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Calculation of eigenvalues of a strongly chaotic system using Gaussian wave-packet dynamics
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We apply the approximate dynamics derived from the Gaussian time-dependent variational principle
(TDVP) to the HamiltonianH = 3(pZ+ p2) + 3x?y2, which is strongly chaotic in the classical limit. We are
able to calculate, essentially analytically, low-lying eigenvalues for this system. These approximate eigenval-
ues agree within a few percent with the numerical results. We believe that this is the first example of the use
of TDVP dynamics to compute individual eigenvalues in a nontrivial system and one of the few such compu-
tations in a chaotic system any method.[S1063-651X97)07407-3

PACS numbdis): 05.45+b, 03.65.Sq, 05.40:]

I. INTRODUCTION from the chaos in the underlying classical system, it has been
shown that the approximate quantum dynamics derived from
Gaussian approximations to quantum mechanics havéie TDVP may be chaotic even when the classical limit is
been utilized successfully in many contexts including quan0t [14]. This has led to the argumeftt5] that the TDVP
tum field theory[1], the dynamics of hydrogen plasrii2], Gaussian approximation fails in the presence of chaos. How-

semiclassical propagation methof4], quantum control ever, it has been shown that this anomalous chaotic behavior
[5], and the study of “quantum chao’s[B] The primary persists even when exact numerical computations are made

o ; L X [16]. It is argued, in fact, that this chaos is a signature of the
motivation for their popularity is simplicity of computation: ¢ompjicated nature of the spectrum involved in the exact
Gaussians are easily parameterized by ¢heumber vari-  quantum dynamic$4,17]. Further, recent work by Habib
ables specifying the centroi@verage variablgsand spread [18] shows thatall Gaussian approximations to Schro
(fluctuation variables and their dynamics are essentially dinger’s equation are identical to the same approximation to
classical, apart from the computation of a phase which is #@he classicalLiouville equation, although the classical ver-
crucial element. Further, Gaussians arise naturally in the casions do not have any phase information. This result clarifies
herent state representation of quantum mechdficand in  that? is a kinematical constant in these approximations, pro-
the N=2 limit (whereN is number of degrees of freedpm Viding a scale for the “smoothing” of the dynamics and
of many-body systemEg]. There are a variety of Gaussian reinterprets the “quantum effects” included in Gaussian ap-

approximations including(1) a variational approximation Proximations. It does not invalidate the resuits of the quan-
sually derived through the time-dependent variational prin:[um Gaussian approximations, althpugh it does require th_ese
u results to be understood in kinematical rather than dynamical

ciple (TDVP) [1,9,10, (2) a recently introduced quadratic- {erms. The result also emphasizes that quantum dynamics are
order Gaussian approximati¢d], (3) Heller's method[3],  petter approximated by classical Liouville dynamics rather
which is a non-self-consistent truncation @, and(4) the  than Hamilton’s equations for point trajectorigid].
multiple classical trajectory version of Heller's methjdd]. It is thus clear that Gaussian approximations should be
A further level of approximation yields the Gaussian effec-used and interpreted with caution. However, as we shall
tive potential method, which consists of an adiabatic elimi-demonstrate in this paper, the TDVP Gaussian approxima-
nation of the time dependence of the fluctuation variables inion doesyield accurate results even in the presence of chaos,
the TDVP dynamic$12]. in a system where other approximations fail. The TDVP dy-
The widespread use of these methods raises the questigamics can be used to compute eigenvalgs4] through
of their validity and range of applicabilitj13]. It has been an extension of the Einstein-Brillouin-Kell¢EBK) quanti-
argued that in the presence of chaos, semiclassical approxation method21]. We use this method to compute eigen-
mations to quantum mechanics should break down on a logaalues for the two-dimensional coupled quartic oscillator
rithmic time scalet,~1/\log(1/#), where\ is the largest L
Lyapunov exponent of the underlying classical mechanics, - Pit D§
and? is Planck’s constant. Computations with the multiple H= 2 + 2
trajectory Gaussian approximation has demonstrated that this
may be a pessimistic estimdtel]. Recently, the validity of ~ This system is highly chaotic classical82]; it was believed

the TDVP approximation has also been considered. Apatill recently to be ergodic, and the integrable regions of phase
space occupy less than 0.005% of the volume. The quantal

