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Stationary, dynamical, and chaotic states of the two-dimensional damped
Kuramoto-Sivashinsky equation
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The long-time behavior of the two-dimensional damped Kuramoto-Sivashinsky equation is studied numeri-
cally in the large-aspect-ratio limit. The equation is shown to lead to three states depending on the magnitude
of a damping parametera. At large, intermediate, and small values ofa, the equation leads respectively to
hexagonal, breathing hexagonal, and disordered states. The disordered phase is chaotic in both space and time,
consistent with spatiotemporal chaos. The transitions between these states are examined using standard statis-
tical measures.@S1063-651X~97!06709-3#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

The appearance of spatially and temporally coherent
lular states is a common feature of many driven nonequi
rium systems, such as directional solidification@1–5#,
Rayleigh-Bénard convection@6–8#, parametrically excited
surface waves or Faraday waves@9–11#, and electroconvec
tion in liquid crystals@12#. These cellular states arise from
symmetry breaking of a homogeneous spatially exten
system through primary instabilities, such as the Mullin
Serkerka@1# instability in directional solidification and the
Faraday instability@13# in parametrically excited surfac
waves. Perhaps more interestingly, there exist secondar
stabilities that can destroy the ordered cellular states and
rise to phases that are disordered in both space and tim
directional solidification@3–5# the secondary instabilities in
clude breathing and solitary modes, tip splitting, and bi
and death sequences, while in Faraday waves@9# the second-
ary instabilities include Eckhaus, zigzag, and transverse
plitude modulations. There are a vast number of such p
nomena occurring in widely varying fields. An extensi
review of such far from equilibrium phenomena is given
Cross and Hohenberg@14#.

The generic feature of these systems is that under ce
conditions ~typically large driving forces! the periodic or
regular structures become dynamically unstable and ap
to be disordered or ‘‘chaotic’’ in both space and time.
spatially extended systems, or in the large-aspect-ratio l
~i.e., when the system size is much greater than the per
icity of the cellular patterns!, this behavior is commonly re
ferred to as spatiotemporal chaos or weak turbule
@15,16,22#. The nonstationary chaotic states are somew
reminiscent of single-phase equilibrium states in that co
lations decay exponentially in both space and time. In t
paper a simple equation that describes such beha
namely, the damped or stabilized Kuramoto-Sivashin
~DKS! @17,18# equation, is examined. While it is unlikel
that all the nonequilibrium systems discussed above can
described by a single ‘‘generic’’ model, the DKS equati
displays many of the secondary instabilities seen in dir
561063-651X/97/56~3!/2713~9!/$10.00
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tional solidification and provides a simple mathematic
model for studying the selection of nonequilibrium states a
the transition to spatiotemporal chaos from a coherent ce
lar state. It has also been argued@19,20# that this equation
~and slightly modified versions! serves as a generic model o
systems with broken parity symmetry and should be relev
for directional solidification fronts.

The main focus of this paper is a statistical characteri
tion of the states selected by the two-dimensional DKS eq
tion from a random initial condition in the large-aspect-ra
limit ~i.e., when the system size is far greater than the siz
the cellular structures!. This study compliments an earlie
study @21# of the one-dimensional DKS equation. The ma
result of this earlier study was the observation of a disc
tinuous transition from stationary periodic states to s
tiotemporal chaos. It is improbable that this result will app
in higher dimensions. Even in equilibrium systems, it is w
known that spatial dimension plays a strong role in st
selection and in the nature of transitions between phases.
main finding in this paper is the existence of a different no
trivial asymptotic state, at intermediate values of the dam
ing parametera, that is hexagonally ordered and vacillat
or breathes in time. For larger and smaller values ofa, hex-
agonal and spatiotemporal chaotic states are respectively
served. A characterization of the various states based
static and dynamic structure factors is used to establish
phase diagram of this system. To our knowledge, this is
first study of the DKS equation in two dimensions.

