no
growth will depend on the nature of the surfags const. 2 dépendence oW, andw. _

We also recognize that if the fluid is confined to move over Since the given velocity field ig) and z independent,

a planer surface, then the magnetic field will inevitably de-ach¢ andz mode will evolve separately, hence we look for
cay as the integral will be negative definite. We turn now toSolutions of the formB=b(r)exp(m¢+ikz+T1); i.e., each

the equation forb. Substituting the expression Bfinto the ~ Fourier mode in¢ and z will evolve independently. Thus
induction equation and taking the cross product withwe m can be regarded as a measure of nona>§|symmetry. At this
obtain an equation ford, remembering that the term point, one should recall the fact that an axisymmetric veloc-

. . : ity field cannot sustain an axisymmetric magnetic field
V-V ¢=0, since there is no component of velocity perpen- - .
dicular to the surface: (Cowling’s theorem [4]. Thus we could not obtain any

growth for them=0 mode in view of Cowling’s theorem.
We see below that this holds explicitly for the growth rates
do 9B, _JA that we derive.

G a Yats 2.6 The above set of equations reduces to
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n d/ db nm?b ) }
?a(rd—rr)——rz—r—nkzb,—lwmb,—lkvbr—l“br
nb, 2imyb
=z 2.9
Ta(rw —r—z—nk b¢——r2 —I'b,—iomb,
) 2i ymb, do
—Ikvb(/,:_r—z—l' ra. (21@

We do not use the component of the induction equation

directly; instead we use the divergence-free condition to find

outB,:

10(rB 1B JB
_ = ( r)+__¢+_z_

V-B=r—% r d¢ = 9z =0

(2.11

We see explicitly that our proposed dynamo model will
be a slow dynamo-growth raié—0 as»—0, since diffu-
sion is the only source far andz components.

We also notice that fom=0, i.e., for an axisymmetric
magnetic field, thé3, equation is decoupled from,, ; there

is no source term, and so no growth, and hence our equations

automatically satisfy Cowling’s theorefd]. To solve these

equations we resort to the WKBJ approximation methods.

We follow Mestel and Subramanidi0] (hereafter M$ in
solving these equations.

For the sake of convenience, we scale the above equatio
to give them dimensionless forms in the following way: we
scalel“e(rﬁl )" andv—(r,/n)v, wherer, is any suitable
length scale. Hence Eq&.9) and(2.10 reduce to

1d/( db\ m, b I b,
vdr\Far )T Tz Kb temb—ikeb =T
2imb,
= r2 ’ (212
1d[ db,) m’by, . by _ _
Fa(rW)_ r2 -k b¢—r—2—rb¢—lwmb¢—lkvb¢
_ 2imb, do )
==z g (213

C. WKBJ solutions for growth rates

It is convenient to use a new radial coordinateefined
by r=¢* (as in the WKBJ method, one looks for an expo-

nentially decaying solution with the independent variable

— * oo (see, e.g., Headind 1] or MS). With this, Eqs(2.12
and(2.13 reduce to

2
r

dx?

(m?+ 1)br—b,ezx(k2+iwm+ikv+l“)=2imb¢,
(2.19

d2b¢ 2 2X( 12 1 i ;
W—(m +1)b,—be™(k“+iom+ikv+T)
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) 2de
=—2imb,—b,e ax (2.15
We rewrite the above equations as
d2Q+ +bP=0 2.1
O aQ =0, (2.19
d2P+ +dP=0 2.1
e e =0, (2.17)
where
Q=b,, (2.18
P=by, (2.19
a=—(m?+1)—e>(K*+iwm+ikv+TI), (2.20
b=—2im, (2.2
~2im+ e 0 (2.22
c=2im+e™ .
d=—(m?+1)—e>*(K*+iwm+ikv+I). (2.23

The coefficientsa, b, ¢, andd are assumed to vary witk

ns

over a typical scal&>1 (i.e., the original physical variables
vary over a scale larger than the length saae Solutions
are sought of the forms

P=exdiy(X)][Aq(X)+A(X)/L+---], (2.29

Q=exdig(X)][Bo(x) +By(x)/L+---], (2.2
whereL is the length scale over which coeffeciertsb,
c, andd are assumed to varyy' ~@(L°), ¢"~@(L™Y),
etc., A~@(L™ Y, Al~@(L?), etc.

