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Numerical and analytic results for the expon@ndescribing the decay of the first return probability of an
interface to its initial height are obtained for a large class of linear Langevin equations. The models are

parametrized by the dynamic roughness expogentith 0<8<1; for ,8:% the time evolution is Markovian.

Using simulations of solid-on-solid models, of the discretized continuum equations as well as of the associated
zero-dimensional stationary Gaussian process, we address two problems: The return of an initially flat inter-
face, and the return to an initial state with fully developed steady-state roughness. The two problems are shown
to be governed by different exponents. For the steady-state case we point out the equivalence to fractional
Brownian motion, which has a return exponégt 1— 3. The exponend, for the flat initial condition appears

to be nontrivial. We prove thai,— = for B—0, 6= 65 for B<3 and 6,=< 6 for >3, and calculatedy g
perturbatively to first order in an expansion around the Markovian (msé Using the exact result
0s=1— B, accurate upper and lower bounds @3 can be derived which show, in particular, that
6o=(1— B)? B for small 8. [S1063-651X97)06309-5

PACS numbgs): 02.50-r, 05.40:+j, 81.10.A]j

[. INTRODUCTION whereK is some positive constant, argl denotes the dy-
namic roughness exponent, which depends @nd on the

The statistics of first passage events for non-Markoviartype of noise considered. For example, for uncorrelated
stochastic processes has attracted considerable recent intefggite noise 8= 1[1—d/z] for a d-dimensional interface,

in the physical literature. Such problems appear naturally in , . . mirq
spatially extended nonequilibrium systems, where the dywh'!e for volgme conserving noisg=z[1-(d+2)/z] [6].
n interface isroughif 8>0. In the present work we regard

namics at a given point in space becomes non-Markoviaﬁ‘ i . )
due to the coupling to the neighbors. The asymptotic decaf? 35 @ continuous parameter in the interval [0Note that
of first passage probabilities turns out to be hard to comput" 8=z Ed.(2) reduces to the autocorrelation function of a
even for very simple systems such as the one-dimension&fdom walk, corresponding to the limit— (no relax-
Glauber mode[1] or the linear diffusion equation with ran- &tion of Eq. (1) with uncorrelated white noise. ,
dom initial conditiong2]. Indeed, determining the first pas- _ 1© define the first passage problems of interest, consider
sage probability of a general Gaussian process with knowH'e quantity
autocorrelation function is a classic unsolved problem in
probability theory[3-5]. P(to,t)=Prolf h(x,s) #h(x,tp) Vs:ito<s<to+t]. (3)

In this paper we address the first passage statistics of fluc-
tuating interfaces. The large-scale behavior of the models ofye focus on two limiting cases. Fog=0, P(ty,t) reduces

interest is described by the linear Langevin equation to the probabilitypy(t) that the interface has not returned to
its initial heighth=0 at timet. This will be referred to as the
dh transient persistence probabilitgharacterized by the expo-
- (CVOTh gy D nent6,,
for the height fieldh(x,t). Here the dynamic exponemt Po()=P(O)~t~%, t—oo. 4

(usuallyz=2 or 4 characterizes the relaxation mechanism,

while 7(x,t) is a Gaussian noise term, possibly with spatialOn the other hand, fory,— the interface develops rough-
correlations. We will generally assume a flat initial interface,ness on all scales and the memory of the flat initial condition
h(x,0)=0. Since Eq(1) is linear,h(x,t) is Gaussian and its is lost. In this limit P(t,,t) describes the return to a rough
temporal statistics at an arbitrary fixed point in space is fullyinitial configuration drawn from the steady-state distribution
specified by the autocorrelation function computed from Eqof the process, and the correspondisigady-statepersis-

(1), tence probabilitypg(t) decays with a distinct expone#t,
A(t,t")=(h(x,t)h(x,t")y=K[(t’ +1)2A—|t' —t|?F], ps(t)= lim P(tg,t)~t™ %, t—oo. (5)
(2) tg—>
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In general, one expects th&(ty,t)~t % for t<t, and Ag(t,t" )= lim (H(x,t;to)H(x,t";tg))
P(tg,t)~t~ % for t>t,, with a crossover function connect- tg—o
ing the two regimes.

A particular case of the steady-state persistence problem
was studied previously in the context of tracer diffusion on

= lim [A(to‘l’t,to‘l’t,)_A(to+t,t0)_A(to,to+t’)

toaw

surfaceg7]. In this work it was observed that the distribution +A(tg,tg)]
of first return times has a natural interpretation as a distribu- 28\ 4128 |v1 4128
tion of trapping timesduring which a diffusing particle is =K+t 2E =t —t]*7], ©)

buried and cannot move; thus the first passage exponent mWhich is precisely the correlator of fractional Brownian mo-
translate into an anomalous diffusion law. A simple scaling P y

argumentto be recalled below in Sec.)Was used to derive tion with Hurst exponen [8] (see Sec. ¥/ NextAg(t,t") is

the relation normalized byyAg(t,t)Ag(t’,t") and rewritten in terms of
T=Int. This yields the autocorrelation function
0s=1—p, (6) fs(T)=cosiBT)— 3|2 sink(T/2)|?~. (10

Comparison of Eqgs(7) and (10) makes it plausible that
which was well supported by numerical simulations forthe two processes have different decay rates of their persis-
B=%. A primary motivation of the present work is therefore tence probabilities. Both functions have the same type of
to investigate the validity of this relation through simulations short-time singularity
for other values of3 and refined analytic considerations, as
well as to understand why it fails for the transient persistence fos(T)=1-0O(|T|?#), T—0, (1)

exponentd,. . . . .
which places them in thelassa=2g in the sense of Slepian

The paper is organized as follows. In Sec. Il we convert[ - :
the nonstationary stochastic procégs,t) into a stationary L3)- However, for largeT they decay with different rates,