Hamiltonian also resists numerical analysis; large basis sets
*Present address: Chemical Physics Theory Group, University ofi0 not suffice for quantizatigiﬁ31- It is usual for numerical
Toronto, Toronto, Ontario Canada M5S 3H6. Electronic ease to add a term such Aéx*+y*) to the potential and to
address:arjendu.pattanayak@utoronto.ca analyze the system in the limg@—0. The traditional meth-
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ods for semiclassical quantization fail for this particular sys-mated by restricting¥ (t)) to a subspace of the full Hilbert
tem. Firstly, the EBK method cannot be applied because ofpace and settingl" =0 within this subspace. In particular,
the chaos in the system—there are no stable torii to use fahis restriction may be to the space of general Gauss$igns
guantization. The alternative methods developed in the fiel§Ve have derived these same dynanfit4,4] in a somewhat

of quantum chaoB6] also do not work. The most prominent more intuitive fashion from Ehrenfest's Theorem. We start
of these, the trace formula method, starts from Feynman'siith the equations for the centroid variables and make a
path-integral representation of quantum mechanics, antlaylor expansion around the centroid with the higher mo-
through a sequence of stationary phase approximations, derents of the wave function. These moments follow the usual
rives the eigenvalues of the quantum system as poles in ldeisenberg dynamics, yielding in general an infinite system
weighted sum over the unstable periodic orbits of the classief equations. We render this system finite by projecting onto
cal system[24]. Recent successes in other systd@4,25  the space of Gaussians; this system of equations are identical
notwithstanding, the systematic enumeration of the unstabl® those derived from the TDVP.

periodic orbits of the classical system has not been achieved We have been able to represent these dynamics as an
for this particular system. Another alternative, Heller's ap-extendedclassical gradient systefior the average and fluc-
proach[3], which computes an approximate time-dependentuation variables with dynamical equations

wave function(W(t)| and Fourier transforms the overlap

(W (t)| ¥ (0)), fails because of the inherent instability of the d_X_ 5

truncation, as argued in a previous qualitafi¢¢analysis in dt P )

model potentials. In the same paper, we demonstrated that

the TDVP dynamics restores stability to systems where the dp 7 p2m

truncated Gaussian dynamics fail; in fact, the TDVP dynam- Pl > ——m VM (x), 3

. . . m=o M2

ics can be stable even when tblassicaldynamics are un-

stable. This is precisely what happens in the system given by

Eqg. (1): An infinite set of unstable periodic orbits is stabi- d_p:H (4)

lized by the *“quantal fluctuation” terms in the TDVP dt '

method. These orbits can then be used to compute approxi-

mate eigenvalues for a symmetry subspace of this system. dil  #2 " pamt 2m)

Remarkably, these are obtainadalytically (barring a nu- a3 m§=:1 (m—l)!2m*1V (x), )

merical integrgl. Further, these results are obtained with

B=0, i.e., the regime where even large basis-set calculationgng a Hamiltonian

fail to converge. The high degree of chaos in the system and

the fact that we usé&=1 in our calculations suggests the p2 112

nave perspective that the classical-like TDVP approach is Hex=% + 7+Vext(X,p); (6)

then far from its region of validity. However, our results are

extremely accurate when compared with the “exact” nu- 72 p2m

merical results over a substantial range for the lowest-lying Vex(X,p)=V(X) + 8_p2+ 21 mlzmv(zm)(x)’ 7
m=1 m!

eigenvalues. Thus, while there is no suggestion that this
method can always be used in the presence of chaos to suc- . - . " .
cessfully approximate quantum dynamics, our results indiyvhere the subscript ext indicates the “extended” potential

. . . . B i i (N = gn nl - i
cate that it can certainly be used with care in some circum@nd Hamiltonian andvt™=4"v/dx"|;,. The coordinate
stances. variables for the extended Hamiltonians atg, and their

In Sec. II, we shall briefly review the dynamical equationsc@nonically conjugate momenta apell and are related to

for the TDVP method, including the construction of a quan-the moments of the Gaussidn(x,p,p,I1,t) as follows:
tization rule. In the third section, we apply this method to Eq.

