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The long-time behavior of the two-dimensional damped Kuramoto-Sivashinsky equation is studied numeri-
cally in the large-aspect-ratio limit. The equation is shown to lead to three states depending on the magnitude
of a damping parameter. At large, intermediate, and small values ®f the equation leads respectively to
hexagonal, breathing hexagonal, and disordered states. The disordered phase is chaotic in both space and time,
consistent with spatiotemporal chaos. The transitions between these states are examined using standard statis-
tical measured.51063-651X97)06709-3

PACS numbd(s): 05.45+b

I. INTRODUCTION tional solidification and provides a simple mathematical
model for studying the selection of nonequilibrium states and
The appearance of spatially and temporally coherent celthe transition to spatiotemporal chaos from a coherent cellu-
lular states is a common feature of many driven nonequiliblar state. It has also been arguf®,20 that this equation
rium systems, such as directional solidificatija—5],  (and slightly modified versionserves as a generic model of
Rayleigh-Bmard convection[6—8], parametrically excited Systems with broken parity symmetry and should be relevant
surface waves or Faraday wav@s-11], and electroconvec- for directional solidification fronts.

tion in liquid crystalg[12]. These cellular states arise from a 1€ main focus of this paper is a statistical characteriza-
symmetry breaking of a homogeneous spatially extendedon of the states selected by the two-dimensional DKS equa-

system through primary instabilities, such as the Mullins-tion from a random initial condition in the large-aspect-ratio

Serkerka[ 1] instability in directional solidification and the limit (i.e., when the system size is far greater than the size of

: - : : . the cellular structurgs This study compliments an earlier
Faraday |nstab|I|ty[13]_ n pargmetncally ex_cned surface .study[21] of the one-dimensional DKS equation. The main
waves. Perhaps more interestingly, there exist secondary i

o Masult of this earlier study was the observation of a discon-
stabilities that can destroy the ordered cellular states and giv, y

: h h disordered in both dti fnuous transition from stationary periodic states to spa-
rise to phases that are disordered in both space and time. {pyiomnoral chaos. It is improbable that this result will apply

directional solidificatior{3-5] the secondary instabilities in- j, higher dimensions. Even in equilibrium systems, it is well
clude breathing and solltgry' modes, tip splitting, and birthynown that spatial dimension plays a strong role in state
and death sequences, while in Faraday wa9¢the second-  gelection and in the nature of transitions between phases. Our
ary instabilities include Eckhaus, zigzag, and transverse ammnain finding in this paper is the existence of a different non-
plitude modulations. There are a vast number of such pherivial asymptotic state, at intermediate values of the damp-
nomena occurring in widely varying fields. An extensive ing parameter, that is hexagonally ordered and vacillates
review of such far from equilibrium phenomena is given by or breathes in time. For larger and smaller values phex-
Cross and Hohenbeifd 4]. agonal and spatiotemporal chaotic states are respectively ob-
The generic feature of these systems is that under certagerved. A characterization of the various states based on
conditions (typically large driving forces the periodic or static and dynamic structure factors is used to establish the
regular structures become dynamically unstable and appeahase diagram of this system. To our knowledge, this is the
to be disordered or “chaotic” in both space and time. Infirst study of the DKS equation in two dimensions.
spatially extended systems, or in the large-aspect-ratio limit The difficulty in predicting the selected asymptotic states
(i.e., when the system size is much greater than the periodind the nature of the transition between these states is that
icity of the cellular patterns this behavior is commonly re- the dynamics are inherently nongradient, i.e., there does not
ferred to as spatiotemporal chaos or weak turbulencexist a free energy or Lyapunov functional. In addition, spa-
[15,16,23. The nonstationary chaotic states are somewhatiotemporal chaos appears in the absence of thermal fluctua-
reminiscent of single-phase equilibrium states in that corretions (at least in the theoretical modgl&Jnder these condi-
lations decay exponentially in both space and time. In thigions there is no criterion for determining the selected states.
paper a simple equation that describes such behavioNevertheless, it is interesting to note that even within equi-
namely, the damped or stabilized Kuramoto-Sivashinskylibrium theory the transition from one dimension to two di-
(DKS) [17,18 equation, is examined. While it is unlikely mensions leads to significantly different behavior since only
that all the nonequilibrium systems discussed above can bgisordered states can exist in one dimension at finite tem-
described by a single “generic” model, the DKS equation perature. Thus it is expected that the DKS equation will dis-
displays many of the secondary instabilities seen in direcplay much richer behavior in two dimensions than in one.