The difficulty in predicting the selected asymptotic sta
and the nature of the transition between these states is
the dynamics are inherently nongradient, i.e., there does
exist a free energy or Lyapunov functional. In addition, sp
tiotemporal chaos appears in the absence of thermal fluc
tions ~at least in the theoretical models!. Under these condi-
tions there is no criterion for determining the selected sta
Nevertheless, it is interesting to note that even within eq
librium theory the transition from one dimension to two d
mensions leads to significantly different behavior since o
disordered states can exist in one dimension at finite t
perature. Thus it is expected that the DKS equation will d
play much richer behavior in two dimensions than in one
2713 © 1997 The American Physical Society
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2714 56MARCO PANICONI AND K. R. ELDER
In the next section the one-dimensional DKS equation
introduced and extended to two dimensions. A brief desc
tion of related work is also given. In Sec. III the numeric
simulations of the two-dimensional DKS equation are p
sented. Finally, in Sec. IV a discussion and summary of th
results are given.

II. MODEL

The one-dimensional damped Kuramoto-Sivashin
equation can be written as

] th~x,t !52~a1]x
21]x

4!h~x,t !1@]xh~x,t !#2, ~1!

where]x[]/]x and] t[]/]t. To the limited extent that this
model describes directional solidification, the fieldh(x,t)
represents the position of the liquid-solid interface and
damping factora is related to the driving force. Increasin
the distance from the primary instability~i.e., increasing
ac2a, whereac51/4 is where the primary instability oc
curs! eventually drives the system chaotic. This equation
be easily extended to higher dimensions by replacing o
dimensional derivatives~i.e., ]x) with gradients ~i.e.,
¹W [ x̂]x1 ŷ]y1•••),

] th~rW,t !52~a1¹21¹4!h~rW,t !1u¹W h~rW,t !u2, ~2!

where¹2[]x
21]y

21•••. In this paper the late time solution
of Eq. ~2! are examined in two dimensions for a spatia
extended system.

Equation~2! contains a primary~linear! instability to the
formation of periodic structures of wave vectorkL51/A2 for
a,ac51/4. For a just belowac , this instability leads to
stationary periodic patterns. In one dimension the dyna
stability of these patterns has been studied extensively
Misbah and Valance@17#. In that work they found a band o
stable periodic states just below the primary instability c
tered aroundkL . As the damping parametera is decreased
several interesting secondary instabilities, in addition to
usual Eckhaus instability, were found to arise, such as pa
breaking modes, vacillating breathing modes, and pe
halving. While that study examined the stability of the s
tionary solutions, the selection of states was not conside

The first examination of the selection of states was und
taken numerically by Chate´ and Manneville@18#. In that
work they found that just below the primary instability th
asymptotic solutions~starting from a random initial condi
tion! led to periodic stationary solutions. Far below the p
mary instability they found chaotic solutions. It was orig
nally conjectured@18# that the transition from periodic to
chaotic states was continuous~second order!, based on the
continuous decrease of the lamellar-chaotic front velocity
the transition is approached and on the nonexponential d
of lamellar domain sizes at the transition. More recent d
cussions of the DKS equation by Manneville@22# admit the
possibility of a first-order transition. Recently, a numeric
finite-size scaling analysis@21# on a discrete map lattice ver
sion of the DKS equation provided strong evidence of a fi
order or discontinuous transition. The transition to sp
tiotemporal chaos was found to be coincident with t
appearance of the so-called breathing modes~which corre-
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sponds to a periodic oscillation of the patterns!. In the next
section the two-dimensional behavior of the DKS equation
examined.

III. NUMERICAL SIMULATIONS

The two-dimensional DKS equation~2! was numerically
integrated using Euler’s method for the time derivative on
spatial mesh of sizedx51.0 and time stepdt50.035. The
first-order spatial derivatives were evaluated by the us
midpoint discretization, and an isotropic form@23# was used
for the Laplacian. This discretization is by no means me
to actually solve the continuum equations, but rather
qualitatively capture the essential features of the underly
continuum model. The numerical method was chosen exp
itly to study the late-time large-aspect-ratio limit. Test sim
lations were conducted for a smaller mesh size (dx50.5 and
dt50.005). No significant change in the system behav
was observed. For the one-dimensional DKS@21#, a similar
discretization of the equation yielded the same basic ste
states and instabilities of the continuum model numerica
studied by Misbah and Valance@17#. No new phenomenon
beyond what was seen in the solutions of the continu
model, was observed with the discrete model. In two dim
sions the present discretization should capture the salient
tures of the two-dimensional DKS equation.

A periodic system of sizeL5512 was studied. Each ru
started from a random initial state with a small noise amp
tude of approximately 0.01. The aspect ratio forL5512 is
about 57 ~the typical pattern size has wave numb
k'1/A2).

