PHYSICAL REVIEW E VOLUME 56, NUMBER 1 JULY 1997

Coherence resonance at noisy precursors of bifurcations in nonlinear dynamical systems
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A general mechanism of coherence resonance that occurs in noisy dynamical systems close to the onset of
bifurcation is demonstrated through examples of period-doubling and torus-birth bifurcations. Near the bifur-
cation of a periodic orbit, noise produces the characteristic peaks of “noisy precursors” in the power spectrum.
The signal-to-noise ratio evaluated at these peaks is maximal for a certain optimal noise intensity in a manner
that resembles a stochastic resonaf8&063-651X97)06307-1

PACS numbd(s): 05.40:+j, 05.20~y

Nonlinear systems perturbed by noise have the potential In the present paper we study the response of nonlinear
to display a wide range of complex responses includingdynamical systems to noise excitation near the onset of dy-
somewhat paradoxically, an enhancement of net order angamical instabilities of periodic orbits. Our starting point is
coherence as noise levels increase. A distinguished exampie key paper of Wiesenfeld], which carefully elaborates
of this phenomenon is stochastic resonafBR) [1] which tﬂe way in Wh'cth n0|s|e %o_n'}ro\lil_the qfu?(;ltgtlve strtuciuretr(])ft
has attracted considerable attention over the last decade € power spectrum. In briet, VViesenieid demonstrates tha

. . . the power spectrum of a system observed after a bifurcation
for references the review2]). Conventional SR occurs in

isv d cal h bed b " oint can, nevertheless, be visible even before the bifurcation
hoisy dynamical systems when perturbed by a weak externaleyqly occurs if there is noise present. We thus observe a

periodic signal. For such systems, significant amplification Ofnoisy precursomf the bifurcation.
the weak periodic signal may occur solely by increasing the  To follow this line of thought further, let us suppose that
level of the noise intensity. The signal-to-noise rad&NR), noise induces a peak of heightat the frequencys,, in the
and other appropriate measures of signal coherence, pagewer spectrum, so that the noisy precursor of an instability
through a maximum at an optimal noise strength when thds observed. We then _ask_ what _mi_gh_t happen to the shape of
noise-controlled time scale of the system matches the periodie spectrum if the noise intensity is increased? Two tenden-
of the external signal. cies can be suggested. . , _ _

A similar effect of noise-induced coherence may also be . (1) With the increase of noise, the model's trajectory is
observed in systems which lack an external signal, but whosE}é'Cked further away from the stable periodic orbit which

intrinsic dynamics are controlled by noise intensity. In earliereads to damped oscillations at the frequensy. This
y y Y. .boosts the heightl of the peak in the power spectrum.

studieq 3,4] the noise-induced enhancement of coherence in (i) Because of the nonlinearity of the system, increasing
underdamped nonlinear oscillators has been found. Thfuise will increase the peak's relative widiV=A w/w

noise-induced peak at zero frequency appeared in the Viciyich is none other than the inverse of the familiar quality
ity of a pitchfork bifurcation 3], whereas the decrease of the factorQ) [8]. This increase iW makes it difficult to resolve
width of a fluctuating peak in the power spectrum is shownpe peak from the noise background.
for an underdamped oscillator, whose eigenfrequency pos- |n order to measure the coherence of the system at the
sesses an extreme in energy, [#]. Recently, a noise- noise-induced peak we define the signal-to-noise ratio as
induced coherent motion has been observed for autonomo@&NR=H/W, as in[5]. We aim to show that becausé and
systems in[5], where the effect of noise on a nonuniform W vary differently with noise intensity, the SNR will very
limit cycle has been studied, and [ii], where a coherence often pass through a maximum, and in a manner that is typi-
resonance in a noise-driven excitable system has been real for conventional SR.
ported. This group of phenomena can be called coherence Firstly, however, we note that it would be impossible to
resonance or “internal” SR, which underlines the fact thatobserve such behavior in a linear system perturbed by addi-
one can observe SR-like phenomena without an external pgive noise, since the height of a noise-induced peak is known
riodic signal. to increase monotonically as a function of noise intensity,
whereas the width of the peak is constant against noise. As a
result, in linear systems the SNR increases monotonically
*Permanent address: Department of Physics, Saratov State Univith noise. On the other hand, noise excitation of a self-
versity, Astrakhanskaya strasse 83, Saratov 410071, Russia. Elesustained oscillator which has a stable limit cycle far from a
tronic address: neiman@chaos.ssu.runnet.ru bifurcation leads to the well-known effect of washing the
TAlso at Institute for Theoretical Physics and Astrophysics, Potsspectral line ouf8] so that the SNR decreases monotonically
dam University, Am Neuen Palais, Haus 22, PF 601553, D-14415with the increase of noise.
Potsdam, Germany. Electronic address: petr@agnld.uni-potsdam.de In order to test our prediction of a resonant behavior ver-
*Electronic address: lewi@Ianina.tau.ac.il sus noise strength, as found in noisy precursors, we study the
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FIG. 2. SNR atw,= /2 vs D for the noisy Feigenbaum map
FIG. 1. The power spectrum of the noisy Feigenbaum (dapt near the second period-doubling bifurcation for different values of
a=1.24 for different noise intensitie$l) D=10"3, (2) D=10"2,  the parametea: (O) a=1.2, () a=1.22, and {\) a=1.23. The
and(3) D=5x10"2. solid lines represent the approximation given by Bj. Inset: the
dependence afl ([J, right scale¢ andW (O, left scale vs D for
effects of white noise forcing or(a) period-doubling bifur- a=1.23.
cations in the celebrated discrete Feigenbaum f8dp(b)
torus-birth bifurcations found in two coupled discrete W andH were found to beN«Wy+D, Ho1l—exp(—aD),
Feigenbaum maps; an@) period-doubling bifurcations in  with constantsV, and «. Competition between the growth
the Rasler equations. in the height of the peak and its width therefore gives rise to
For the case of thperiod-doubling bifurcationsconsider  a bell shaped curve for the SNR which can be fitted as
first the noisy Feigenbaum mdpr logistic map as defined