1063-651X/97/563)/27139)/$10.00 56 2713 © 1997 The American Physical Society



2714 MARCO PANICONI AND K. R. ELDER 56

In the next section the one-dimensional DKS equation issponds to a periodic oscillation of the patterris the next
introduced and extended to two dimensions. A brief descripsection the two-dimensional behavior of the DKS equation is
tion of related work is also given. In Sec. Ill the numerical examined.
simulations of the two-dimensional DKS equation are pre-
sented. Finally, in Sec. IV a discussion and summary of these lIl. NUMERICAL SIMULATIONS

results are given. . . . )
The two-dimensional DKS equatid2) was numerically

integrated using Euler’'s method for the time derivative on a
spatial mesh of sizex=1.0 and time steplt=0.035. The

The one-dimensional damped Kuramoto-Sivashinskyfirst-order spatial derivatives were evaluated by the usual
equation can be written as midpoint discretization, and an isotropic fofi3] was used

for the Laplacian. This discretization is by no means meant
&th(x,t)=—(a+a>2<+a‘x‘)h(x,t)+[axh(x,t)]2, (1) to actually solve the continuum equations, but rather to
qualitatively capture the essential features of the underlying
whered, =/ dx andd,=dldt. To the limited extent that this continuum model. The numerical method was chosen explic-
model describes directional solidification, the fidigx,t) itly to study the late-time large-aspect-ratio limit. Test simu-
represents the position of the liquid-solid interface and thdations were conducted for a smaller mesh side< 0.5 and
damping factora is related to the driving force. Increasing dt=0.005). No significant change in the system behavior
the distance from the primary instabilitfi.e., increasing Wwas observed. For the one-dimensional D3], a similar
a.— o, Where a,=1/4 is where the primary instability oc- discretization of the equation yielded the same basic steady
curs eventua”y drives the system chaotic. This equa’[ion casstates and instabilities of the continuum model numerically
be easily extended to higher dimensions by replacing onestudied by Misbah and Valan¢&7]. No new phenomenon,
dimensional derivatives(i.e., d,) with gradients (i.e., beyond what was seen in the solutions of the continuum
V=Xt Yo+ -- ) model, was observed with the discrete model. In two dimen-
y ' sions the present discretization should capture the salient fea-
tures of the two-dimensional DKS equation.

A periodic system of sizé =512 was studied. Each run
started from a random initial state with a small noise ampli-
tude of approximately 0.01. The aspect ratio for 512 is
about 57 (the typical pattern size has wave number

k~1/\/2).

1. MODEL

ah(r,t)=—(a+V2+VHh(r,t) +|Vh(r,|% (2

whereV2=g5+d;+ - - -. In this paper the late time solutions
of Eq. (2) are examined in two dimensions for a spatially
extended system.

Equation(2) contains a primarylinear instability to the
formation of periodic structures of wave vectqr=1/y/2 for
a<a.=1/4. Fora just below ., this instability leads to
stationary periodic patterns. In one dimension the dynamic The numerical simulation of Eq2) led to three distinct
stability of these patterns has been studied extensively bgolutions in the late time limit, depending on the magnitude
Misbah and Valancgl7]. In that work they found a band of of the control parametew. At “large” values of « (i.e.,
stable periodic states just below the primary instability cen0.2176<«<<0.25) a periodic hexagonal morphology
tered around, . As the damping parameter is decreased, emerges. An example of such a morphology is shown in Fig.
several interesting secondary instabilities, in addition to thel(a) for «=0.225 att=35 000. Defects are clearly evident in
usual Eckhaus instability, were found to arise, such as paritythe pattern, such as point defeétise destruction of a hexa-
breaking modes, vacillating breathing modes, and periogion and line defects that separate domains that are charac-
halving. While that study examined the stability of the sta-terized by a fixed hexagon orientation. Ads decreased, the
tionary solutions, the selection of states was not considerediexagonal state begins to oscillate or breathe in time. In this