Gaussian process in logarithmic tirf&5]. This representa- fos(T) ~exp(—AgsT) for T—o0, where
tion will provide us with a number of bounds and scalin .
relations,pand will be used in the simulations of Sec. IV C. g No=1=B, hs=min(,1- 5] (12
perturbative calculation of the persistence exponents in thgan pe interpreted, in analogy with phase ordering kinetics,
vicinity of =3 is presented in Sec. lll. The simulation re- 45 theautocorrelation exponen] of the two processes.
sults are summarized in Sec. IV. Section V reviews the ana- o 3 stationary Gaussian process with a general autocor-
lytic basis of relation(6), and makes contact to earlier work re|ator f(T), the calculation of the decay exponehof the
on the return statistics of fractional Brownian motion, while hesistence probability is very hard. Only in a very few cases
Sec. VI employs expressid) for 65 to numerically gener-  are exact results know8]. Approximate results can be de-
ate exact upper and lower bounds @n Finally, some con-  riyed for certain classes of autocorrelatdiT). For ex-
clusions are offered in Sec. VII. ample, whenf(T)=1—0(T?) for small T (an example be-
ing the linear diffusion equatiof2]), the density of zero
crossings is finite and an independent interval approximation
(A) [2] gives a very good estimate ¢f However, for any
Following Refs.[2,5] we introduce the normalized ran- other process for whichi(T)=1—O(|T|*) for small T with
dom Variable)(:h/\/<_hzj which is considered a function of @<2, the density of zeros is infinite and the IIA breaks
the logarithmic timeT =Int. The Gaussian procesgqT) is  down. For general processes wida=1, a perturbative
then stationary by constructioiX(T)X(T"))=fo(T—T"), method(when the process is not far from Markovjaand an
and the autocorrelation functidiy obtained from Eq(2) is ~ approximate variational method was developed receily
This method will be applied to the present problem in Sec.
) [ll. In the remainder of this section we collect some exact
fo(T)=coshT/2)*# — [sinh(T/2)[". (7)  bounds ong; further bounds will be derived in Sec. VI.
Slepian[3] proved the following useful theorem for sta-
tionary Gaussian processes with unit variance: For two pro-

tence probability becomes exponentiph(T) ~exp( 6,T), cesses with correlatorsf{(T) and f,(T) such that

and the task is to determine the decay mes a functional f1(T)=1,(T)=0 for all T, the corresponding persistence
of the correlatorf o [3-5] probabilities satisfyp;(T) = p,(T); in particular, the inequal-

Similarly a normalized stationary process can be associi—ty. 8.< 6, holds for the asymptotic decay rates. By applying

ated with the steady-state problem. First define the heig is result to corr_elator_(s?) and(10} we can generate a num-
difference variable er of relations involving the return exponerdlg and 6s.

For example, taking the derivative of E{) with respect to
B, one discovers thafy(T) increases monotonically with
H(x,t;tg)=h(x,t+1ty) —h(x,tp), (8)  decreasings for all T, and consequently

: . o . 0o(B)=00(B") it B<p’. (13
and compute its autocorrelation function in the limit
tg— o0, For B<pB'<(2 In2) ! the stronger inequality

Il. MAPPING TO A STATIONARY PROCESS

In logarithmic time the power-law decay) of the persis-
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(1—B")0s(B)=(1—B)by(B") (14  B—0. Note that all the relations derived fés—Eqs.(16),
(17), and(21)—are consistent witlhs=1— 3.
is proved in the Appendix.
Moreover, rewriting Eq(10) in the form ll. PERTURBATION THEORY NEAR pg=1

fo(T)=e AT+ AT 1—e 28T — (1 IT)26], We have already remarked that both steady-state and the
(15 transient processes reduce to a Markov process véieh.
it is evident that fo(T)<exp(gT|) for B<% and T_vvo of us have devefloped a perturtémon t.heory for the pr;ar—
f(T)>exp(_@[T|) for B>2L A process characterized by a sistence exponent of a stationary Gaussian process whose
S 2 correlation function is close to a Markov procg§3$. When

Eﬂur::klyviaxnpon:dntiltal alitci)ctorrzelatlcr)nbfl:)?lci;tlon r?’E)MTD n|]s ¢ {ﬂe persistence probability for a Markov process is written in
arkovian, a S persistence probability can be Compule, , oy of 5 path integral, it is found to be related to the

EXp“C'tly t[e?\]; ﬁ‘h; asymp;co?c dfecay;_ ratéTls eqtt']al fto ttk,:ﬁ ¢ partition function of a quantum harmonic oscillator with a
fecTay ra b ob edco(;ria:\jl)n kun_c lon. ust_ Ie acl Al hard wall at the origin. The persistence probability for a pro-
s(T) can be bounded by Markovia@xponential correla- cess whose correlation function differs perturbatively from

tion functions supplies us with the inequalities the Markov process, i.e., whose autocorrelation function is
1
0s=p, B<s, (16) f(T)=exp(—\|T|)+€ap(T), (23

0s<B, B>3. may then be calculated from a knowledge of the eigenstates
. . of the quantum harmonic oscillator. (283) we have used the
The last inequality can be sharpened to same normalizationf(0)=1, as elsewhere in this paper.
o<t pB>% (17) With this normalizationg(0)=0. (Note that a different nor-
st 2 malization was employed in Reff5].)
This will be demonstrated in the Appendix, where we also If 8=3+¢, Egs.(7) and(10) may be written in the form
prove that

6p=1—-p for B<3, fo,s:eXF( _g +edos(|T)+0O(€%), (24)
(18)
bo<1-pB for pB>3 where
and T T T T
) =2 coshz—ln( coshz—) -2 smhz—ln( smhi) , (25
0p=05 for pB<3, (19
Go=<6s for pB>3. bs= sinh;—- T—2In(2 sinh-zi) : (26)

Next we record some relations for special valuegoWe The result for the persistence exponBequivalent to Eq.

noted already that fog= 3 the _interface fluctuati_ons reduce (7) of referencd5]] may most conveniently be written in the
to a random walk, corresponding to the Markovian correlatolrform [11]

fo(T)=1fg(T)=exp(-|T|/2), for which §=rx=1/2 [3].