by the following stochastic difference equation: 1—exp(—aD)

SNRx W 2

Xn+1=1-ax;+\Dé&,, (D)

The optimal noise intensit® ,,;, at which the SNR is maxi-
wherea is the control parameter of the map abdneasures mum, corresponds to the situation in which the noise-
the intensity of white nois&,. The universal behavior of a induced peak is most pronouncéd. Fig. 1).
noisy period-doubling sequence has been studied in detail in The behavior of the precursors versus the control param-
[10]. In the absence of noise, the bifurcation sequence oétera is of interest as well. We therefore introduce the criti-
fixed points of period Btakes place for the parameter valuescal parametee=a,—a, wherea, is the parameter value of
ay: a;=0.75,a,=1.25,a;=1.368 099. .. . Figure 1 dis- thekth period-doubling bifurcation. For any fixed noise level
plays the power spectrum of the noisy mapjust before the D, we found that the SNRY) scales withe as SNRD)
second period doubling bifurcatiora€ 1.24) for different e~ 2 which fits the theoretical predictions of RéT]. Fig-
noise levels. Note that when there is no noife<0), the ure 2 also shows that as the control paramatapproaches
map has a stable fixed point of period 2 and peak at the the point of bifurcatiora,= 1.25, the optimal noise intensity
frequency wo=7 in the power spectrum. With the noise D, shifts towards smaller values and the SNR increases.
switched on, the noisy precursor of a period-four cycle be-Our simulations revealed that the optimal noise intensity and
comes visible as a peak at the subharmonic frequencgontrol parameter near a period-doubling bifurcation are con-
wp=m/2. The increase of noise makes this peak more pronected linearly: D, <€. Beyond the bifurcation point
nounced. However for large noise levels, the width of thea=a,=1.25, there is a period-four fixed point withpeaks
peak becomes so wide that it is difficult to distinguish theat the subharmonie,= /2 in the power spectrum. How-
peak from the noise background. ever, as noise increases, these peaks are gradually “washed

To better quantify this behavior we present the results obut” and the SNR monotonically decreases. Finally, we also
numerical calculations off, W, and SNR in Fig. 2 which analyzed Eq(1) for parameter values close to other period-
clearly support our prediction for a resonant effect. The insetloubling bifurcations and obtained results in close agreement
graph in Fig. 2 displays the dependencdHbfindW on the  to all those reported above.
noise intensityD. The width of the noise-induced peak in-  Let us now consider théorus-birth bifurcation In the
creases linearly with the increase bf as is known for a language of Poincammaps this bifurcation refers to the case
classical self-sustained oscillator perturbed by ng&eOn  when a pair of complex conjugate characteristic multipliers
the other hand, the height of the peak increases linearly for eross the unit circle. This bifurcation is thus closely akin to
small noise intensity and then flattens out and saturates dube Hopf bifurcation in a flow systeffi1]. A system of two
to the nonlinearity of the system. Appropriate scalings forcoupled Feigenbaum maps, for example, can easily generate
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FIG. 3. The power spectrum of the coupled Feigenbaum (B&p FIG. 5. The power spectrum of the Bder system(4) at

ata=0.405,y=0.4 for different noise intensitie¢l) D=10"3,(2) ~ @=b=0.2,c=2.7 for several values of noise intensity) D=0,
D=10"2 and(3) D=10"1. (2 D=10"% and(3) D=2x10"3.