The first examination of the selection of states was understate each cell oscillates out of phase with its nearest neigh-
taken numerically by Chatand Manneville[18]. In that bors, so that at a given instant there is a pattern of larger and
work they found that just below the primary instability the smaller cell sizes. An example of such a state is shown in
asymptotic solutiongstarting from a random initial condi- Fig. 1(b) for =0.210 att=235 000. As the damping param-
tion) led to periodic stationary solutions. Far below the pri-eter « is reduced further, the breathing or oscillation of the
mary instability they found chaotic solutions. It was origi- cells eventually becomes large enough to generate a spa-
nally conjectured 18] that the transition from periodic to tiotemporal chaotic state. In this regime the system is disor-
chaotic states was continuo(second order based on the dered in both space and time. A typical example is displayed
continuous decrease of the lamellar-chaotic front velocity asn Fig. 1(c) for «=0.195 att=35 000. A larger variation of
the transition is approached and on the nonexponential decagll size and shape can be seen. For purposes of identifica-
of lamellar domain sizes at the transition. More recent distion the large-, intermediate-, and smallstates will be re-
cussions of the DKS equation by Mannevil22] admit the  spectively referred to as “hexagonal,” “breathing hexago-
possibility of a first-order transition. Recently, a numericalnal,” and “chaotic” states. The transition from
finite-size scaling analys{®1] on a discrete map lattice ver- spatiotemporal chaos to the breathing hexagonal state occurs
sion of the DKS equation provided strong evidence of a firstat a«cg~0.207 and the transition from breathing hexagonal
order or discontinuous transition. The transition to spa+to hexagonal states occursago~0.2176.
tiotemporal chaos was found to be coincident with the The qualitative difference between the three states is fur-
appearance of the so-called breathing mog@esich corre- ther illustrated in Fig. 2, in which the dynamics of a single

A. Qualitative characterization
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FIG. 1. Spatial configurations &t 35 000 (1x 10° iteration3: (a) hexagonal statey=0.225;(b) breathing hexagonal state=0.210;
and (c) spatiotemporal chaotic state,=0.195.(d), (e), and (f) Fourier filtered configurations for the same states a&jn(b), and(c),
respectively.

Fourier modef/;(kx,ky,t) of the order parameter is dis- @ typical Fourier mode is shown for the three different states

played, wherez://(kx,ky,t) is the discrete spatial Fourier 2 a function of tirpe{note the different scale for Fig(®].
transform ofy(idx,jdx,t), For the a>ago, #(ky Ky ,t) varies slowly in time. This
slow variation is due to the slow motion of defects. For the
breathing statéi.e., «=0.210), a clear periodic oscillation is
observed corresponding to the breathing of the cells. Finally,
for small @ (i.e., «=0.195) the dynamics becomes chaotic,
The summations andj run over the entire lattice of size, ~ as can be seen in Fig(Q.

giving a finite-size resolution ik space of 2r/512. In Fig. 2 To more accurately characterize the states the circularly

Pk ky 1) =2 e IRy Gdx jdx, ). (3)
]
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and(c) «=0.195.

) . associated with the breathing mode and appears in the
averaged static structure factsfk) and the dynamic struc- breathing and chaotic regimes. In addition to a peakgat

ture factorS(k,w) were calculated, the breathing hexagonal pattern must have a peak at a longer
wavelength to describe the larger unit cell that contains both
S(k)= >, |p(k)|? > (4) asmall and larger cell. Since this new cell size is roughly
k=K k=K double the fundamental size, the peak appears at roughly half
the value ofkg (the actual value okg is somewhat larger
skw= 3 [pkw2 /[ 3 (5 thanthi.

A clearer signature of the breathing mode is displayed by
the dynamic structure factor. The dynamic structure factor
The sum ovetIZ| is a sum over all wave vectors with ampli- was determined for a band of wave vectors centered around
tude|k| and (K, w) is the discrete time Fourier transform of Ke: {0 improve statisticsS(k,w) was averaged over wave
fp(lz ) vectors in a small band centered arodn@d(typl_cally ~ 1OQ