Hence o\ [
0=>\(1—e7f d)(T)[l—exy:(—Z)\T)]e”sz].

O0(2)=0s(3)=73. (20) 0 -

For =1 both Egs.(7) and (10) become constants, gypstituting Eqs(25) and(26) into Eq.(27), one finds(after
fo(T)=fg(T)=1. This implies that the corresponding some algebia

Gaussian process is time-independent, and consequently

A=l A=l 0s=1— e+ O(€?). (29)
For B—0 the transient correlatq7) degenerates to the Equation(29)

discontinuous functiofip(0)=1, fo(T>0)=0. Since this is g compares favorably with the stationary Gaussian pro-

boundequlrom above by the Markovian correlatorcess simulations fg8=0.45 and 0.55 to be presented in Sec.
f(TY=e for any A, we conclude that IV C.

Bo=3—€(22-1)+O(€?), (28)

agrees with the relatiods=1— B, while Eq.

lim 6o(B) ==. (22)
B—0 IV. SIMULATION RESULTS

In contrast, the steady-state correlator tends to a nonzero A. Solid-on-solid models
constant, Iirr,;HOfS(T)=% for T>0, with a discontinuity at Simulations of one-dimensional, discrete solid-on-solid
T=0, and thereforeds is expected to remain finite for models were carried out fg8=3, 3, and 3. The caseB8=3
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describes an equilibrium surface which relaxes through sur- 1
face diffusion, corresponding to=4 in Eg. (1) and volume
conserving noise with correlator

T IIIIIII;
2

(X, ) (X", t"))=—-V28(x—x")8(t—t"). (30

107" 4

The cases3=1: and 3 are realized for nonconserved white 5 ]

noise in Eq.(1) and dynamic exponenis=2 and 4, respec- = C .

tively [6]. 8 [ i
In all models the interface configuration is described by a 2

set of integer height variable$; defined on a one- 10 = E

dimensional latticé=1, . .. L with periodic boundary con- . ]

ditions. For simulations of the transient return problem, large

lattices (=2%X10° — 2x10°) were used, while for the

steady state problem we chose small sites 100—-200 for 1072

dynamic exponerz=4 andL = 1000 forz=2, in order to be

able to reach the steady state within the simulation time. N T R T DO AN BT
The precise simulation procedure is somewhat dependent 1 10! 10% 10° 10

on whether the volume enclosed by the interface is con- t

served(as fpr[%= %) ornot. To Simulate th.e transient return FIG. 1. Steady-state persistence probability(t) for the
problem W'th_ gc_)nserved dynamics, the I_nterface W"’_‘S P'€Arrhenius surface diffusion model with coupling constant
pared in the initial staté; =0, and each site was equipped j_q 25 0.5 and 1. Systems of sike=100 were equilibrated for

with & counter that recorded whether the heighhad re-  —5x 10" attempted moves per site. Then data were collected
turned tOhi =0. The fraction of counters still in their initial over 1d time intervals of |ength|1= 104 The dashed line has S|ope

state then gives the persistence probabifity(t). For the g.=1-p=1_

steady-state problem the interface was first equilibrated for a

time teq large compared to the relaxation timelL” [6,12.  ponent s is independent of), and that its value is
Then the configuratioh;(ts) was saved, and the fraction of numerically indistinguishable fron#s=§ predicted by Eq.
sites which had not yet returned g(t.;) was recorded over ().

a prescribed time interval,<t<t,+t;. At the end of that Since the transient persistence probabititydecays very
interval the current configuratioh;(te,+t;) was chosen as rapidly for 8= 3, a more efficient model was needed in order
the new initial condition, and the procedure was repeatedo obtain reasonable statistics. We therefore used a restricted
After a suitable number of repetitionypically 10* for  solid-on-solid model introduced by Baet al. [14]. In this

z=4 and 2000 forz=2), the surviving fraction gives an model the nearest-neighbor height differences are restricted

HTTTIT

Lol ST

estimate ofps. to
The models used in the cas@s- 3 and3 are growth mod-
els, in which an elementary step consists in chosing at ran- [hiy1—hi|<2. (32

dom a sitei and then placing a new particle;—h;+1,
either atj=i or at one of the two nearest-neighbor sitesin one simulation step a siteis chosen at random, and a
j=i=1, depending on the local environment. For these nonédiffusion move to a randomly chosen neighbor is attempted.
conserved models the procedures described above have to li¢he attempt fails due to conditio(82), a new random site
modified such that the calculation of the surviving fractionsis picked. Figure 2 shows the transient persistence probabil-
po andps is performed only when a whole monolayer—thatity po(t) obtained from a large-scale simulation of this
is, one particle per site—has been deposited. At these irmodel. The curve still shows considerable curvature, and we
stances the average height is an integer which can be subre only able to conclude that probal#ly> 3.3 for this pro-
tracted from the whole configuration in order to decidecess.
whether a given height variable has returned to its initial Figure 2 also shows transient results f@# 3 and 2. In
state when viewed in a frame moving with the averagethe former case we used a growth model introduced by Fam-
growth rate. ily [15], in which the deposited particle is always placed at
We now briefly describe the results obtained in the conthe lowest among the chosen siteand its neighbors,
served case. In Ref7] the steady-state return problem for whereas foi3= 3 we used the curvature model introduced in
B= 3% was investigated in the framework of the standard oneRef. [16]. Our best estimates of,, for these models are

dimensional solid-on-solid model with Hamiltonian collected in Table I, along with the values f@k which
agree, within numerical uncertainties, with the relati6nin
all cases.
H=32 iy =hil, (31