(1), comparing the method in the process to the usual semi- (X=X, ®
classical methods. We then discuss the results and argue that R
the regime of validity of the method is the low quantum- (p)=p, 9
number regime, contrary to the usual intuition derived from
the correspondence principle that classical-like approxima- (AxAp+ApAx)y=2pll, (10)
tions work best in the high quantum-number regiig We
thus suggest that the TDVP Gaussian approximation works om (2m)! p2m
best as a techniqgue complementary to the usual semiclassical (AxT) = TTmi2m (12)
methods.
(Ax2mt 1y =0, (12)
Il. TDVP GAUSSIAN DYNAMICS 2
The usual derivation of these dynamics proceeds from P2<Ap2>:Z+P2H2- (13

Dirac’s time-dependent variational princidi,10]; this pos-

its an action of the forni" = [dt(W,t|ifhd/dt—H|W,t). The  The first three relationships Eq&8—10 are definitionsand
general requirement thal' =0 yields the Schidinger equa- Egs.(11) and(12) are a consequence of the Gaussian ansatz.
tion and its complex conjugate. The true solution is approxi-Equation (13) is a kinematical constraint arising entirely
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from choosing the equality in the uncertainty principle rela-This rule is the same as the “old” quantization rule of Bohr
tionship; it is the only way in whicti enters this approxi- and Sommerfeld; however, it applies in tegtendedphase
mation. space, as opposed to the classical phase space and thus does
In this method, the fluctuation and average variables areot have the same meaning. In particular, there are no
treated on the same footing and the phase space is dimektaslov-Morse correction1] to this rule, since there are no
sionally consistentp has the dimensions of length ahfl ~ singularities in the Gaussian representation. It can be shown
that of momentum. The geometry of the space is thus iden27,4] that the “spread” variablep,Il explicitly take care
tical to that of an ordinary classical system—it is a Cartesiarof these corrections. In general, this quantization condition
space, a manifol®(2N) defining the extended phase space.will give results different from the EBK ruléhe POs are in
There is also an equation for the phase of the wave functiorthe extended spagéut always incorporates the Maslov cor-
If we define\ as |®,t)=exdi\(t)/A]|¥,t) it is simple to rection. The extension of this argument from POs to invari-
derive from Schrdinger's equation the equations for ant torii goes through easi}20] and leads to a general quan-
A=\p+A\g, with the first part tization rule

t n 1
x.3=—foolf<H>=—tHext (14) > 3§CiP~dQ=nih, (18)