Following MS,

(y.)?=p.=[a+d=/(a+d)’—4(ad—bc)]/2
(2.26

or
(4.)2=p.=—(m?+1)— (kK2 +iowm+iky +T)

1/2

: (2.27)

t[—Zim(Zierezx —
dx

where /', = [ (¢')?]¥2. We want to draw the attention of
the reader to the fact that E(.27) is equivalent tqbut not
quite the same a<€q. (10) of Ref.[7]. We present a short
discussion about this belojgee following Eq(2.32) of this
papel.

The general solution of Eq$2.24) and(2.25 (as long as
the WKBJ treatment is validcan be written as



2872 ABHIK BASU 56
(X 1 R and references therein, and also to MS and Jeffi&®k(pp.
Klexl{ 'f prdx +KzeXP( —lf Py dX) 245-247F. Even Gutzwille 13] briefly refers to the problem
Xo Xo in direct application of the WKBJ method to the radial equa-
tion in the hydrogen atom problem in quantum mechanics
: (see p. 212 of Refl13]) and as a remedy refers to Langer

P=A"

+A™

Q=8*

+B~

X X
K3exp<if pY2dx +K4eXp(—if pl_’zdx)
Xo Xo [14]. In fact, the transformatiom=exp() was not only a
(2.28 convenient one but was also a necessity. We also see that if
) ) we work out everything withv= w,/(\/1+r?) (this type of
: 1/2, . 1/2 rofile qualitatively resembles galactic rotation cyrvben,
Klex;{ ! Lop+ dx |+ KZeXF{ - Lop+ dx) 'E)he pregcription ofyRe[.7], one fignds that there is no extrema
of the function (If)(dw/dr) at any finiter. Thus the
K3exp( i fxpllzdx n K4exp< i fxpllzdx> method of Ref[7] does not seem to be the right one for this
Xo Xo kind of situation.
We notice that the only growth term is the shear term in
(2.29 the ¢ equation; the component grows due to the diffusion
The general ways of analyzing WKBJ solutions whose®f the ¢ component. Since growth will be controlled by
singular points are in the complex plane was nicely describegear(ther|dw/dr| term), the growing modes will naturally
by Heading[11]. Recall that our solution has to die out at P& concentrated around the maximum of shear. Thus in that
N, region, we can neglect the diffusion teriie m?i/r? term
Now since there will be complex zeros from. =0, we ~ cOmpared to the shear term.
have to choose those nearest toxtexis, so that the solution ~ 1"us we obtain
obeys boundary conditions. Sinpe goes to zero not in the

2 i 1/2
real axis, but in the complex plang, andp_ will genera}lly p_jz —[k24T]- m :1i£ /Zm{r d_“’
not be zero at the same points. Now our general solution may r r r dr
consist of(i) only p.., (ii) only p_, or (iii) a linear combi- —i(wm+ky)

nation of both. Now, sincep, and p_ do not go to zero
simultaneously, and our solution has to die out-at + «, if We expand r (dw/dr)]Y2 about the point ,, where it is

we have a linear combination @f, andp_, both of them  maximum, and retain up to the first nonvanishing order. Thus

ruled out. This forces us to set eithiég andK, or K; and

K, to be zero, i.e., a general solution cannot be a combina- P )
tion of p, and p_ solutions. We immediately realize that r—2=A(r—rm) +B(r—rm+C, (2.33
P and (also Q) obeys a one-dimensional ScHinger-like
equation of the form where
2 . .
i d? 1-i d? do|]2
—— tp+(x)P=0. 2.3 = _ += —
dx? p_( ) ( Q A zﬂ(wmﬁ-kv)_ o ZmW rmdrm )
The WKBJ solution of this is d
B=—-i-— +k
A K B R Idrm(mw v
P= —mpex |indx + —zex —|indx,
P P M2+ 1
(2:31 C=—[K¥+T] - ———i(mo-+ko),
whereA andB are constants. _ " s
The eigencondition is given by +1—| d_w
_—m vam|r, dr.