B. Discretized Langevin equations

and Arrhenius-type surface diffusion dynamjds]. We ex- We solved Eq/(1) in discretized time and space for the
tended these simulations to longer times and to different valreal-valued functiorh(x;,t,), wheret,=nAt and x;=iAx
ues of the coupling constadt Figure 1 shows that the ex- with n=0,1,2 ... andi=0, ... L—1 in a system with pe-
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N R U A B The spatial derivatives for the cases 2 and 4 considered in
= . the simulations were discretized as
] V2h(x)=h(x_1)=2h(x)+h(xs), (39
T ] (V?)2h(x))=h(Xi—2) = 4h(x;—1) +Bh(X;) ~ 4h(x; 1)
‘f: - +hix;o) (35)
E’n_ for the functionh(x;)=h(x; ,t,) at any given time,. Here

and in the simulations, the spatial lattice constartwas set
to unity.
1 With these definitions, we iterated the equation

-6 _ h(xX; ,ths1) =h(X; ,tn) = At(—=V2)Z?h(x; ,t,)
+\/E77(Xi ,tn), (36)

ol el sl el where 7(x;,t,) is a Gaussian distributed random number

1 2 3 4
1 10 10 10 10 with zero mean and unit variance whose correlations will be
t specified below.
FIG. 2. Transient persistence probabiliiy(t) for three differ- Von Neumann stability analysigl7] shows that values

ent solid-on-solid models described in the text. The system sized =<3 and; for z= 2 and 4, respectively, have to be used to
used werd=2x 10P for 8= % andL=2x10f for s=2and3. For ~ keep the noise-free iteration stable. The simulations showed

B=1(8=1) an average over 1000.0) runs was taken, while the that the scheme remained stable with=0.4 and 0.1 even
data for@= 3 constitute a single run. The slopes of the dashed lined the noisy case.

correspond to the exponent estimates in the fourth column of Table W€ used white noisey,,(x; ,t,) with a correlator
l.

<77W(Xi th) 77W(Xj itm)>: 5i,j5n,m (37)
riodic boundary conditions. For the time discretization Wein the simulations, as well as spatially correlated noise
used a simple forward Euler differencing sche@: 7,(Xi ,tn) with

&h(xi ,tn) — h(Xi ltn+l)_h(xi 1tr|) . (33) <7]p(Xi ,tn) 7]p(Xj ,tm)>:gp(xi_Xj)5nym, (38)

ot At
where
TABLE I. Numerical estimates of the persistence expon#gts Cu120-1 i
. ) . [Xi—xi|%P~1,  i#]

and 6, compared to the fractional Brownian motion result g,(X—X)= .J ) (39
0s=1- B (third column and to the optimal bound8,;, and 6, P 1, i=j
derived in Sec. Vl(last two columns With the exception of the 1. ) ) o
values marked with an asterféR, which were obtained using dis- andp<3 is a real number. A different choice of regularizing
crete solid-on-solid modeléSec. IV A), the data for3<0.40 are  9(0) [18] did not change the results. 8,(k) denotes the
taken from simulations of discretized Langevin equati¢gBec.  discrete Fourier transform of,, we defined
IV B), while those for3=0.45 were generated using the equivalent
stationary Gaussian proce&Sec. IV O. In all cases the error bars 7,(K,t) =[S, (K)|rexp2m7i @), (40)
reflect a subjective estimate of systematic errors.

with r, being a Gaussian distributed amplitude with zero
B Os 1-8 6o Omin Omax mean andy, [0,1] a uniformly distributed random phase
[18]. Due to the regularizatiog(0)=1, which fixes the av-

0.128*)  0.86+0.02 0875 >33 6.125 7.359  grage value 08,, one has to use the modulus in E40) as

0.2 0.788-0.01 0.8 2601 2333 3200 g can be negative for some Iterating Eq.(36) with z=2,
025*) 0754001 075 16015 1547 2250 the correlated noisé40) with p<3 leads to surface rough-
0.25 0.746¢:0.01 0.75  1550.02 1547 2250 pess with a measured roughness expon@nptthat agrees
0.3 0.6¢-0.01 0.7  1.1&0.05 1141 1.633 with the prediction3=(1+2p)/4 of the continuum equation
0.375*)  0.635-0.01 0.625 0.840.01 0.801 1.042 (1) within error bars. The casg> 3, i.e., p>1 is not acces-
0.375 0.62%0.01 0.625 0.850.01 0.801 1.042 sible by this method. The simulated systems had a size of
0.4 0.60-0.01 0.6 0.760.1  0.723 0.900 L=4096, and averages were typically taken over 3000 inde-
0.45 0.53-0.01 0.55 0.580.02 0.598 0.672 pendent runs.

0.55 0.44r0.01 0.45 0.4%0.01 0.415 0.450 In all cases, the simulation was started with a flat inital
0.6 0.33-0.01 0.4 0.3%0.01 0.348 0.400 conditionh(x,0)=0. To measure the persistence probabili-
0.65 0.346:0.005 0.35 0.2950.005 0.289 0.350 ties, the configurationh(x,ty) and the consecutive one
0.75 0.247-0.005 0.25 0.20£0.005 0.191 0.250 h(x,to+At) were kept in memory during the simulation. In
0.85 0.156:0.005 0.15 0.1240.005 0.107 0.150 each following iterationt,=(to+At)+nAt, n=1,23...,

an initially zeroed counter at each site was increased
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Supposer(w) is (the Fourier transform ¢fa Gaussian
(a) white noise, with(7(w) 7(o'))=278(w+o'). Let

X(0)=7()VT (), (42)

wheref () is the Fourier transform of the desired correla-

tion function[notice thatf (w) is the power spectrum of the
process, so it must be positive for all. Then the correlation

function of X is

107 | e B=0.3
e B = 0,2

Steady persistence probability

X(w)X(0"))=27f(0)(0+’). (42

t The inverse Fourier transforiX(T) is therefore a stationary
Gaussian process with correlation function
(X(MX(T")y=1(T-T").