A. Qualitative characterization

The numerical simulation of Eq.~2! led to three distinct
solutions in the late time limit, depending on the magnitu
of the control parametera. At ‘‘large’’ values of a ~i.e.,
0.2176,a,0.25) a periodic hexagonal morpholog
emerges. An example of such a morphology is shown in F
1~a! for a50.225 att535 000. Defects are clearly evident i
the pattern, such as point defects~the destruction of a hexa
gon! and line defects that separate domains that are cha
terized by a fixed hexagon orientation. Asa is decreased, the
hexagonal state begins to oscillate or breathe in time. In
state each cell oscillates out of phase with its nearest ne
bors, so that at a given instant there is a pattern of larger
smaller cell sizes. An example of such a state is shown
Fig. 1~b! for a50.210 att535 000. As the damping param
etera is reduced further, the breathing or oscillation of t
cells eventually becomes large enough to generate a
tiotemporal chaotic state. In this regime the system is dis
dered in both space and time. A typical example is displa
in Fig. 1~c! for a50.195 att535 000. A larger variation of
cell size and shape can be seen. For purposes of identi
tion the large-, intermediate-, and small-a states will be re-
spectively referred to as ‘‘hexagonal,’’ ‘‘breathing hexag
nal,’’ and ‘‘chaotic’’ states. The transition from
spatiotemporal chaos to the breathing hexagonal state oc
at aCB'0.207 and the transition from breathing hexagon
to hexagonal states occurs ataBO'0.2176.

The qualitative difference between the three states is
ther illustrated in Fig. 2, in which the dynamics of a sing
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FIG. 1. Spatial configurations att535 000 (13106 iterations!: ~a! hexagonal state,a50.225;~b! breathing hexagonal state,a50.210;
and ~c! spatiotemporal chaotic state,a50.195. ~d!, ~e!, and ~f! Fourier filtered configurations for the same states as in~a!, ~b!, and ~c!,
respectively.
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Fourier modeĉ(kx ,ky ,t) of the order parameter is dis
played, whereĉ(kx ,ky ,t) is the discrete spatial Fourie
transform ofc( idx, jdx,t),

ĉ~kx ,ky ,t !5(
i , j

eA21~ ikx1 jky!dxc~ idx, jdx,t !. ~3!

The summationsi and j run over the entire lattice of sizeL,
giving a finite-size resolution ink space of 2p/512. In Fig. 2
a typical Fourier mode is shown for the three different sta
as a function of time@note the different scale for Fig. 2~a!#.
For the a.aBO , ĉ(kx ,ky ,t) varies slowly in time. This
slow variation is due to the slow motion of defects. For t
breathing state~i.e.,a50.210), a clear periodic oscillation i
observed corresponding to the breathing of the cells. Fina
for small a ~i.e., a50.195) the dynamics becomes chaot
as can be seen in Fig. 2~c!.

To more accurately characterize the states the circul
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2716 56MARCO PANICONI AND K. R. ELDER
averaged static structure factorS(k) and the dynamic struc
ture factorS(k,w) were calculated,

S~k!5 (
ukW u5k

uc~kW !u2Y (
ukW u5k

, ~4!

S~k,w!5 (
ukW u5k

uc~kW ,w!u2Y (
ukW u5k

. ~5!

The sum overukW u is a sum over all wave vectors with ampl
tudeuku andĉ(kW ,w) is the discrete time Fourier transform o
ĉ(kW ,t),

c~kW ,w!5(
n

eA21wndtĉ~kW ,ndt!. ~6!

The summation over iteration numbern runs fromn5106 to
n51061327 680 in steps ofn580, i.e., ĉ(kW ,ndt) was
stored every 80 iterations starting fromn5106 and ending at
n51061327 680, and Fourier transformed to obta
c(kW ,w). The static structure factorS(k) was computed afte
106 iterations and averaged over 10 different times, separ
by 32 768 iterations.