corresponding to the dynamical phase. The second part is thehere the closed integral is now taken over ttieirreduc-
geometrical phase ible contour around the torus and the quantum numbers
_ ) are labeled accordingly. This is exactly Einstein’s generali-
t /9 t [pll=IIp . zation[28] of the Bohr-Sommerfeld rule to invariant torii.
A= fodT 'ﬁ;> :jodT —  tpx/|. (15 The system of equations derived by Hell@] for the
semiclassical evolution of Gaussian wave packets obtain as
For cyclic evolution this is the Aharanov-Anandan form of truncations of Eqs(2) and(3) to O(p°) and of Eqs(4) and
“Berry's phase” [26]; it depends only on the geometry of (5) to O(p"). This arguably[4] inconsistent semiclassical
the evolutionary path in phase space and can be written assystem of equations destroys the Hamiltonian structure of the
dynamics, leading to nonunitary evolutif29]. A consistent
truncation toO(pt)) for this system retains the Hamiltonian
Ae(C)= 3€CP-dQ, (16 structure of the TDVP method and has been termed extended
semiclassical dynamid4]: All the advantages of the TDVP
whereP=(p,II) andQ=(x,p). The equation for the phase, Method applies to the extended semiclassical method, includ-
a|ong with the Hamiltonian equations of motion for the e\/o_ing the definition of a Poisson bracket, and the existence of a
lution of the wave function parameters constitute the TDVPUnitary propagator and an analytic quantization method. Un-
dynamics. This lies on a spad@(2N)x S(1); for thecase like the TDVP method, Heller's Gaussian dynamics and the
just consideredi=2, the result is completely general, how- extended semiclassical dynamics arise as “controlled” first-
ever. order expansions; their validity can thus be formally evalu-
We now provide a constructive arguméat for obtaining ~ ated [13] and these are hence attractive approximations.
eigenfunctions and eigenvalues, which is equivalent to imHowever, the truncation of the dynamical equations at the
posing a Sing|e_va|uedness constraint on Stationary Wav@rm inVOlVing the third derivative of the potential induces an
functions [20] in the extended phage space. Note that aﬂlnphySical |ﬂStab|l|ty, where the fluctuation variables grow
eigenfunction for the extended dynamics is one whose pawithout bound[4] even for simple one-dimensional anhar-
rameters arénvariant under the evolution. We see readily monic potentials likev(x)=x". In the TDVP dynamics, all
that a periodic orbitPO) solution to Hamilton’s equations orders of derivatives are maintained with a resummation of
Egs.(2)—(5) is invariant on theR(2N) subspace; however, the moment expansion under a Gaussian ansatz; this yields
each point along the PO acquires a phase factor during tH@EhaViOT that is qualitatively similar to the exact Iong-term
evolution. The dynamical phase is the same for all the point§luantal behavior, in particular reproducing the appropriate
a|0ng the PO and can be factored as a g|oba| phase_ Tfﬁablllty ThUS, the TDVP method can stabilize unstable pe-
geometrical parivg for the PO is crucial: We note that a riodic orbits, which may then be used as above to obtain
POX \g, such that the periodic evolution af; on S(1) is  eigenvalues and eigenfunctions, as we now demonstrate.
commensuratsvith that of the PO orfR(2N) is a function
invariant on entire spac&(2N)XS(1) and is hence an l1l. EIGENVALUES FOR A CHAOTIC HAMILTONIAN
eigenfunction The commensurability of the phase translates
to the relation

We now turn to the computation of eigenvalues for the
Hamiltonian

1 FU
A (PO)=—§ P-dQ=n#, (17 . p2+p2 1. .
G 27 Jpo H=pX2py+§x2y2+ﬁ(x4+y4). (19

where we have used E¢l6). Thus, the eigenfunction is a

weighted sunithe weight factor at each point being the ap- Extensjve numerical work23,22 shows that the classical
propriate geometrical phasever the points of the commen- limit (O—O for all operatory is a very strongly chaotic
surate periodic orbit and the eigenvalueHs,; for that PO.  system, with few stable periodic orbits in the linit-0. It
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is easy to verify, however, the existence of an infinity of 1 1 1
unstable periodic orbits along the diagonals of the potential. Hex=3(P3+ p§+ I+ H§)+ 8,2 T2t §(X2+P>2<)
We also note here that the Hamiltonian displays a simple Px Py
scaling relationship in energy[23]: A trajectory x(y2+p§). (22)
(x1(t),p1(t)) at an energyE,; is related to a trajectory
(X5(1),p»(1)) at an energye, by Note that the use of the factored wave functions explicitly
restricts us to the one-dimensional representations. The dy-
E,\ namics of this extended Hamiltonian are, in general, chaotic.
XZ(T)Z(E_) X1(t), (200 However, if we consider the subspaces of the one-
! dimensional representation noted above, we find that the first
E and third subspace can be studied by the symmetry-reduced