The simulations were performed by constructing Gaussian
(pseudawhite noise directly in the frequency domain, nor-
malizing by the appropriateyf(w), then fast-Fourier-
transforming back to the time domain. The distribution of
intervals between zeros, and hence the persistence probabil-
ity, may then be measured directly. The resulting process
X(T) is periodic, but this is not expected to affect the results
provided the periodNdT is sufficiently long, whereN is the
number of lattice sites used arfl is the time increment
) between the lattice sites. It is desirable fbto be as large as
possible, consistent with computer memory limitations—
typically N=2° or 22°. The time stepST must be suffi-

FIG. 3. () Steady-state persistence probabifity(t) from the cientl_y small for the short—time behavior of the porrelation
numerical solution of the discretized Langevin equation withp  function to be correctly simulated, but also sufficiently large
and correlated noisep= —0.1, 0.1, and 0.8 The thick lines rep-  that the period of the process is not too small. Typical values
resent fits to the last decade pi(t). The slopes are given in the for 6T were in the range 10'-10"2. Several different val-
second column of Table [b) Same aga) for the transient persis- Ues of ST were used for eacl, to check for consistency,

Transient persistence probability

6

10

10™ 10° 10

tence probabilitypy(t). and the results were in each case averaged over several thou-
sand independent samples.
as long as sdm(x,t,)—h(xto)]=sgih(x,to+At) This method works best for processes that are “smooth.”

—h(x,ts)]. The fraction of counters with a value larger than 1"€_density of zeros for a stationary Gaussian prozcess IS
t then gave the persistence probabiliggt). For measure- Y~ f"(0)/7 [10], which is only finite if f(T)=1-O(T).
ment of 6,, t, was chosen to be zero, fak, At<ty<L?, However, the correlation functions for the processes under
and the power-law behavior in the regind <t<t, was consideration behave like E€L1) at short time, so they have
used. an infinite density of zeros. Any finite discretization scheme
For comparisongs was also measured in small systemsWi” therefore necessarily miss out on a large number of ze-
L=128 in the steady state>L? for z=2 with uncorrelated 95 and will presumably overestimate the persistence prob-
noise. The results agreed with the measurements fdRPility and hence underestimai (this drawback is not
At<ty<LZ However, in the steady state, one has to takd’resent if Eq(l) is simulated directly, sincéT = 4t/t effec-
care to measure the power-law decaygft) only up to the tively becomes zero as—«). Nevertheless, the simulations
correlation time~L?, so that we preferred measurement inWere found to be well behaved wh@hwas greater than 0.5,
the regimeAt<ty<LZ here. with consistent values of for d|ff9rent values of5T. How-
Figure 3 shows typical curvess(t) and py(t) obtained €Ver: wheng was less than 0.5 it was found to be increas-
from the numerical solution of the discretized Langevin'ngly difficult to observe such convergence before finite-size
equation(36) with correlated noise for the valugs= —0.1, effects became apparent. Convergence was not achieved for
0.1, and 0.3. A summary of all measured persistence exp05<0-45' Figure 4 shows the persistence probability for both

nentsé, and s as a function of the roughness expongnt the steady state and the trfinsient processes@with.45 and
can be found in Table I. 0.75, for two values of5T in each case. The agreement of

the data for the different values o is better for the larger
value of B.

A summary of the measured values @éffor different
Since a Gaussian process is completely specified by itgalues of is found in Table I. The quoted errors are sub-
correlation function, it is possible to simulate it by construct-jective estimates based on the consistency of the results for
ing a time series that possesses the same correlation functiatiifferent values of6T, and are smaller for the larger values

This is most easily performed in the frequency domain.  of 8 due to the process being smoother. B*0.5, the

C. Simulation of the stationary Gaussian process
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- — depends only on—t’. The power law behavior of variance
sﬁ 0008 ransient . (43) is the defining property of thiractional Brownian mo-
01l N\ 8T=0.001, steady tion (fBm) introduced by Mandelbrot and van Ng¢$d, and
£ y, ~ O7=0.0003, steady identifies 8 as the “Hurst exponent” of the process.
§ The first return statistics of fBm has been addressed pre-
o 0.01 ¢ viously in the literaturg19—21], and analytic arguments as
g well as numerical simulations supporting relati) have
S 0001 | been presented. It seems that the relation in fact applies more
g broadly, to general self-affine processes which need not be
Ed Gaussian 20,22. For completeness we provide in the fol-
0.0001 ¢ lowing a simple derivation along the lines of Refg0—23.
We use H(t) as a shorthand for the fBm limit of
: : o H(x,t;ty) for tg—. Let H;=H(t;), and defing(7) as the
0 5 10 T 15 20 2 probability thatH has returned to the levél, (not necessar-
ily for the first time at time t;+ 7. Obviously, using Eq.
1 . ; . . (43), we have
8T=0.005, transient ——
\ 8T=0.001, transient -
01} N\ 8T=0.005, steady - ] B 1 i
2 \ 87=0.001, steady -~ p(r)=———~7F, 715», (44)
= \ \/EU'( 7)
« AN
8 001¢ E . I .
s The set of level crossings becomes sparser with increasing
e distance from any given crossing. It is “fractal” in the sense
g 0001} that the density, viewed from a point on the set, decays as
2 77D with D=1-.
& 0.0001 } We now relate the decay, E¢44), to that of the persis-
®) tence probabilitypg(t). Consider a time interval of length
. ‘ . R L>1. According to Eq.44), the total numbeN(L) of re-
0 10 20 30 40 50 60 turns to the leveH;=H(t;) in the intervalt;<t<t;+L is
T of the order
FIG. 4. (a) Persistence probability obtained from simulations of N(L)~L1 A, (45)

the equivalent stationary Gaussian process for both the transient and
the steady-state case, wigh=0.45. Two values of the time incre-