S(k) is shown for the three basic states in Fig. 3. T
three different states are well characterized byS(k). Three
separate peaks centered around the wave vectorskD50,
kB'0.39, andkF'0.70 can be distinguished. The peak atkF
is the fundamental peak corresponding to the basic perio
ity of the hexagonal structure. The value ofkF is close to the
wave vector that is most unstable in linear theory~i.e.,
kL51/A2'0.707). The width of the peak is inversely pr
portional to the average domain size, where a domain is
fined as a region of ordered hexagons. Thus, in the large-
intermediate-a states, the peak is relatively sharp, while
the chaotic state it is quite broad. The peak centered atkB is

FIG. 2. Time series for a Fourier mode Rec(kW ), for

kW5(0.36,0.1), as a function of time:~a! a50.225, ~b! a50.210,
and ~c! a50.195.
ed

c-

e-
nd

associated with the breathing mode and appears in
breathing and chaotic regimes. In addition to a peak atkF ,
the breathing hexagonal pattern must have a peak at a lo
wavelength to describe the larger unit cell that contains b
a small and larger cell. Since this new cell size is roug
double the fundamental size, the peak appears at roughly
the value ofkF ~the actual value ofkB is somewhat larger
than this!.

A clearer signature of the breathing mode is displayed
the dynamic structure factor. The dynamic structure fac
was determined for a band of wave vectors centered aro
kB ; to improve statisticsS(k,w) was averaged over wav
vectors in a small band centered aroundkB ~typically ' 100
wave vectors!. The resultant averageS(kBw) is shown in
Fig. 4 as a function ofw for the three different states. Thi
figure shows a well-defined peak at the frequencywB , which
decreases and broadens asa is reduced into the chaotic re
gime. The width of this peak is inversely proportional to t
time over which the periodic oscillations are correlated. T
statea50.225 in Fig. 4 corresponds to the hexagonal pha
whereS(kB ,w) is essentially zero compared to the breathi
and chaotic state.

The kD peak in the static structure factorS(k) is associ-
ated with the defects in the patterns. To better highlight t
feature it is convenient to diminish the short-waveleng
fluctuations inc. A crude method to accomplish this is t
coarse grain the configuration in real space by averag
over a block size or, equivalently, by filtering out the larg
k fluctuations. To achieve this each pattern was Fou
transformed, multiplied bySD(k)/@SD(k)1SB(k)1SF(k)#,
and inverse Fourier transformed. The functionsSD(k),
SB(k), andSF(k) were obtained by fitting the static structu
factor S(k) to the three peaks (kD , kB , and kF , respec-
tively!. This technique effectively filters out the high-wav
vector behavior. The method works extremely well for t
hexagonal states, but is only partially successful for
smallera states. Some sample configurations are shown

FIG. 3. Circularly averaged structure functionS(k) for the three
statesa50.225, 0.210, and 0.195.
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56 2717STATIONARY, DYNAMICAL, AND CHAOTIC STATES . . .
Figs. 1~d!–1~f!. Comparing these with the raw configuratio
shown in Figs. 1~a!–1~c! illustrates the relationship betwee
the defects and the small-k behavior of the structure func
tion. Thus the small-wave vector behavior ofS(k) gives a
description of the defect correlations.

By examining the real-space configurations as a func
of a, it can be seen that the number of defects decreasesa
approachesaCB , from above and below. Comparing Fig
1~d! and 1~e!, it is evident that there are fewer defects for t
breathing hexagonal state than for the larger-a hexagonal
state. This is a somewhat surprising result, which pres
ably indicates that the true asymptotic states have not b
reached for the hexagonal state. In fact, it is likely that
breathing states are closer to the true asymptotic states
the breathing modes act somewhat like fluctuations and
low the system to sample more states.

As with any numerical work it is difficult to determin
whether the asymptotic regime has been reached. To ex
ine this effect two runs were extended tot5273 000
('83106 iterations!: one at a50.210 ~i.e., a breathing
state! and the other ata50.235 ~i.e., a hexagonal state!.
Whereas the steady state for the spatiotemporal chaotic s
seems to be reached withint535 000, the simulations fo
a50.210 and 0.235 indicate only a very small growth in t
late stages (t.35 000). In Fig. 5 the height of the fundame
tal peakSF[S(kF) and the correlation lengthzF ~defined to
be the inverse of the width of the peak at half the maxim
value! are shown for the two runs. This figure indicates th
the system is ordering, but at a very slow~logarithmic at
best! rate, with larger fluctuations for the smaller-a state.
The number of defects does not seem to significantly
crease from one to 83106 iterations; consequently, there
not much to be gained by extending the simulation tim
further. To assess whether the slow dynamics was influen
by the relatively large spatial grid and time steps used,
simulations were conducted atdx50.5 anddt50.005. No

FIG. 4. Dynamic structure functionS(kB ,w) for the three states
a50.225, 0.210, and 0.195. The length of the time series of

Fourier modesc(kW ,t) is 4096 points, separated by 80 iteration
taken after'106 iterations.
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significant change in the system behavior was observed.