1/2 .
p,(7)= (E_Z) py(t), (21)  Version ofHey
1

_1/n2 2 1 1 2 2\2
where 7 is the rescaled time=(E,/E;) Y4 This means H=z2(p"+T19+ 8p2+4(Z 7% (23
that there is the same degree of strong chaos at all finite
energies: There is no “transition to chaos.” Eckhardt, HoseWwhere ,p) and (p,1I) are the canonically conjugate pairs.
and Pollak have done a careful numerical analysis of the We now demonstrate that this symmetry-reduced version
quantum system to show the presence of “scars” in theof the extendedHamiltonian is explicitly integrable. To do
eigenfunctions[23]. They state that harmonic oscillator SO, we make the change of variables to spherical coordinates
basis-set quantization with matrices of dimension 3240 dd?,¢ defined in the plane byz=Rcosf; p=Rsind . This
not provide converging eigenvalues f@=0; they have transforms the Hamiltonian to
hence use@=0.01 for their analysis. The eigenfunctions of

2 4 2
i iltoni R 1 1
this Hamiltonian belc_)ng to thg symmetry classes ofq}lg H= Pr A Py L _ (24)
symmetry group which has eight elemeffsur reflections 2 4 RY2 8sife

in the axes and diagonals and four rotations#4/2). The
irreducible representations of this group split into four one-Since the factor multiplying B is solely a function ofe,
dimensional representations and one two-dimensional repréhis is now in the right form to use Hamilton-Jacobi theory
sentation. They have restricted themselves to the four ond30]. Through the separability just noted, therefore, we intro-
dimensional representations corresponding to wave functiorduce Hamilton’s characteristic functioléz andW, and get
which are(A) symmetric undex—y, x— —Xx, (B) antisym-  the Hamiltonian-Jacobi equations

metric, symmetric,(C) symmetric, antisymmetric, an(D)

antisymmetric, antisymmetric, respectively, and have nu- E ‘9_W0)2 n 1 —k (25)
merically obtained low-lying eigenvalues and eigenstates for 2\ 96 8sirre
this system.
We have applied the Gaussian wave-packet methods de- 1/ dWR\?> R* k
tailed above to this system wif=0. Of the three methods, §(ﬁ t7tgeTE (26)

the truncated Gaussian methatsth Heller's dynamics and
the extended semiclassical sysjefail, yielding unstable whereE (the energy andk are the constants of separation.
motion where the wave-packets spread without bound, irrewe form action variables as usual
spective of the value gB. This is easily established by not-
ing that there exist one-dimensional projections in which this 1 IW,
two-dimensional potential reduces to the anharmonic quartic Jﬂ:ﬁ 00
potential considered above and the existence of a single un-
stable direction for the dynamics corresponds to instability in 1 1 \12
the global motion. This exposes one particular frailty of the =5 db’( 2k— m) : (28
truncated Gaussian approximations: they work well in sys-
tems that are close to harmonic only in tharticular sense 1
of being potentials of the formv(x)=x2+f(x) with the Jr=—— 4; dR
function f(x) containing higher polynomials. 2

On the other hand, the TDVP method works excellently o 12
for this system; firstly, the dynamics are completely :i dR( E_SE R_) (30)
bounded. It is an interesting feature of this approach that 27 R 2]
even though there exist classically unbounded orbits along
x=0 ory=0 (which are precisely what make the numerical The ¢ integral yields[31]
guantal analysis through basis sets so diffjctile inclusion
of the resummed moment terms via the variational approach 3= a;l (31)
restores stability to the problem. This effect has been termed o '
“quantum resuscitation” in the context of the Gaussian ef-
fective potential[12]. The extended Hamiltonian for the wherea is introduced for convenience througke /8. The
TDVP [using¥ =®(x)P(y) andh=1] is R integral is a complicated elliptic integral that can be evalu-

(27)

IWg

TR (29
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FIG. 1. Comparison of lowest eigenvalues in dimensionless units. Noté thht