Now |
ment ST are shown(b) Same aga) for 3=0.75. ow let

. , - ~—dpg/dr~ 7 (11 46
estimated values ofg agree well with the prediction 2 3, a(m) Psidr=7 (46

while the result ford, when 8=0.55 agrees well with the
perturbative prediction=0.409 from Eq.28). For 3=0.45,
the predictionfs=1— g lies outside the quoted error bars
reflecting the difficulty of assessing the systematic errors
the simulations, while the result fa, is consistent with the
prediction=0.591 of the perturbation theory.

denote the probability distribution of time intervals between
level crossings. The number(7) of intervals of lengthr
' within the interval[t,,t;+L] is proportional tog(7), and
Ntan be written as

n(7)=no(L)7 %, (47)
V. PERSISTENCE EXPONENT OF FRACTIONAL where the prefactong(L) is fixed by the requirement that
BROWNIAN MOTION the total length of all intervals should equali.e.,

The numerical results presented in Sec. IV, as well as the L
pertubative calculation of Sec. lll, clearly demonstrate the f dr rn(7)~L. (48)
validity of identity (6), 6s=1— 3, over the whole range 0
0<B<1. Since the special property of the steady-state pro-
cess which is responsible for this simple result is obscuredhis givesng(L)~L", and sinceN(L)~nq(L) comparison
by the mapping performed in Sec. I, we now return to thewith Eq. (45) yields the desired relatiof®).
original, unscaled process in timieThe crucial observation In Ref.[7] an essentially equivalent argument was given;
is that the limiting process |irguooH(X,t;to) defined in Egs. howeyer, it was also assumeq th.at the intervals between
(8) and(9) has, by constructiorstationary incrementsn the crossings are mdepende_nt, which is clearly not true due to
sense that the strongly non-Markovian character of the fB8). Here
we see that what is required is not independence, but only
stationarity of interval spacingé&hat is, of increments of
H). The latter property does not hold for the transient prob-
lem, where the probability of an interval between subsequent
=2K|t—t'|?# (43 crossings depends not only on its length, but also on its po-

a?(t,t")= lim ([H(x,t;te) —H(X,t";t)]?)

t0~>oc
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sition on the time axis. For the transient process the varianckmits, and then investigate numerically whether the inequali-
of temporal increments can be written in a form analogous tdies are satisfied away from these asymptotic regimes. The

Eq. (43, same leading small-behavior is obtained fofg(bT,3) and
fo(T,B) whenb=2%)"1 and the same largé-behavior
o?(t,t)=((h(x,t) —h(x,t"))?)=2Kag(t'/t)[t—t'|#, is found whenb=(1—p)/B for B<1/2 and b=1 for

(49 B>1/2. We conclude that

where the positive functiora, interpolates monotonicall . 1
P P 3 y mln(Z(mﬁ)‘l,E—l) for B<j3

between the limiting values(0)=2%"* and az(1)=1. b < (50)

This would appear to be a rather beni¢stale-invariant min (128)-1 L

“deformation” of the fBm, however, as we have seen, the 2 for B>3,

effects on the persistence probability are rather dramatic for

small 8. Similar considerations may apply to the Riemann- ma 2(1,23),1’E_1 for B<l

Liouville fractional Brownian motior{8], which shares the b = (51)
max—

same kind of temporal inhomogene(t®7]. .
It is worth pointing out thastationaryGaussian processes 1 for B>3.

with a short-time singularity f(T)~1—O(|T|%), T—0 . L o . .

[compare to Eq(11)] have level crossing sets which are Surprisingly, we find in the majority of cases that inequali-

fractal, in the mathematical sen§23], with Hausdorff di- ties (50) and (51) are satisfied as equalities. Specifically, in
mensionD =1— /2 [24,25. However, as was emphasized the cases where the corrections to the leading analytic behav-

by Barbe[26], this result only describes the short-time struc-10F has the appropriate sign to ensure thgtbT,5) is a
ture of the process: a suitably defined scale-dependent dpound forfo(T, ) in both limits T—0 andT— e, then nu-
mension of the coarse-grained set always tends to unity fdferical investigation revealed it to be a bound forial\We

large scales, since the coarse-grained density of crossings 3¢ therefore able in the following cases to quote the most
finite. In other words, the crucial relatio4) holds for restrictive bounds and their region of applicability in analyti-

7—0 butnot for 7—. In the present context this implies cal for_m, aIthough_the validity of the bounds has only been
that, although the stationary correlatdisand fs share the ~€Stablished numerically:
same short-time singularityeq. (11)], for f, this does not