B. Transition points

In the one-dimensional damped Kuramoto-Sivashins
equation there is strong evidence that the transition fr
periodic solutions to spatiotemporal chaos is discontinuo
In this subsection, the transition from hexagonal to breath
and from breathing to chaotic solutions is examined. As d
cussed in the preceding subsection, it is very difficult to e
amine the true asymptotic behavior due to the very sl
dynamics. For this study the ‘‘late’’ stage~times t>35 000)
solutions of the two-dimensional damped Kuramo
Sivashinsky equation are studied as a function ofa.

The states of the system were characterized by stud
various properties of the peaks in the static and dyna
structure factors. The basic quantities that should charac
ize the hexagonal, breathing, and chaotic states are the
verse widths at half maximum~i.e., the correlation lengthj
and correlation timet) and the heights of the peaks in th
static and dynamic structure factors. To facilitate the ana
sis, S(k) was fit to three peaks with the form

SD /~11zD
2 k2!1SB /@11B~k22kB

2 !2#

1SF /@11F~k22kF
2 !2#

.

Similarly, the dynamic structure factorS(kB ,w) was fit to
SD

d /(11t0
2w2)1SB

d /@11g(w22w0
2)2#. Sample fits are

shown in Fig. 6 fora50.206. The quantitieszF , zB , andtB
were defined as the inverse of the widths of the peaks
k5kF , k5kB , andw5wB, respectively.

The results of this study are presented in Figs. 7–9. T
dashed vertical lines in these figures indicate the estima
transition pointsaCB andaBO. Data for the breathing mode
(SB , zB , and kB) are shown only for the interva

e

,

FIG. 5. Time dependence of the height of the~a! main peakSF

and ~b! correlation lengthzF . The open circles are fora50.210
and the closed circles fora50.235.
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2718 56MARCO PANICONI AND K. R. ELDER
0.198,a,0.217, where a well-defined breathing mode pe
can be distinguished. The parameters of the defect~small-k)
peak are not displayed in these figures as the statistics ar
reliable due to the poor resolution in the small-k regime.

FIG. 6. Sample fit of the structure functions to Lorentzians
a50.206:~a! S(k) fit and ~b! S(kB ,w) fit. Open circle symbols are
the data points and the solid line is the fit.
k

not

In Fig. 7 the behaviors ofSF , SB , andSB
d are displayed.

SF is roughly constant aboveaCB ~although some small in-
crease is seen nearaCB) and decreases belowaCB . Both SB

and SB
d are approximately zero fora.aBO'0.2176, and

peak sharply ata'aCB'0.207. The peak of the breathin
mode excitation is a clear indicator of the transition to t
chaotic state.

Figure 8 shows the correlation lengths of the static fun
mental and breathing peakszF andzB and the dynamic cor-
relation time for the breathing peaktB , as a function ofa.
The correlation timetB decreases asa is decreased, but
aside from the larger scatter of data nearaCB , it does not
exhibit a clear signature of the transition to spatiotempo
chaos.zF andzB both show a characteristic increase arou
aCB to a more ordered state. It is also apparent that
correlation lengths are roughly constant near the breathin
hexagonal transition. A small peak inzF seems to occur a
the chaotic to breathing transition. The breathing hexago
states for smallera ~i.e., close toaCB) have a somewha
larger degree of translational order. This is consistent w
the observation mentioned in Sec. III A that these states h
fewer defects and are likely to be closer to their asympto
state.

Figure 9 illustrates the behavior ofkF , kB , and w as a
function of a. Both kB and wB ~in particular wB) clearly
mark the transition to spatiotemporal chaos. The typical p
tern size 2p/kF does not vary significantly asa is decreased

r

FIG. 7. ~a! Height of the main peakSF , ~b! breathing mode peakSB of the static structure factor as a function ofa, and~c! height of
the dynamic breathing mode peakSB

d as a function ofa.
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FIG. 8. Correlation lengths~a! zF and ~b! zB and ~c! the correlation timetB , as a function ofa.
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into the chaotic state. All the measured quantities in F
7–9 appear to change continuously through the transi
and give no indication of a discontinuity.