ated; however, it cannot be analytically inverted to yield thethe potential. That is, the dynamics of the Gaussian are re-
quantization condition. We, hence, leave it in quadrature stricted such that the centroid always travels always along
s aiip the unstable periodic orbits along these diagonals. The fgw
P 35 dR(ZE— (2J,+1)° R (32  Classical stable periodic orbits that do exist in this system lie
R™2a 4R? 2] far from this region and our results cannot be understood as
affected by the presence of these orbits; the wave packet is
The existence of this integral demonstrates the integrabilityiot influenced by them.
of the chosen symmetry subspace of the extended Hamil- Further, we note that there is a superficial similarity of
tonian. Since we now have a set of stable invariant torii inthese results to other woild4] that demonstrates the effi-
the extended space, we can proceed with the quantization aacy of Gaussian approximations in computing low-lying
detailed above in a straightforward fashion. To wit: Eigen-spectral features. However, those results depend on perturba-
values correspond to torii with quantized actions in bothtions of a classically integrable Hamiltonians. As such, they
variablesR and 6. We follow this prescription by setting were able to use standard quantal perturbation theory. This is
Jy equal to a half-integer in the above equatifthe not possible for Eq(1). Further, since the classical dynamics
symmetry-reduced form of the Hamiltonian only accumu-is ab initio strongly chaotic, even the Gustavson-Birkoff
lates half the phase of the actual Hamiltonian which is whyquantization techniquf35], which is an adaptation of clas-
we use half-integets this yields a one-degree of freedom sical perturbation theory, cannot be applied. In either case,
dynamical system irR which has only closed orbits. We there is nothing to perturb around for this system. This also
then proceed as follows: We take various initial conditionsemphasizes the nonperturbative aspect of the variational ap-
and numerically integrate their dynamics over the closed orproximation.
bit to compute the actiog PrdR. The orbits for which the It is clear that the TDVP method in this system takes
action equals a half-integer then correspond to eigenfuncadvantage of the interesting feature of being able to use the
tions and their conserved energy the associated eigenvaluefinity of periodic orbits along the diagonals of the poten-
We show the results for the first 67 eigenvalues in Fig. 1ltial. These orbits are classicalljnstable and the formal ap-
compared with the numerical resuf32] of Eckhardt, Hose, plication of the WKB quantization method to this unstable
and Pollak. We now note that the eigenvalues we have caperiodic orbit yields metastable sta{g], where the eigen-
culated essentially analytically agree within a few percentalues have a real paftorresponding to the energgnd an
with the numerical resultf23] over the substantial range of imaginary part(corresponding to the lifetime of the state
our calculations. Apart from the unphysical metastability of these states, the
We emphasize that there is no possibility that the validityapproximate energies thus obtained are valid only for the
of the results can be attributed to the minute regions of stafirst few states—we show the limited accuracy in Fig. 1,
bility of the classical phase spafg3]. A moment's consid- where we have plotted the real parts of the first ten eigenval-
eration shows that the use of the factored wave functions andes from this method. This same instability of the periodic
the restrictiony(t) = x(t)=z(t) for the symmetric dynamics orbit causes the breakdown of the truncated Gaussian semi-
corresponds to restricting our attention to the diagonals oflassical methods as well. However, the TDVP Gaussian an-
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satz makes dynamics along these periodic ordtidble—an ~ TDVP Gaussian dynamics. In a general case, chaos in the
example of “guantum resuscitation”—and our generalizedclassical dynamics of a system coexists with complicated
guantization method succeeds. potential energy surfaces; Gaussian methods would hence

There are more general considerations also: Note tha@pply only over a small range of parameters. However, there
despite the high degree of chaos in the system, the potenti@re systems that may be extremely chaotic, but possess the
is relatively benign for Gaussian approximations: It has onlyaPpropriate structure that enables the TDVP Gaussian ap-
one minimum and no maxima. However, since it is a quartigfoximation to work over a much larger range, especially in
well, this does not benefit the truncated approximations ané1€ high regime; this explains the many successful appli-
we must turn to the fully resummed TDVP approximation to cations[2], for instance. Itis clear that these arguments need
take advantage of this structure. Second, the high value P Pe explored carefully in more situations.