_ 2
provide us with any information about the persistence expo- o= (1=5) for 0<B<pB,(=0.136...), (52
nent . B
6o=(1—B)2Y2A~1 for B,<p<3, 53
VI. EXACT NUMERICAL BOUNDS FOR 6, 0=(1-58) Pr=p<z 63
2
In Sec. Il several rigorous analytic bounds féy were (1-p) _ 1
obtained by comparing the correlatbg(T) to a function Oo= B for Ba(=0.158..)<p<z (54
with known persistence exponent and using Slepian’s theo-
rem[3]. Having convinced ourselves, in Sec. V, that expres- bp<1—pB for B>%. (55

sion (6) for A5 is in fact exact in the whole interval
0<B<1, we can now employ the same strategy to obtainThe two critical values3;=0.13&... andB,=0.158...
further bounds by comparind,(T,8) to f5(T,B8). These correspond to the solutions in ]0,0.5 of
bounds turn out to be very powerful becaus¢T,B) and  (1/8,)—1=212D~1 and g,=22F2"3, respectively. Note
f<(T,B) share the same type of singularityTat 0 [see Eq. that Eq.(55) coincides with the rigorous result in E¢L8).
(11)]. For other values o3, the sign of the leading corrections
Let fo(T) and fg(T) be monotonically decreasing func- implies that Eqs(50) and (51) are only satisfied as an in-
tions with the same class of analytical behavior n€ar0. equality, and the best value of the bound has to be obtained
There will always exist numberb,, and b, such that numerically by finding the value ob where f5(bT,B)
fA(DmaxT )< fg(T)<fa(b,nT) is satisfied for allT. Since touchesfy(T,B) at a point.
the persistence exponent for a process with correlation func- It is also possible to obtain bounds @g(8) by compar-
tion f5(bT) is justb6,, wheref, is the persistence expo- ing fo(T,B) with fg(bT,8"), where 8’ # 8. Consideration
nent for the process with correlation functibg(T), we can  of the behavior at small shows that a lower bound oy
deduce from Slepian’s theorem tha,i,0a=< 0g=<Dbmafa - may be obtained whef’ > g3, whereas an upper bound may
We may therefore find upper and lower bounds for the perbe obtained for8’ <. In the majority of cases, it can be
sistence exponent of a given process if we know the persisshown that the most restrictive bounds are in fact obtained
tence exponent for another process in the same class. In pdry 8’ = 8. For instance, consideration of the lar§ésehav-
ticular, we may use resuli) for 65 to obtain bounds for ior for 0<pB<pB; shows that b,,<(1/8')—1, so
0. 0 min=[(1/B8")—1](1— B). Therefore, since this inequality
Finding by analytic means the most restrictive values ofis satisfied as an equality fo8’'=8 [see Eq.(52)] and
bmin  a@and bpa  such  that fg(bpad,B)=<fo(T,B) B'= B, the best bound is obtained wh@i= 3. Similarly,
<fg(bminT.B) is a formidable task. Our approach is to studythe inequalities54) and (55) can be shown to be the best
the analytical behavior nedf=0 andT=c to find values obtainable by this method. However, f8f<3<3, a pertur-
where the inequalities are satisfied in the vicinity of bothbative consideration with3’ =8+ ¢€ shows that a larger
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4 — , , T perspective of the equivalent stationary process with autocor-
V o relation function(10): It provides theexactdecay exponent
Bounds ¢ ; :
Solid-on-solid ~o— or a fa.m|ly of correlators whosg clage=2p (in the sense

Langevin equation —— of Slepian[3]) covers the whole intervak €]0,2 ; previous

g q exact results were restricted ac=1 anda=2 [3]. We dem-
37 Statlonar.y process e - onstrated in Sec. VI how this can be exploited to obtain
Perturbation theory - accurate upper and lower bounds for other processes within
the same class.

Estimates for the nontrivial transient exponeht were
obtained using a variety of analytic, exact, and perturbative
approaches, as well as from simulations. The numerical
techniques—direct simulation of interface models and con-
struction of realizations of the equivalent stochastic process,
respectively—are complementary, in the sense that the
§ former is restricted to the regim@< 3, while the latter gives
the most accurate results f@>3. The results summarized
in Fig. 5 provide a rather complete picture of the function
0o(B)-

Finally, we briefly comment on a possible experimental
0 ' : : realization of our work. Langevin equations of tyf® are
0 0.2 0.4 0.6 0.8 1 now widely used to describe time-dependent step fluctua-
B tions on crystal surfaces observed with the scanning tunnel-
ing microscopg 28]. From such measurements the autocor-

FIG. 5. Summary of data for the transient exponés(t3), ob-  relation function of the step position can be extracted, and
tained from simulations of the solid-on-solid modé&guarey dis- different values of3 have been observed, reflecting different
cretized Langevin equatiorgriangles and the equivalent station- dominant mass transport mechanisf@8]. Thus it seems
ary procesgdiamonds. The bold line is the perturbation res@8),  that, perhaps with a slight refinement of the observation tech-
while the shaded area shows the range enclosed by the exact upRfitlues, the first passage statistics of a fluctuating step may

and lower bounds derived in Sec. V1. also be accessible to experiments.

value of 6, may be obtained foe small and positive, so ACKNOWLEDGMENTS

Eq. (53) is not the best bound that may be obtained. A nu- o
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Numerical values of these bounds are listed in Table I, fol)Nite Mixte de Recherche C5626 of Centre National de la

comparison with the simulation data. The contents of the lasRecherche ScientifiqUENRS.
three columns of this table are also plotted in Fig. 5. The
upper and lower bounds atperhaps surprisingly close to- APPENDIX: DERIVATION OF SOME EXPONENT
gether. Notice that the lower bound fé§ when8=0.125 is INEQUALITIES
6.125, whereas the discrete solid-on-solid simulations T4 establish Eq. (17 we need to show that
yielded the inconclusive value 3.3. All the other data are f«(T)=exp(|T/2) for all T, provided that3>3. To this
consistent with the bounds, within numerical error. It is in- 514 \we rewrite Eq(10) in the form
teresting to note that the data, as well as the exact perturba-
tion theory result, tend to lie much closer to the lower than foT)=2efM1+e 2ATI—(1-e"M)2F], (A1)
the upper bound.

and notice that, for3>3, [1—exp(—|T]))1?’<1—exp(—|T]).