v wave vectors The resultant averag8(kgw) is shown in
o Fig. 4 as a function ofv for the three different states. This
P(k,w)= >, e~ TWndty i ndt). (6)  figure shows a well-defined peak at the frequewgy which
n decreases and broadensaass reduced into the chaotic re-
. . . _ gime. The width of this peak is inversely proportional to the
The summation oyer lteration numhenr'uns troinn— 10°to time over which the periodic oscillations are correlated. The
n=10°+327 680 in steps oin=80, i.e., y(k,ndt) was  stateq=0.225 in Fig. 4 corresponds to the hexagonal phase,
stored every 80 iterations starting fram-10° and ending at  \yhereS(kg,w) is essentially zero compared to the breathing
n=10°+327 680, and Fourier transformed to obtain and chaotic state.
#(K,w). The static structure fact@(k) was computed after The kp peak in the static structure fact8(k) is associ-
1 iterations and averaged over 10 different times, separategted with the defects in the patterns. To better highlight this
by 32 768 iterations. feature it is convenient to diminish the short-wavelength

S(k) is shown for the three basic states in Fig. 3. Thefluctuations in. A crude method to accomplish this is to
three different states are well characterizedS§k). Three coarse grain the configuration in real space by averaging
separate peaks centered around the wave ve#igrsO,  over a block size or, equivalently, by filtering out the large-
kg~0.39, andkg~0.70 can be distinguished. The pealkat k fluctuations. To achieve this each pattern was Fourier
is the fundamental peak corresponding to the basic periodidransformed, multiplied bySy(k)/[ Sp(k) + Sg(k) + Sg(k)],
ity of the hexagonal structure. The valuekgfis close to the and inverse Fourier transformed. The functioB8g(k),
wave vector that is most unstable in linear thedne.,  Sg(k), andSc(k) were obtained by fitting the static structure
k_=1//2~0.707). The width of the peak is inversely pro- factor S(k) to the three peakskf,, kg, and kg, respec-
portional to the average domain size, where a domain is ddively). This technique effectively filters out the high-wave-
fined as a region of ordered hexagons. Thus, in the large- andector behavior. The method works extremely well for the
intermediatea states, the peak is relatively sharp, while in hexagonal states, but is only partially successful for the
the chaotic state it is quite broad. The peak centerdg &&  smaller o states. Some sample configurations are shown in

[kI=k Ik|=k



56 STATIONARY, DYNAMICAL, AND CHAOTIC STATES ... 2717

T T T T T T T T T T

50 - I - 1
" a= 0.225 g

[ o a= 0.210 ] ]
40 - x a= 0.195 - 3

log,o(Sp)

log, (&)

log o(t)

FIG. 4. Dynamic structure functio8(kg ,w) for the three states . . .
a=0.225, 0.210, and 0.195. The length of the time series of the FIG. 5. Time dependence of the height of g main peakS:

; I ) i . and (b) correlation lengthz. The open circles are fox=0.210
Fourier modesy(k,t) is 4096 points, separated by 80 iterations, o4 the closed circles far= 0.235.
taken after~1(f iterations.

Figs. 1d)—1(f). Comparing these with the raw configurations significant change in the system behavior was observed.

shown in Figs. &)—1(c) illustrates the relationship between

the defects and the smallbehavior of the structure func- B. Transition points
tion. Thus the small-wave vector behavior 8fk) gives a In the one-dimensional damped Kuramoto-Sivashinsky
description of the defect correlations. equation there is strong evidence that the transition from

By examining the real-space configurations as a functiorperiodic solutions to spatiotemporal chaos is discontinuous.
of @, it can be seen that the number of defects decreases asin this subsection, the transition from hexagonal to breathing
approachesycg, from above and below. Comparing Figs. and from breathing to chaotic solutions is examined. As dis-
1(d) and Xe), it is evident that there are fewer defects for the cussed in the preceding subsection, it is very difficult to ex-
breathing hexagonal state than for the largehexagonal amine the true asymptotic behavior due to the very slow
state. This is a somewhat surprising result, which presumdynamics. For this study the “late” stagémest=35 000)
ably indicates that the true asymptotic states have not beesplutions of the two-dimensional damped Kuramoto-
reached for the hexagonal state. In fact, it is likely that theSjvashinsky equation are studied as a functionxof
breathing states are closer to the true asymptotic states since The states of the system were characterized by studying
the breathing modes act somewhat like fluctuations and alarious properties of the peaks in the static and dynamic
low the system to sample more states. structure factors. The basic quantities that should character-