such a bifurcatiorj12,11. With additive noise applied, the period-two fixed point to become a complex conjugate and
system is described by the two stochastic difference equawhena is large enough, the multipliers cross the unit cycle.

tions This Hopf bifurcation corresponds to the birth of an invariant
curve or torus in the phase space of the system.
Xnie1=1—axt+ y(Yn—Xn) + JD&,, Consider now the case whep=0.4, and for which a
Hopf bifurcation is known to occur at=a,;~0.409 98. With
Yo 1=1—ay?+ y(Xn—Yn) + VD 75, (3y @=0.405<a, the system is below the Hopf bifurcation and,

in the absence of noise, the power spectrum contains only a

wherey is the coupling strength angl,, 7, are statistically single5 peak at the_ frequ_ency _corresp_onding to the stable
independent white noises. The bifurcations in the noiselesg€rod-two fixed point. With noise applied to the system, the
system(3) have been studied in detaisee, for example, NOISY precursors of the Hopf blfurcatl_on become readily ap-
[11]). The stable fixed point of period 1 is born asin- parent(see Fig. 3and two new peaks in the power spectrum
creases beyond= —0.25, with a bifurcation to a period-two 2PP€ar. These peaks correspond in frequency to the case of

fixed point whera= (42— 8y+ 3)/4. Increasing the param- torus dynamics that arises when there is no noise and
etera further leads to the characteristic multipliers of the @ 0-405(i.e., after the Hopf bifurcation A close analysis
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FIG. 4. SNR vsD for the coupled Feigenbaum map g+ 0.4 FIG. 6. SNR vsD at the noise-induced frequenéeft subhar-

for several values of parametar (O) a=0.4, (d) a=0.407, and monic of the Rsler system. The solid line represents the approxi-
(A) a=0.408. The solid lines represent the approximation given bymation given by Eq(2). The parameter values are the same as in
Eq. (2). Fig. 5.
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revealed that increasing noise intensity in E8). results in The effect we report here is very simple, and, in fact,
exactly the same effects observed for the preceding case ektremely general. Nonlinear dynamical systems when ex-
the period-doubling bifurcation. Figure 4 makes clear thecited by noise give rise to precursors of instabilities of peri-
dependence of the SNR at one of the noise-induced peaks agic motion. These noisy precursors, which are prominently
a function of noise intensity. The SR-like behavior is clearlyclose to points of bifurcation, manifest themselves as noise-
seen again. induced peaks in the power spectrum of the system. The
Qualitatively the same behavior is also observed in flowyeaks are most strongly expressed at an optimal level of
systems. To demonstrate this we present a numerical Stucﬁbise, and thus the SNR at the noise-induced peaks pass
through a maximum as noise intensity increases. This phe-
OInomenon has a simple physical interpretation that can be
stated in terms of two competing mechanisms. The first, is
the increase of the height of the noise-induced peak as the
noise strength increases; a tendency which makes the precur-
. sor more visible above the noise background. The growth of
z=b+2(x—c)+2D (1), (4 the height is, nevertheless, bounded by the nonlinearity of
the system. The second mechanism is the increase of the
width of the peak with noise, which tends to create difficul-
ties in resolving the peak. In short these two quantities, the
peak’s height and width, vary differently with noise inten-
) ; sity. The competition in the growth of these quantities yields
C=C;~2.835. Forc=2.7<c, and in the absence of noise, anyoptimal noliase intensity a? which the SNthakes its ¥naxi-

there is a stable cycle of period 1. With noise switched on . i
the precursors of period-doubling become visible. The powerrnal value. The effect reported here appears to be quite gen

spectra of thex coordinate(d) is shown for three different eral and pr_owdes an mterest!ng interpretation of coherence
noise intensitie§Fig. 5). As can be seen, the evolution of the resonance in autonomous noisy systems.

power spectrum is qualitatively equivalent to that of the The authors thank A. Pikovsky and L. Schimansky-Geier
Feigenbaum majcf. Fig. 1). The dependence of the SNR for valuable discussion. A.N. and P.S. acknowledge Tel Aviv
versusD is shown in Fig. 6 and again displays the SR-like University. A.N. acknowledges partial support from the Min-

by the three-dimensional stochastic differential equations

x=—(y+2)+2D&y(t), y=x+ay+2D&(1)

wherea, b, andc are the parameters aidis the intensity of
the statistically independent white noiségt). In the ab-
sence of noise =0), and with the parameter values
a=b=0.2, the first period-doubling bifurcation occurs at

behavior. istry of High Education of RussiéGrant No. 95-0-8.3-66
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