Thus
VII. CONCLUSIONS

lre= BTl 4 o—1-BIT| —[Tl2
In this paper we have investigated the first passage statis- fs(T)=z[e +e 1=e ’ (A2)

tics for a one-parameter family of non-Markovian, Gaussian,here the last inequality follows from the fact that the ex-

stoc_hastic processes W_h_ich arise in t_he context of interfr;\c&(_)ssiOn in the square brackets is an increasing functigh of
motion. We have identified two persistence exponents deg,, Bg>1

scribing the short-time(transient and long-time (steady Next we consider relationd8). We express Eq7) in the
statg regimes, respectively. form

For the steady-state exponent the previously conjecture
relation 65=1— 8 [7] was confirmed. While this relation fo(T)=2"28efTig(e~IT), (A3)
follows from simple scaling arguments applied to the origi-
nal process, it is rather surprising when viewed from thewhere the functiorg is given by



g(y)=(1+y)*—(1-y)?. (A4)

Taking two derivatives with respect tg, it is seen that
g"=0 for B<3 and g"<0 for B8>1. Sinceg(0)=0 and
g(1)=22%# always, it follows thatg(y) is bounded by the
linear function Zy, from above for8<3 and from below
for B> 3. Inserted back into EqA3) this implies

B<3,
B>3,

and Eq.(18) follows by applying Slepian’s theorefi8] in
conjunction with the fact thab=\ for purely exponential
(Markovian correlators.

Inequalities(19) are a little more subtle to prove. Let us
first consider the case 28<1. We need to prove that
fo(T)=1g(T) for all T. Then the relatiorfy= 65 will follow
from Slepian’s theorem. Denotingze*m and using the
expressions of o(T) andf¢(T), we then need to prove that
the function F(y)=(1+y)?’+(a—1)(1-y)?*’—a(y?’
+1) (wherea=22#"1) is positive for all O<y<1.

First we note, by simple Taylor expansion around 0
andy=1, thatF(y)>0 for y close to 0 and 1. The first
derivative, F'(y) starts at the positive valuegf2—a) at
y=0, and approaches 0 from the negative side/asl .
The second derivativE”(y) starts at—» asy—0* and
approachest« asy—1~. We first show that="(y) is a
monotonically increasing function gof in O<y<1.

To establish this, we consider the third derivative,

F"(y)=2B(28—1)(28—2)G(y), where
G(y)=(1+y)?#3—(a—1)(1-y)?#3-ay* 2.
(A6)

Now, since (Hy)?A~3)<y(25=3) for all 0O<y=<1, we have
G(y)<—(a—1)[y* *+(1-y)*°] implying G(y)<0
for 0<y=<1. Since;<pB=<1, it follows thatF"”(y)>0 for

fo(T)<e -AITl for

(A5)

fo(T)=e A-AIT for
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[0,1] implying that the functiorF(y) has only a single ex-
tremum in[0,1]. Since,F(y) for y—0" andy—1~, this
must be a maximum. Furthermoré(y) can not cross zero
in [0,1] because that would imply more than one extremum
which is ruled out. This therefore proves tHa{T)=fg(T)
for all T for B=3 and, hence, using Slepian’s theorem,
0p<0s. Using similar arguments, it is easy to see that the
reverse,f,= g is true for B<1/2.

Finally we prove inequality14) which relates the values
of 6, for two different exponentg and 3’ > 3, subject to an
additional constraint to be specified below. In the same spirit

as above, one <can show that after defining
v=(1-pB)/(1—-B')>1, one obtains
fo(T.B)=<fo(¥T.B") (AT)

for B<B’ andp2-2B<p’'272F"

Both functions in Eq(A7) decay exponentially at large
time with the same decay ratgy)=1—8=y(1—- '), such
that their ratio approaches a constant wiiero. The last
condition B2~ 28<B'27 28" expresses that the limit of this
ratio must be less than unity. Ag(T,8)<fq(yT,B’) in the
vicinity of T=0 (this is just a consequence gk 8'), and
as a careful study shows thad/@T)[fo(T,B8)/fo(yT.B8')]
has at most one zero in the range«dp, we conclude that
fo(T,B)/fo(yT,B")<1 if and only if the limit of this ratio
for T—oo is less than unity. In practice, the condition ex-
pressing this constraint can be violated onlygif>1/2 and
B'>(2In2) 1~0.721345... .

Using Slepian’s theorem, and the fact that the persistence
exponent associated withy(yT,B) is exactly y times the
persistence exponent associated viigtiT, 8) [3], we arrive
at inequality (14) which holds under the conditions stated
after Eq.(A7). Setting or 8’ equal to3 (keepingB<g’),
Eq. (14) reduces to bound&l 8).

For B8’ > >3, inequality(14) comes rather close to being
satisfied as an equality. For example, settg 0.55 and

all 0<y=<1. ThereforeF"(y) is a monotonically increasing B'=0.85, Eq.(14) requires thaty(8)/6y(B8')=3, while the
function ofy for 0<y=<1 and hence crosses zero only oncenumerical data in Table | yieldy(B)/6y(8')=3.39. The

in the interval[0,1]. This implies that the first derivative only pair of values in Table | which violates inequality4)
F’(y) has one single extremum {0,1]. However, since is (8,8')=(0.75,0.85). Since for these values the condition
F’(y) starts from a positive value gt=0 and approaches 0 ﬂ2‘23<ﬁ’2‘25' is also violated, this may be taken as an
from the negative side as—1~, this single extremum must indication that the numerical estimates 83 are rather
be a minimum. Thereford;’(y) crosses zero only once in accurate.
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