As with any numerical work it is difficult to determine ize the hexagonal, breathing, and chaotic states are the in-
whether the asymptotic regime has been reached. To examerse widths at half maximurfi.e., the correlation lengtt
ine this effect two runs were extended te=273000 and correlation timer) and the heights of the peaks in the
(=8X10° iteration3: one ata=0.210 (i.e., a breathing static and dynamic structure factors. To facilitate the analy-
statg and the other aiw=0.235 (i.e., a hexagonal state sis, S(k) was fit to three peaks with the form
Whereas the steady state for the spatiotemporal chaotic states

seems to be reached withtn=35 000, the simulations for Sp /(14 ¢2K?) + Sg/[1+B(k*—k3)?]
a=0.210 and 0.235 indicate only a very small growth in the
late stagestt>35 000). In Fig. 5 the height of the fundamen- +Se/[1+F(k2—k2)?]

tal peakSg=S(kg) and the correlation length- (defined to

be the inverse of the width of the peak at half the maximum

valu@ are shown for the two runs. This figure indicates thatSimilarly, the dynamic structure fact@(kg,w) was fit to

the system is ordering, but at a very sldqiegarithmic at sd/(1+ TSW2)+S‘§/[1+ y(w?—w3)?]. Sample fits are
bes} rate, with larger fluctuations for the smallerstate.  shown in Fig. 6 fore=0.206. The quantitiegg, (g, andrg

The number of defects does not seem to significantly dewere defined as the inverse of the widths of the peaks at
crease from one to:81(F iterations; consequently, there is k=kg, k=kg, andw=wg, respectively.

not much to be gained by extending the simulation times The results of this study are presented in Figs. 7-9. The
further. To assess whether the slow dynamics was influencedhished vertical lines in these figures indicate the estimated
by the relatively large spatial grid and time steps used, tedransition pointsacg and ago. Data for the breathing mode
simulations were conducted dix=0.5 anddt=0.005. No (Sg, {g, and kg) are shown only for the interval
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In Fig. 7 the behaviors 08¢, Sg, ands‘é are displayed.

St is roughly constant abovecg (although some small in-
crease is seen neatg) and decreases belowtg. Both Sg
and S‘Bi are approximately zero foa>ago~0.2176, and
peak sharply atv~a-g~0.207. The peak of the breathing
mode excitation is a clear indicator of the transition to the
chaotic state.

Figure 8 shows the correlation lengths of the static funda-
mental and breathing peaks and ¢z and the dynamic cor-
relation time for the breathing pealg, as a function of.

The correlation timerg decreases ag is decreased, but,
aside from the larger scatter of data negys, it does not
exhibit a clear signature of the transition to spatiotemporal
chaos.r and g both show a characteristic increase around
acg to a more ordered state. It is also apparent that the
correlation lengths are roughly constant near the breathing to
hexagonal transition. A small peak i seems to occur at
the chaotic to breathing transition. The breathing hexagonal
states for smallew (i.e., close toacg) have a somewhat

FIG. 6. Sample fit of the structure functions to Lorentzians forlarger degree of translational order. This is consistent with
a=0.206:(a) S(k) fit and (b) S(kg ,w) fit. Open circle symbols are the observation mentioned in Sec. Il A that these states have

the data points and the solid line is the fit.

fewer defects and are likely to be closer to their asymptotic
state.

0.198< @< 0.217, where a well-defined breathing mode peak Figure 9 illustrates the behavior &f, kg, andw as a

can be distinguished. The parameters of the ddfaotallk)

function of a. Both kg and wg (in particularwg) clearly

peak are not displayed in these figures as the statistics are notark the transition to spatiotemporal chaos. The typical pat-
reliable due to the poor resolution in the smialtegime.