# is an advantage in this context. As recent wi@BK] dem- . In summary, we have analy'_[icallgparring a numerical .
onstrates, at higher values 6f the details of the classical integra) computed the lowest-lying eigenvalues of a classi-

phase-space structure are smoothed out in the quantal d ally strongly chaotic system. We bglieve that this is th? first
namics[see Fig. 2a) of [37]], as reflected by the quantal ?<ample of the use of TD.VP dynamics to compute individual
eigenfunctions. Sincé also sets the kinematical scale of eigenvalues in a nontrivial system and one of the few such

smoothness for the TDVP Gaussian metfib8], this means computations in a chaotic system bpy method. These re-

. . Its compare extremely favorably with numerical results
that both the exact quantal dynamics and our approxmatgu L o
version are effectively occurring in a smoother potential weIIand show that the limits of validity of the TDVP method are

than the classical point dynamics. Both these factors impl)510t necessarily set by the degree.of chaos In the cIasspaI
stem. Accurate quantum dynamical simulations are quite

that distorted Gaussians can be expected to evolve withou¥.> . . A
b fficult and there is a great need for valid approximations

excessive error under such circumstances. Further, t 8l Heller's t ted G . imation h read
smoothness permits the weighted superposition of Gaussial |. Heller's truncated Gaussian approximation has already
een showrj3] to be extremely useful for systems that can

inherent in the TDVP eigenfunction ansatz to yield accurat . ) ) .
e explicitly written as perturbations around a harmonic

results: The detailed structure of the wave functions may be >, . Itis intuitive that G ) imai hould
argued to contribute rapidly oscillating terms that affect theMinIMum. fL1S intuitive that £aussian approximations shou

computation ofaveragesof observables in these states in acontinue have. validity in potential wells, even in the pres- .
small way. Thus, eigenvalues, which are the average of thghce of chao_s, however, the tru_ncated Gaussian methods_fall
Hamiltonian operator, may be quite accurate even when the! anhan_‘nomc systems. We peheve that the T.DVP Gaussian
detailed dynamics of the variational approximation are no{nethoq IS an excellent cand|d_ate for approximate quantum
s0. This also clarifies that the method is expected to be valiﬁlyn"’m"cS in these and other situations.
in the regime of the lowest-lying eigenvalues, contrary to the
usual correspondence principle regime where classical-like
approximations work best in the high quantum number re- It is a pleasure to acknowledge many fruitful interactions
gime [6]. This is supported by our results: they deviatewith Bala Sundaram and Salman Habib; we thank Dr. Habib
slowly away from the numerical results as the quantum numfor a detailed discussion of unpublished results. The Robert
ber increases. A. Welch Foundation(Grant No. F-036b and the Natural
Our results thus show that the degree of chaos in a classciences and Engineering Research Council of Canada pro-
sical problem doesiot necessarily limit the validity of the vided partial support for A.K.P. during this work.

ACKNOWLEDGMENTS

[1] R. Jackiw and A. Kerman, Phys. Leff1A, 158 (1979; F. [9] P. A. M. Dirac, Appendix to the Russian edition ©he Prin-

Cooper, S.-Y. Pi and P. N. Stancioff, Phys. Rev3f 3831 ciples of Quantum Mechanicas cited by I. I. FrenkelWave
(1986; A. Kovner and B. Rosensteiibid. 39, 2332(1989. Mechanics, Advanced General Theo{@larendon, Oxford,
[2] See D. Klakow, C. Toepffer and P.-G. Reinhard, J. Chem. 19349, pp. 253, 436.
Phys.101, 10766(1994 for a recent example. [10] P. Kramer and M. SaracenGeometry of the Time-Dependent
[3] E. J. Heller, J. Chem. Phy&2, 1544(1975; his Lecture Notes Variational Principle in Quantum MechanicgSpringer-
in Ref. [6] is an excellent summary of his work. Verlag, Berlin, 1981
[4] A. K. Pattanayak and W. C. Schieve, Phys. Re\5@: 3601 [11] S. Tomsovic and E. J. Heller, Phys. Rev4E 282 (1993.
(1994). [12] P. Stevenson, Phys. Rev.3D, 1712(1984; 32, 1389(1985;
[5] M. Messina and K. R. Wilson, Chem. Phys. Le241, 502 L. Carlson and W. C. Schieve, Phys. Rev48, 5896(1989;
(1995. A. K. Pattanayak and W. C. Schievibjd. 54, 947 (1996.