Now we recognize that this being a quadratic in complex
r, it will have two roots(in general compleX unlike the case
wheren is an integer, anal; andx, are the zeros gb. . We  in the complexx coordinate[the reason is quite obvious:
pause here for a while and compare our results with that of = exp&) =expk+2mni)]. So we need not worry about
Ref.[7]. We draw the attention of the readers to the fact thathoosing the correct zeros. We also see thatras»e,
Ruzmaikin, Sokoloff, and Shukorov made their asymptotiqm(fg \/ﬁi)_>o; thus the anti-Stokes line approaches xthe
expansions in terms of the conventional radial coordimate o ; i
and solved the radial equation directly using the WKBJ ap-aXI-T-h?Jsé ;u(a) ,e?;sg\ir;?ug]?sb;\ljggag condition.
proximation, whereas we worked with equations written in
terms of the modified radial variable The discrepancies in B2
the final results appear because of that. We, however, feel c— A
that the former approach is not quite appropriate. In this =
context we refer to the book by Headifiyl] (pp. 127-13}, JA

*2 U2qy—
pLdx=(2n+1)7/2, (2.32
X1

n+3. (2.39
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We notice thatB2<O0. It is obvious thatl“p+ is always m v(r)

greater thanl’, . We also notice that whem{w +kv)=0 kK o) =const,

identically [case(i); see below;, the growth rate fop_ is
negative, which signifies decay. So we work with hence-
forth. We can have two situation$t) when mw+kv=0;
whenw andv, show exactly the same dependence pie.,
when the pitch of a helical streamline does not depend on th
radius, certairm andk always exist such that

and hence the advection term vanishes identicéilyWhen
Mo +kv #0—this the general case.
In the second case, the growth rate reduces to

2 .

m+1 1-i
I'=—ypk?—p—s—+ n—\/Zm[rm

M Mm

do 1/2
are } —i(ma)+kv)|rm
m

d 2
—(Mo+ kv)}

dr 0 0
+ 5 m . 5 —(n+1H(xE+y)14 cos, +ising |, (2.39
of _i d K +21—|\/_\/_d dw |12 2
I—zdrm (mcu U) —rm n md—rzr; Mm m
|
where . SUMMARY
In this work we have shown that any velocity field con-
fined to move over a stationary surface will lead to a slow
Jn [m d? do |12 dynamo only; that growth will be on the time scale of diffu-
=N g 2 'mlg || - sion. The component normal to the stationary surfaces has
2 rmdry, dry

diffusion of the other components only as it source. We men-
tioned the fact that an axisymmetric magnetic field cannot be
sustained by an axisymmetric velocity field—which is
Jn d? Jn  [2m d? 12 known as “Cowling’s theorem” in the literature. Keeping
y==7%" dr,,2 (Mo+kv)— 2 V7, dr2 , this constraint in mind, we demonstrated how an axisymmet-
ric cylindrical velocity flow can act as a slow dynamo to
produce a nonaxisymmetric magnetic field. We explicitly
and demonstrated that the growth rdte- 0 as diffusion coeffi-
cient » and azimuthal mode numben— O, thus directly
proving that it is a slow dynamo, and directly satisfying
Cowling’s theorem. We have also given a physical reason
that generation will be confined to the region where shear is
dominant. In these context, we compare our procedure with
We see from this expression thBtis negative(i.e. decays that of Ref.[7].
whenm=0, directly manifesting Cowling’s theorem, i.e., an  Our simple model of dynamo generation of a magnetic
axisymmetric magnetic field cannot be sustained by an axifield may be applied in some realistic astrophysical systems.
symmetric velocity field. Alsol' decreases as-m? and  In the case of galactic wind, taking over from the disk in the
grows asym; so even though lowa modes will be growing, form of a helical motion, our model may be applied to ex-
asymptotically I' will decrease with increasingn and plain the growth of magnetic field. At this stage one should
n—which is also expected from energy consideration; agprobably try to justify the existence of turbulent diffusion in
with increasingm andn, the mode becomes more kinky, i.e., the absence of om effect (molecular diffusion will be too
higher currents are associated with the loops, and so neetleeak to cause any significant growth of the magnetic field
higher energy to grow. So there will be few growing modesRecently, it has been theorized that theffect is suppressed
with low-m values, and all higher modes will decay. Pleaselong before large-scale magnetic-field strength could reach
note that our model is essentially a simplified model, a modethe preseni.G level (Kulsrud and Andersofil5]). Now the
concerned with the underlying basic principles, representingelevant question for our case is whether turbulent diffusion
the real life situations somewhat qualitatively. As a next steps also suppressed along with theeffect. In this context we
one may try to work out the same for a conical flow geom-refer to the results of recent works of Gruzinov and Diamond
etry, even though our basic results will be valid for that case[16] (see also Vainshteiet al.[17], and Jones and Galloway
We also see from the expressionlbthat, in the limity—0,  [18]), where it was shown that the effect may be su-
I'—0, which shows that our dynamo model is a slow dy-pressed, but not turbulent diffusion. This supports our as-
namo as expected on theoretical grounds. sumptions.

dw
drp,

M'm

0=tan‘1x.
X
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