tern size 2r/kg does not vary significantly as is decreased
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into the chaotic state. All the measured quantities in Figschaos, these results are somewhat reminiscent of a continu-
7—-9 appear to change continuously through the transitiomus phase transition. No discontinuities were observed in any

and give no indication of a discontinuity. measured quantities. This is in contrast to recent numerical
simulations of the one-dimensional DKS equation in which a
IV. DISCUSSION AND SUMMARY discontinuous transition to spatiotemporal chaos was ob-

served. Nevertheless, it is important to note that it is compu-

In this paper the long-time behavior of the two- tationally very expensive to establish the nature of this tran-
dimensional DKS equation was examined numerically in thesition in two dimensions.
large-aspect-ratio limit. The data presented indicated three The main difficulty in determining the nature of the tran-
distinct states: a hexagonal state tor-0.2176, a breathing sition is in reaching the asymptotic states. While the present
hexagonal state for 0.287¢<<0.2176, and a disordered or results indicate a smooth change from a breathing hexagonal
chaotic state forwr<<0.207. The states can be clearly distin- state to spatiotemporal chaos, it is unknown whether this
guished using statistical quantities such as the widths anldehavior will persist for the asymptotinfinite time) states.
peak heights of the static and dynamic structure factor. Botlindeed, the basic question that arises is what the nature of the
the hexagonal and breathing hexagonal states are characteme asymptotic state is. It is easy to show numerically that
ized by a sharp peak in the static structure factor at the funperfect (defect-fre¢ hexagonal states are stalfte at least
damental wave vector. The breathing hexagonal state is dignetastable solutions of the DKS equation at large for a
tinguished from the hexagonal state by the appearance ofr@ange of wave vectors. Unfortunately, there is no variational
sharp peak inS(k) at approximately half the fundamental principle in this nonequilibrium dynamical system to deter-
wave vector and by a sharp peak in the dynamic structurenine if one of these states will be selected from random
factor. At small @ spatiotemporal chaos occurs, which is initial conditions.
characterized by diffuse peaks in both the static and dynamic In the absence of a general nonequilibrium selection
structure factors. The transition between the chaotic state aratheme, it is interesting to consider what analogies with
breathing hexagonal state is highlighted by several quantiequilibrium behavior can be drawn. For an equilibrium sys-
ties; most notably there is a significant peak in the amplitudéem with a continuous symmetry, the lower critical dimen-
of the breathing mode excitatiors§ and S‘g) ata~acg. sion isd=2; for finite temperatures below, there is only

While the results of these simulations cannot unambigugquasi-long-range ord¢24]. The DKS has a continuous sym-
ously determine the nature of the transition to spatiotemporahetry (translational and rotational symmelkrput the equa-
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FIG. 9. Peak wave numbefa) kg and(b) kg and(c) the peak frequencwg, as a function of.

tion is purely deterministi¢zero nois¢ Thus the existence that the asymptotic states farin the breathing mode regime
of a state with true long-range order is possible, as verifiethave no true long range order, but rather exhibit a power-law
for d=1. Since it is easier to order a system for higher di-decay of correlation functions. This is an interesting conjec-
mension(fluctuations are generally suppressed for highler  ture that merits further study. We hope to perform larger-
it is likely that the two-dimensional DKS equation will scale simulations in the future to investigate this model sys-
evolve to a state with perfect long-range hexagonal offder tem further.
large a) at extremely long times. The existence of a state Finally, it is interesting to note that the same basic behav-
with long-range order in the DKS dynamics is then some-ior was observed in parametrically driven surface waves. In
what analogous to a zero-temperature equilibrium state.  this two-dimensional system, Zhang and Vin@$observed

To further this analogy, consider the secondary instabilithat the appearance of secondary instabilities, transverse
ties as a source of random noise. If this were the case, theamplitude modésoccurred before the onset of spatiotempo-
the onset of the secondary instabilities would lead directly taal chaos. Thus it is possible that the behavior observed in
spatiotemporal chaos in one dimension, as was observed the two-dimensional DKS equation is more generic than
an earlier study21]. As noted above, in two dimensions the might be expected for a nonequilibrium system.
appearance of thermal noise does not necessarily destroy the
order (at least the system can have quasi-long-range prder
Thus the persistence of the breathing hexagonal state for a
finite range ina is presumably because the noise introduced M.P. thanks Yoshi Oono for useful discussions and would
via the breathing mode instability is not large enough tolike to acknowledge support by the National Science Foun-
generate a chaotic state. Following the above reasoning, thdation Grant No. NSF-DMR-93-14938. K.R.E. would like to
equilibrium analogy for the DKS id=2 should be closer to acknowledge support from Research Corporation Grant No.
a Kosterlitz-Thouless-typf24] transition. This would mean CC4181.
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