IV. DISCUSSION AND SUMMARY

In this paper the long-time behavior of the tw
dimensional DKS equation was examined numerically in
large-aspect-ratio limit. The data presented indicated th
distinct states: a hexagonal state fora.0.2176, a breathing
hexagonal state for 0.207,a,0.2176, and a disordered o
chaotic state fora,0.207. The states can be clearly disti
guished using statistical quantities such as the widths
peak heights of the static and dynamic structure factor. B
the hexagonal and breathing hexagonal states are chara
ized by a sharp peak in the static structure factor at the
damental wave vector. The breathing hexagonal state is
tinguished from the hexagonal state by the appearance
sharp peak inS(k) at approximately half the fundament
wave vector and by a sharp peak in the dynamic struc
factor. At small a spatiotemporal chaos occurs, which
characterized by diffuse peaks in both the static and dyna
structure factors. The transition between the chaotic state
breathing hexagonal state is highlighted by several qua
ties; most notably there is a significant peak in the amplitu
of the breathing mode excitation (SB andSB

d) at a'aCB .
While the results of these simulations cannot unambi

ously determine the nature of the transition to spatiotemp
.
n

e
e

d
th
ter-
n-
is-
f a

re

ic
nd
ti-
e

-
al

chaos, these results are somewhat reminiscent of a con
ous phase transition. No discontinuities were observed in
measured quantities. This is in contrast to recent numer
simulations of the one-dimensional DKS equation in which
discontinuous transition to spatiotemporal chaos was
served. Nevertheless, it is important to note that it is com
tationally very expensive to establish the nature of this tr
sition in two dimensions.

The main difficulty in determining the nature of the tra
sition is in reaching the asymptotic states. While the pres
results indicate a smooth change from a breathing hexag
state to spatiotemporal chaos, it is unknown whether
behavior will persist for the asymptotic~infinite time! states.
Indeed, the basic question that arises is what the nature o
true asymptotic state is. It is easy to show numerically t
perfect ~defect-free! hexagonal states are stable~or at least
metastable! solutions of the DKS equation at largea for a
range of wave vectors. Unfortunately, there is no variatio
principle in this nonequilibrium dynamical system to dete
mine if one of these states will be selected from rand
initial conditions.

In the absence of a general nonequilibrium select
scheme, it is interesting to consider what analogies w
equilibrium behavior can be drawn. For an equilibrium sy
tem with a continuous symmetry, the lower critical dime
sion is d52; for finite temperatures belowTc there is only
quasi-long-range order@24#. The DKS has a continuous sym
metry ~translational and rotational symmetry!, but the equa-
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FIG. 9. Peak wave numbers~a! kF and ~b! kB and ~c! the peak frequencywB , as a function ofa.
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tion is purely deterministic~zero noise!. Thus the existence
of a state with true long-range order is possible, as veri
for d51. Since it is easier to order a system for higher
mension~fluctuations are generally suppressed for higherd),
it is likely that the two-dimensional DKS equation wi
evolve to a state with perfect long-range hexagonal order~for
large a) at extremely long times. The existence of a st
with long-range order in the DKS dynamics is then som
what analogous to a zero-temperature equilibrium state.

To further this analogy, consider the secondary instab
ties as a source of random noise. If this were the case,
the onset of the secondary instabilities would lead directly
spatiotemporal chaos in one dimension, as was observe
an earlier study@21#. As noted above, in two dimensions th
appearance of thermal noise does not necessarily destro
order ~at least the system can have quasi-long-range ord!.
Thus the persistence of the breathing hexagonal state f
finite range ina is presumably because the noise introduc
via the breathing mode instability is not large enough
generate a chaotic state. Following the above reasoning
equilibrium analogy for the DKS ind52 should be closer to
a Kosterlitz-Thouless-type@24# transition. This would mean
d
-

e
-

i-
en
o
in

the
r
a

d

he

that the asymptotic states fora in the breathing mode regim
have no true long range order, but rather exhibit a power-
decay of correlation functions. This is an interesting conj
ture that merits further study. We hope to perform larg
scale simulations in the future to investigate this model s
tem further.

Finally, it is interesting to note that the same basic beh
ior was observed in parametrically driven surface waves
this two-dimensional system, Zhang and Vinals@9# observed
that the appearance of secondary instabilities~i.e., transverse
amplitude modes! occurred before the onset of spatiotemp
ral chaos. Thus it is possible that the behavior observed
the two-dimensional DKS equation is more generic th
might be expected for a nonequilibrium system.
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