[6] Chaos and Quantum Physjd8roceedings of the Les Houches [13] G. A. Hagedorn, Commun. Math. Phy&l, 77 (1980.
Summer School 1989, edited by M.-J. Giannoni, A. Voros, and[14] A. K. Pattanayak and W. C. Schieve, Phys. Rev. L#21.2855

J. Zinn-Justin(North-Holland, Amsterdam, 1991and refer- (1994.

ences therein. [15] B. Sundaram and P. W. Milonni, Phys. Rev. #, 1971
[7] V. Bargmann, Commun. Pure Appl. Matt4, 187 (1962); 20, (1995.

1 (1967; A. Voros, Phys. Rev. A0, 6814(1989. [16] Y. Ashkenazy, L. P. Horwitz, J. Levitan, M. Lewkowicz, and

[8] L. G. Yaffe, Rev. Mod. Phys54, 407 (1982. Y. Rothschild, Phys. Rev. Let?5, 1070(1995.



284 ARJENDU K. PATTANAYAK AND WILLIAM C. SCHIEVE 56

[17] L. P. Horwitz, J. Levitan and Y. Ashkenazy, Phys. Re\6% by C. Jaffe, Joint Institute for Laboratory Astrophysics Report
3697(1997. No. 116, 1980unpublished

[18] S. Habib(unpublishedt Fred Cooper, John Dawson, Salman [29] R. G. Littlejohn, Phys. Repl38 193(1986.
Habib, and Robert D. Ryne, Los Alamos Report No. LA-UR- [30] A. J. Lichtenberg and M. A. LiebermaRegular and Stochas-

96-3335, 199Gunpublishedt N tic Motion (Springer-Verlag, Berlin, 1983

[19] L. E. Ballentine, Y. Yang, and J. P. Zibin, Phys. Rev.58,  [31]|. S, Gradshteyn and I. M. RhyziRable of Integrals, Series
285?(19%‘9? P. Brumer and M. Shapiro, Adv. Chem. Phys, and ProductgAcademic, San Diego, CA 1980Sec. 2.559.
365(1988.

[32] We note here that the numbers reported[23] are scaled
eigenvalues. A failure to note this led to a mistaken statement
in [4] that this method improved upon the numerical results of
[23]; as demonstrated in this paper, our results agree very well
with the numerical values.

[33] P. Dahlgvist and G. Russberg, Phys. Rev. Lé%, 2837

[20] K. K. Kan, Phys. Rev. @4, 279(1981); E. Caurier, S. Drozdz
and M. Ploszajczak, Phys. Left34B, 1 (1984.

[21] I. C. Percival, Adv. Chem. Phy86, 1 (1977 reviews this.

[22] G. K. Saviddy, Nucl. Phys. B46, 302 (1984; A. Carnegie
and |. Percival, J. Phys. A7, 801(1984.

[23] B. Eckhardt, G. Hose, and E. Pollak, Phys. Rev3® 3776
(1989. (1990.

[24] M. Gutzwiller, Chaos in Classical and Quantum Mechanics [34] C. M. Bender and T. T. Wu, Phys. Rev. ¥84, 1231(1969),
(Springer-Verlag, New York, 1990 for an early example.

[25] G. S. Ezra, K. Richter, G. Tanner, and D. Wintgen, J. Phys. Bl35] J- B. Delos and R. T. Swimm, Chem. Phys. Lé&, 76 (1977
24, L413 (199). and references therein.

[26] M. V. Berry, Proc. R. Soc. London, Ser. 202, 45(1984; A.  [36] W. H. Miller, J. Chem. Phys56, 38 (1972.
Aharonov and J. Anandan, Phys. Rev. L&8, 1593(1987. [37] B. Mirbach and H. J. Korsch, Phys. Rev. Léth, 362(1995.

[27] R. G. Littlejohn, Phys. Rev. Let61, 2159 (1988; Y. Tsue,  [38] SeeTime-Dependent Quantum Molecular Dynamiedited by
Prog. Theor. Phys38, 911 (1992. J. Broeckhove and L. LathouwetBlenum, New York, 1992

[28] A. Einstein, Verh. Dtsch. Phys. Gek9, 82 (1917); translated for example.



